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Abstract

The rapid growth of the available crystallographic information about proteins and binding pockets 

creates remarkable opportunities for enriching the drug research pipelines with computational 

prediction of novel protein-ligand interactions. While ab initio quantum mechanical approaches 

are known to provide unprecedented accuracy in structure-based binding energy calculations, they 

are limited to only small systems of dozens of atoms. In the structural chemogenomics era, it is 

critical that new approaches are developed that enable application of QM methodologies to non-

covalent interactions in systems as large as protein-ligand complexes and conformational 

ensembles. This perspective highlights recent advances towards bridging the gap between high 

accuracy and high volume computations in drug research.
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INTRODUCTION

In the modern age, the success rate of drug discovery efforts is largely dependent on the 

efficient symbiosis of experimental studies such as X-ray crystallography, medicinal 

chemistry, classical and reverse pharmacology with computational predictions. 

Computational methods can now substantially contribute to hit discovery and optimization 

as well as to multi-target compound profiling for safety, toxicity, or polypharmacology. The 

rapid growth of available crystallographic information about proteins, binding pockets, and 

transient protein-ligand interactions dramatically expands the applicability domains of 

structure-based computational chemistry approaches and prompts the development of faster 

and more accurate docking and scoring algorithms.

According to different estimates, about 20% of the human proteome may have druggable 

pockets.1 This corresponds to about 4,000 proteins in the entire human proteome.2-4. As of 

Correspondence to: Irina Kufareva, Ph.D., ikufareva@ucsd.edu. 

NIH Public Access
Author Manuscript
Int J Quantum Chem. Author manuscript; available in PMC 2014 November 18.

Published in final edited form as:
Int J Quantum Chem. 2013 June 15; 113(12): 1669–1675. doi:10.1002/qua.24400.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



October 2012, more than 18 thousand proteins from the manually curated section of the 

UniProt knowledgebase5 were represented among the 85 thousand Protein Data Bank entries 

(PDB6), with 4.6 thousand of these entries being human proteins. The number of proteins 

that have been co-crystallized with drug-like small molecules thus far (and are available in 

the PDB) is around 2,400; of these, approximately 800 are human. In other words, structural 

information is available for 20% of the potential human pocketome. Several online 

resources, including Pocketome,1 PDBSite,7 ReliBase,8 MSDsite,9 sc-PDB,10 and 

LigBase11 provide comprehensive structural characterization of the available pockets and 

their interactions with transient ligands, while other databases (e.g. PDBbind,12 Binding 

MOAD,13 BindingDB,14 AutoBind15) complement it with relevant biochemical 

information.

The number of unique proteins in the PDB grows constantly with annual increment reaching 

almost 1000 per year in the years of 2005-07. Although in the recent years, this growth has 

been gradually slowing down, the structural coverage of the human pocketome is expected 

to further increase and achieve 50% by the year 2020 (Figure 1A). Pharmaceutical 

importance and ease of crystallization are among the two main factors that bias this 

coverage towards certain classes of protein targets. Soluble proteins such as protein kinases, 

cytochromes P450, or nuclear receptors dominate the structural human pocketome, while 

membrane proteins are scarcely represented. However, recent breakthroughs in membrane 

protein crystallization technologies 16-18 has led to a significant increase in the number of 

structures of G-protein coupled receptors in 2008-12.

21ST CENTURY PROBLEMS IN STRUCTURE-BASED COMPUTATIONAL 

CHEMISTRY

The real-life problems addressed by computational chemistry and utilizing crystallographic 

information about pockets/ligand interