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Abstract

Molecular differences between cancerous and healthy tissue have become key targets for novel 

therapeutics specific to tumor receptors. However, cancer cell receptor expression can vary within 

and amongst different tumors, making strategies that can quantify receptor concentration in vivo 

critical for the progression of targeted therapies. Recently a dual-tracer imaging approach capable 

of providing quantitative measures of receptor concentration in vivo was developed. It relies on the 

simultaneous injection and imaging of receptor-targeted tracer and an untargeted tracer (to account 

for non-specific uptake of the targeted tracer). Early implementations of this approach have been 

structured on existing “reference tissue” imaging methods that have not been optimized for or 

validated in dual-tracer imaging. Using simulations and mouse tumor model experimental data, 

the salient findings in this study were that all widely used reference tissue kinetic models can be 

used for dual-tracer imaging, with the linearized simplified reference tissue model offering a good 

balance of accuracy and computational efficiency. Moreover, an alternate version of the full two-

compartment reference tissue model can be employed accurately by assuming that the K1s of the 

targeted and untargeted tracers are similar to avoid assuming an instantaneous equilibrium 

between bound and free states (made by all other models).

Introduction

In cancer research, 95% of new therapeutics fail to demonstrate significant outcomes in 

clinical trials and are therefore abandoned after substantial investment [1,2], even though 

many of these therapeutics are designed to target cancer-specific receptors, being the 

products of highly sophisticated studies in cancer molecular expression [3]. While there is 

no consensus as to why so many drugs are failing clinical trials, it is clear that drug 

developers require new non-invasive methods to quantify cancer receptor concentrations in 

vivo in order to better understand the relationship between receptor availability, and drug 
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targeting and binding [4]. Unfortunately, it has been difficult to extract quantitative 

information about tumor receptor concentrations with conventional molecular imaging 

strategies. They typically involve injecting a subject with an imaging tracer targeted to a 

receptor of interest, waiting some duration of time for any unbound tracer to exit the tissues, 

and assuming the remaining measured signal arises from tracer that is bound to its specific 

receptor. The problem is that drug delivery research in oncology has demonstrated that 

many physiological and path physiological factors (e.g., blood flow, vascular permeability, 

interstitial pressure, and lymphatic drainage) can significantly influence the uptake of a 

targeted tracer in a tumor [5-8].

In response, “dual-tracer” imaging utilizes the uptake of a second tracer, similar to the 

targeted tracer but designed to be untargeted, to account for any non-receptor mediated 

uptake of the targeted tracer [9,10]. This approach was recently advanced by the 

development and validation of the first imaging methodology capable of quantifying 

receptor concentrations tumors [11]. The importance of using this “dual-tracer” approach 

over “reference tissue” approaches - which have been used for over a decade in brain studies 

to quantify neurotransmitter receptor concentrations [12] – was also demonstrated to be 

critical when attempting to quantify receptor concentration in tumors [13].

To date, the dual-tracer receptor concentration imaging (RCI) approaches have rather 

indiscriminately employed one of the two early reference tissue models, Lammertsma and 

Hume’s “simplified reference tissue model” [14] and Logan et al.’s “graphical analysis” 

approach [15], for no other reason than that they were easily adaptable to the dual-tracer 

framework. Even though many of the assumptions made in reference tissue models hold for 

dual-tracer RCI, it is not necessary that these models are optimal since additional 

assumptions can be made with dual-tracer RCI: e.g., that the delivery rates (K1) of both 

tracers are the same if the chemical properties of the tracers are similar. Using both 

simulated and experimental data, the current study was carried out to identify the optimal 

data analysis workflow for translating targeted and untargeted tracer uptake curves in tumors 

to receptor concentration images, with particular emphasis on noise characteristics and 

computational cost of kinetic model data fitting.

Theory

Compartment models for dual-tracer kinetic analyses

Reference tissue compartment models are ideally suited for dual-tracer RCI since the setup 

of the dual-tracer compartment model (Figure 1) is nearly identical to that of the reference 

tissue model [14]. Both models recognize that non-specific uptake of a targeted tracer can 

significantly affect the relationship between tracer uptake and tracer binding or receptor 

concentration. The reference tissue model accounts for binding by employing the temporal 

uptake of the targeted tracer in a region devoid of targeted receptor (reference tissue) to 

account for non-specific uptake; while the dual-tracer approach employs the uptake of a 

second tracer, similar in structure to the targeted tracer but untargeted, in the same tissue as 

the targeted tracer to account for non-specific uptake. On the surface it would seem that 

whatever kinetic model was best for one approach would also be best for the other, but there 
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are subtle differences between the approaches that can impact the choice of the optimal 

kinetic model:

1. The plasma input function, Cp: in the reference tissue model, the reference input 

and the region-of-interest input intrinsically have the same plasma input function, 

so this is not a concern; however, in the dual-tracer model, both tracers used must 

have the same plasma kinetics of the course of imaging.

2. K1/k2 equivalency: in reference tissue models, it is assumed that the ratio of the 

tracer’s extravasations and tissue-efflux rates, K1 and k2, are equivalent in the 

reference tissue and the region of interest; whereas, dual-tracer models assumes 

that these leakage kinetics are the same between tracers in all tissues.

In this study, six different reference tissue models are evaluated in terms of their ability to 

accurately and efficiently estimate tumor cell-surface receptor concentration from dual-

tracer data. The models included 1) the “full reference tissue model” [FRTM] [16,17], later 

modified to a “reduced full reference tissue model” [Reduced FRTM] 2) the “simplified 

reference tissue model” [SRTM] [14], 3) The original graphical analysis reference tissue 

model [GARTM] [15], 4) A linearized version of the SRTM [SRTM_lin] [18], 5) A 

modification to the GARTM [GARTM_mod] [19], and 6) the “basis function method” 

[BFM] [20]. While a full derivation of these six models is outside of the scope of this article, 

a presentation of the key mathematical expressions converted to a dual-tracer nomenclature 

are provided below. The FRTM can be expressed as:

(1)

where ROIT(t) and ROIU(t) represent the measured uptake curves of the targeted and 

untargeted tracers, respectively, in any region of interest, as a function of time, t; R1 is the 

ratio of the rates of extravasation (K1) of the targeted tracer and the untargeted tracer; k2 is 

the rate of efflux of the targeted tracer; and k3 and k4 are the rates of association and 

dissociation of the targeted tracer, respectively (Figure 1).

Likewise, the SRTM can be expressed as:

(2)
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where BP, the “binding potential”, is equivalent to k3/k4, and is a key parameter since it 

represents the product of the receptor concentration (the parameter of interest) and the 

affinity of the targeted tracer for its receptor (which can in most cases be measured ex vivo) 

[12]. Going on, the format of the GARTM can be represented by:

(3)

where u is a dummy time variable to integrate over, int is an often neglected intercept term 

in this linear relationship with slope 1+BP at time, t > t*, where t* represents the time it 

takes for the Cf and Cb to reach a constant ratio (quasi-equilibrium). The format of the 

SRTM_lin can be expressed as follows:

(4)

Furthermore, the format of the GARTM_mod can be expressed as follows:

(5)

Where int’ represents another neglected intercept that is different in composition than the 

one in Eq. (3).

Finally, Gunn’s basis function method (BFM) is derived from Eq. (2) and is formulated as:

(6)

Where θ1 = R1, θ2 =k2 – R1k2/(1+BP), Bi’s are he so-called basis functions defined as:

(7)

And q3 = k2 / (1+ BP); so that Eq. (6) can be optimized for θ1 and θ2 in a linear least 

squares sense; provided that θ3 is varied iteratively over a specified range.

Materials and Methods

Animal experiments

Targeted and untargeted tracer uptake curves were measured in two different tumor lines 

grown subcutaneously in athymic mice (n = 10, Charles River, Wilmington, MA). The 

targeted tracer was a ligand for the epidermal growth factor receptor (EGFR), a receptor that 

is over expressed in many cancers [21]. Specifically, the tracer was a near-infrared 
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fluorescent molecule bound to native epidermal growth factor, IRDye-800CW-EGF (LI-

COR Biosciences, Lincoln, NE). The untargeted tracer was a free near-infrared fluorescent 

tracer emitting fluorescence at a separate wavelength, IRDye-700 (LI-COR Biosciences). 

The two different tumor lines were selected so as to represent different levels of epidermal 

growth factor receptor (EGFR) and were each implanted into six of the twelve immune-

deficient mice (Charles River, Wilmington, MA). Five mice were inoculated with a human 

neuronal glioblastoma (U251; supplied from Dr. Mark Israel, Norris Cotton Cancer Center, 

Dartmouth-Hitchcock Medical Center), a cancer cell line known to express moderate levels 

of EGFR [22,23]; and another five mice were inoculated with a human epidermoid 

carcinoma (A431; ATCC, Manassas, VA), known to express a very large amount of EGFR 

[24]. In all cases, the tumors were introduced by injecting 1×106 tumor cells in Matrigel® 

(BD Biosciences, San Jose, CA) into the subcutaneous space on the left thigh of the mice. 

The tumors were then allowed to grow to a size of approximately 150 mm3 before imaging.

The mice were anesthetized with ketamine-xylazine (100 mg/kg: 10 mg/kg i.p.) and the 

superficial tissue surrounding the tumors was removed. Each mouse was then placed tumor-

side down on a glass slide and loosely secured with surgical tape (Figure 1). Once plated, 

the mice were positioned onto the imaging plane of an Odyssey Scanner (LI-COR 

Biosciences, Lincoln, NE). The Odyssey Scanner employs raster scanning and two lasers 

(one emitting at 685 nm and another at 785 nm) to excite two fluorophores simultaneously, 

pixel-by-pixel, and utilizes a series of dichroic mirrors to decouple fluorescence from the LI-

COR 680 or 700 nm fluorescent tracers and the LI-COR 800 nm fluorescent tracer, 

respectively. All mice were injected with a cocktail of 1 nanomole of an EGFR targeted 

fluorescent tracer and 1 nanomole of an untargeted fluorescent tracer: the untargeted tracer 

was a carboxylate form of the IRDye 700DX NHS Ester (LI-COR Biosciences, Lincoln, 

NE) and the targeted tracer was IRDye 800CW-EGF (LI-COR Biosciences, Lincoln, NE). 

The mice were then imaged at approximately 3-min intervals for 1 h after injection of the 

fluorescent tracers.

Image analysis

The first step in the image analysis was to remove auto fluorescence (background 

fluorescence from the datasets. This was done by subtracting a pre-injection image of 

targeted and untargeted tracer channel fluorescence from all subsequent post-injection 

images [25]. Next, the potential differences in detection efficiency at the two wavelengths 

were normalized by taking the ratio of measured fluorescence from the targeted and 

untargeted tracers in a region of interest devoid of targeted receptor, and multiplying this 

“normalization” factor with all uptake images [11]. A pixel-wise fitting procedure was then 

performed according to each of the six aforementioned models in the tumor and surrounding 

tissues to calculate parametric maps of binding potential (which for the targeted tracer 

employed, is equivalent to EGFR concentration in units of nM because the affinity of EGF 

for EGFR is 1 nM−1 [26] and receptor concentration is equivalent to the product of the 

binding potential and the tracer affinity [12]). In the case of the FRTM, SRTM, and 

SRTM_lin models, their use was additionally tested when holding the parameter R1 = 1, 

since it is the ratio of K1s of the targeted and untargeted tracers, which should be equivalent 

[13]. MATLAB (Natick, MA) was used for all curve fitting procedures and the built in 
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function lsqcurvfit() was used for non-linear fitting (FRTM & SRTM), while polyfit() was 

used for the GARTM and GARTM_mod models, and the back-slash operator was used for 

SRTM_lin model. For the BFM model, the simulation was performed using both the 

conventional QR decomposition approach [20] and the back-slash operator. All curves were 

interpolated to 0.1 min temporal resolution using interp1() with a spline approach prior to 

the use of convolution or integration algorithms in MATLAB to avoid discretization errors.

Simulated data

As an initial test of the six models described in the Theory, targeted and untargeted tracer 

uptake curves were simulated for a typical level of EGFR expression in a moderate 

expressing tumor (2 nM [11]). The targeted tracer uptake curve was simulated based on a 

full solution to the two-tissue compartment model depicted in Figure 1 - that can be found in 

Appendix A of Lammertsma et al. [17] and the untargeted tracer uptake curve was simulated 

based on a one-tissue compartment model, also known as the Kety model [27]. Each of these 

model-types requires a plasma input function, i.e., the concentration of the tracer in the 

blood over time, which was chosen from blood sampling experiments published previously 

[28] that were carried out in a cohort of 13 mice using the same targeted and untargeted 

tracers used in the current study. Furthermore, the rate constants K1-k4 needed to be 

assumed. For the purposes of the simulations here we assumed that the untargeted tracer was 

an ideal pair for the targeted tracer and therefore K1 and k2 were assumed to be equivalent 

between the tracers. Values of K1 and k2 were chosen based on the work of de Lussanet et 

al. who evaluated these parameters in tumors for different sized contrast agents; values 

associated with the 3.0-kDa agent were chosen as it most closely matched the size of the 

targeted tracer employed in the animal experiments (~ 7 kDa): the values were K1 = 0.013 

min−1 and k2 = 0.13 min−1[29]. The disassociation binding rate constant k4 is equivalent to 

koff in enzyme kinetic nomenclature and was measured by Zhou et al. to be approximately 

0.1 min−1 for EGF bound to EGFR [26] - native EGF was the targeting moiety used in the 

animal experiments in this study. Then with binding potentials (k3/k4) roughly equivalent to 

2 for a typical EGFR over expressing tumor line (U251: see Animal experiments), k3 was by 

association assumed to be equal to 0.2 min−1. The binding rates would be equivalent to a 2 

nM concentration of EGFR using a native EGF based targeted tracer. All simulated targeted 

and untargeted tracer uptake curves were interpolated to 1-minute interval time-points from 

1 to 60 min after tracer injection.

To best represent the actual animal data, a pixel-wise noise detection technique was 

performed to approximate the noise variance (percentage) in the Odyssey Scanner images. 

At each pixel, the targeted and untargeted uptake curves at all time points were extracted 

and fitted to a fifth-order polynomial (Figure 1d). The standard deviation of the error 

between the fit and the actual curves was averaged over all pixels in a region of interest and 

normalized by the maximum value of the curves to represent an overall measure of noise in 

that region. It was noticed that the noise metric was generally less in the untargeted uptake 

curves compared to the targeted ones but, without loss of generality, this fact was not 

incorporated in the simulations. In most cases (for different images and different regions of 

interest), the average noise did not exceed 3% of the signal; therefore, 3% Gaussian noise 
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was added to all simulated tracer uptake curves prior to employing the kinetic models 

described in the Theory to back-out the simulated EGFR concentration.

Results and Discussion

Figure 2 presents the average EGFR concentrations measured using all models described in 

the Theory. All of the models produced very similar results with the spread in averages 

being about 25% of the mean. There were no statistically significant differences between the 

results of any of the models except for the GARTM_mod, which produced significantly 

lower estimates of EGFR than all other models in both tumor groups (n = 5 in each tumor 

group, p< 0.05).

Figure 3 presents parametric maps from one typical U251 mouse and one A431 mouse for 

each of the tested kinetic models. On the whole, the visual quality (in terms of pixel fitting 

robustness to noise) of the parametric maps was adequate and comparable between models. 

Only the SRTM_lin model appeared to suffer from some instability. Upon noise analysis 

(Figure 4), it did not appear than the instability in EGFR concentration estimation of the 

SRTM_lin resulted from a heightened sensitivity to noise. Rather, it appears as if the model 

becomes unstable in tissues with very little targeted tracer binding. The current 

implementation of SRTM_lin in this paper utilizes a “back-slash” operation in MATLAB; 

however, future applications could include iterative fitting routines that would slow the 

algorithm down, but would allow constraints to be enacted that could improve the stability.

There are no quantitative gold standard methods for measuring in vivo receptor 

concentrations, so it is difficult to determine whether the GARTM_mod of the other models 

were more accurate from the experimental data alone. In a separate study, ex-vivorough 

estimates of EGFR concentration in the U251 tumors and A431 tumors were 1.6 ± 0.4 and 

2.7 ± 0.4 nM, respectively [11], suggesting perhaps that the GARTM_mod would be most 

accurate, but the rough estimates should not be held as quantitative and therefore cannot be 

used to make any conclusions other than supporting the fact that the A431 expresses 

significantly more EGFR than the U251 tumors (a trend strongly supported by all models). 

In response, a number of simulation studies were carried out to better evaluate the accuracy 

and precision of the various approaches.

Figures 4 and 5 present the results of the simulation studies described in the Methods, with 

numerical results of accuracy, precision, and computational cost, summarized in Table 1. 

The SRTM, SRTM_lin, and reduced FRTM results all provided the most accurate results, 

with the BFM and GARTM slightly underestimating the simulated level of receptor 

concentration, and the GARTM_mod, strongly underestimating the simulated receptor 

concentration. The fact that GARTM_mod does not work for our case was expected, since 

according to the authors of the approach, it has been developed for the special case of PET 

imaging in rats and is not guaranteed to work in other frameworks [19]. Interestingly 

though, in a comparative sense, the GARTM_mod appeared to be fair much better in the 

animal experiments than in simulations, and could be considered a viable model owing to its 

computational efficiency and the fact that it does not require an estimate of k2 like the 

GARTM.
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With respect to the GARTM, the slight underestimation in receptor concentration estimation 

is a well-known phenomenon of the model attributable to a noise bias [30]; however, it 

should be noted that novel adaptations of the GARTM have been developed to account for 

this noise bias [31]. The fact that such an underestimation was not observed in the animal 

experiments compared to the SRTM based models could have stemmed from an 

overestimation in the assumed value of k2 (which was assumed to be 0.1 min−1 in the animal 

experiments). Figure 6 presents a sensitivity profile of the error in receptor concentration 

estimation using GARTM given errors in assumed k2 for tracers of different sizes from 

small to x-large, using K1 and k2 parameters from de Lussanet et al. As a reference [29]. The 

slight underestimation in receptor concentration of the BFM was found to be attributable to 

the fit constraints, which are effectively realized in the pre-specified range for θ3.In fact, the 

BFM could perhaps be considered the best overall model if it weren’t for the known 

sensitivity in estimations to the parameters of the fit [20]. The model is nearly as fast as 

SRTM_lin, more stable in low binding tissues, and can have excellent accuracy and 

precision; although its sensitivity to the constraints, especially to the lower bound of the θ 

range, is such that a 1 percent change in the lower bound could sometimes yield a 20 percent 

change in the estimated BP value.

All figures do not include results from the FRTM because fits using this model resulted in 

largely spurious estimates of EGFR concentration estimates of −0.03 and −0.05 for the 

U251 and A431 tumor groups, respectively. It may just be that the model requires careful 

consideration of starting parameters and constraints in the fitting; however, the fourth degree 

of freedom is known to be problematic, which is why this model is rarely used in reference 

tissue modelling [14].The “reduced” FRTM, however, wherein R1 was set equal to 1 to 

reduce the number of fitting parameters to three (a constraint only possible in dual-tracer 

imaging and not possible in reference tissue modelling), produced promising results. 

According to this finding, it was presumed that a similar constraint (setting R1=1) would 

also improve the characteristics of the SRTM and SRTM_lin; however, these new “two-

parameter” models were tested both in simulation and on the animal data, where they were 

found to be very unstable. Presumably, this is because including R1 as a fitting parameter 

provides a necessary degree of freedom to deal with small differences in scale between the 

targeted and untargeted tracer uptake curves that was unnecessary in the reduced FRTM 

(i.e., fitting for R1 can help account for any bias caused by noise or imprecise detector 

efficiency normalization, while setting it to 1 causes other parameters to suffer from the bias 

in a more unstable manner).

One very interesting potential advantage of the reduced-FRTM that requires future study, is 

that it is the only model that does not make an assumption of an instantaneous equilibrium 

between the free and bound concentrations of targeted tracer in its compartment model (the 

so-called “adiabatic approximation” [14]) (Figure 1c). The binding kinetics of EGF [26], the 

targeting ligand employed in the animal experiments in this study, and the similar levels of 

k3 and k4 employed in the simulations, appear to support the adiabatic approximation; 

however, larger, more specific targeting moieties may have slower binding kinetics that 

would preclude validity of the approximation [32]. It is for these applications that the 

reduced-FRTM could have a unique advantage.
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Some other less substantial findings warrant some discussion. It was found that the 

specification of upper and lower bounds for models using the built-in function lsqcurvefit() 

was an issue that needed to be dealt with carefully. Without specifying the proper bounds, 

SRTM and the Reduced FRTM tended to produce out of bound or ‘saturated’ values for 

EGFR concentration at some pixels in the animal experiment results (presumably owing to 

noise and the abnormal behaviour of the targeted and untargeted curves at those pixels). 

Cselenyi et al [33]. Have set these outlier values to zero in their algorithm, thus getting 

binding potential maps that contain ‘holes’[33].In this study, the fitting procedure was 

constrained instead, by manually altering the constraints until achieving the optimum results 

and a ‘clean’ parametric map. Future work is ongoing to determine a more automated 

approach for selecting the parameters of the fit.

In terms of speed, the SRTM_lin model was the fastest and the Reduced FRTM the slowest. 

SRTM was about 10 times slower than GARTM and BFM, but not necessarily more 

efficient. For SRTM and Reduced FRTM, MATLAB’s lsqcurvefit() function was used to 

incorporate constraints on fitted values; otherwise the models would overload for some 

experimental cases. The employment of lsqcurvefit() in these models had two effects: first, it 

slowed down the optimization algorithm (SRTM_lin is the fastest because it does not use 

such constraints and performs the fit with a simple back-slash operator); second, the 

constraints need to be manually selected for each case to avoid out of bound values for fit 

parameters. It would be worthwhile to employ other optimization toolboxes for these two 

models to both speed them up and also automate the process of finding their constraints. The 

Reduced FRTM could also be linearized in a similar manner as SRTM_lin for increased 

speed. This is left for future studies.

Conclusion

A reduced version of the full two-compartment kinetic model, along with five other 

prevalent kinetic modelling approaches used widely in tracer kinetics nomenclature were 

studied, implemented, and evaluated in this study; with particular emphasis on employment 

of these models in a dual-tracer modelling framework. Evaluation was carried out in EGFR 

targeted studies in experimental mouse tumor xenograft models, and was supported by 

theoretical simulations. In general, no single model outperformed the others for dual-tracer 

modelling; instead, each model came with their own strengths and weaknesses. Overall, the 

reduced FRTM, SRTM, and SRTM_lin models provided the most accurate estimates of 

binding potential in simulations and experimental results; however, they did result in larger 

variation to noise compared to GARTM and the Gunn approaches. One potential advantage 

of the reduced FRTM is that it is the only model that does not assume an instantaneous 

equilibrium between the bound and free compartments of the targeted tracer model. Future 

work will explore the potential advantages of this model for estimating binding kinetics of 

larger targeting moieties such as antibodies that may not obey this assumption [32]. If the 

instantaneous equilibrium assumption is valid, the SRTM_lin model could be argued to 

provide a good balance of advantages. It was cosnsiderably faster than all other models 

except for GARTM, it does not require an estimate of k2 (as is the case with GARTM), and 

it provided the most accurate results in simulations.
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Figure 1. 
A photograph of the dual-tracer experimental setup of a U251 mouse with tumor exposed is 

presented in (a): targeted tracer (red) and untargeted tracer (green) fluorescence uptake 

images at 60 min post-tracer injection are presented in (b). The tumor area has been marked 

by the dashed rectangle (b), and the corresponding compartment models (c). ROIT(t) and 

ROIU(t) represent the measured uptake curves of the targeted and untargeted tracers, 

respectively, in any region of interest, as a function of time, t; vp is the blood volume 

percentage in the tumor; K1 and k2 are the rates of exchange of the tracers from the blood 

concentration (Cp) to the interstitial space (Cf for the targeted tracer and CU for the 

untargeted tracer) and back, respectively; and k3 and k4 are the rates of association and 

dissociation of the targeted tracer to its receptor in a bound state (Cb). Typical uptake curves 

of the targeted tracer (red) and the untargeted tracer (blue) in a single pixel in a low signal-

to-noise scenario is presented in (e). The smooth “fits” are polynomials fit to the data to 

determine the noise characteristics.

Hamzei et al. Page 12

Austin J Biomed Eng. Author manuscript; available in PMC 2014 November 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Box plots of epidermal growth factor (EGFR) concentration estimates from all models are 

presented in (a) for the human glioma xenograft mice (U251 cell line) and in (b) for the 

human epidermoid xenograft mice (A431 cell line). The kinetic models are the graphical 

analysis reference tissue model (GARTM), the simplified reference tissue model (SRTM), 

the linearized-SRTM (SRTM_lin), a modified GARTM (GARTM_mod), a basis function 

model (BFM), and a “reduced” full reference tissue model (R-FRTM). The red lines 

represent the median EGFR concentration estimates.
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Figure 3. 
Parametric maps of estimated epidermal growth factor receptor (EGFR) concentration. The 

SRTM_lin model lacks constraints and thus fails to produce maps as ‘clean’ as those 

generated by other models; as seen from the holes and saturated values in the maps on the 

top right of the figure.
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Figure 4. 
Fitting receptor concentration results from applying the six models [graphical analysis 

reference tissue model (GARTM), the simplified reference tissue model (SRTM), the 

linearized-SRTM (SRTM_lin), a modified GARTM (GARTM_mod), a basis function model 

(BFM), and a “reduced” full reference tissue model (R-FRTM)] – (a)-(f), respectively – to 

simulated curves with additive Gaussian noise of 3% for 10,000 iterations. The red dashed 

and the blue dotted vertical lines indicate the positions of the means of the fit and the true 

BP respectively. The scales for horizontal axes are the same in all figures except 

GARTM_mod, which produced out of bound values for Binding Potential.
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Figure 5. 
Comparison of fitting performances of different models [graphical analysis reference tissue 

model (GARTM), the simplified reference tissue model (SRTM), the linearized-SRTM 

(SRTM_lin), a modified GARTM (GARTM_mod), a basis function model (BFM), and a 

“reduced” full reference tissue model (R-FRTM)] and different particles within each model. 

Fitting is done for 100 times for each particle within each model.
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Figure 6. 
Sensitivity of the results of the graphical analysis reference tissue model (GARTM) to errors 

in the value of k2. The true k2 is 0.13 in this case and the noise added to the curves is 3%.
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Table 1

Comparison of the models in terms of accuracy and speed. The first and third rows show the means and 

standard deviation (sd) of the graphical analysis reference tissue model (GARTM), the simplified reference 

tissue model (SRTM), the linearized-SRTM (SRTM_lin), a modified GARTM (GARTM_mod), a basis 

function model (BFM), and a “reduced” full reference tissue model (R-FRTM) for the medium sized particle 

simulations. The fourth row represents the time taken for the models to perform the fit for 10000 iterations. 

These results and their interpretations may vary for different particles and computers.

GARTM SRTM SRTM_
lin BFM R-FRTM GARTM_

mod

Estimated
Receptor

Concentration
(Mean ± SD)

1.9 ± 0.1 2.0 ± 0.1 2.1 ± 0.1 1.9 ± 0.0 2.1 ± 0.1 1.1 ± 0.0

Error in
receptor

concentration
estimate

−0.06 0.04 0.06 −0.12 0.08 −0.89

Elapsed Time
for 10,000 fits

(s)
13 240 5 103 838 25
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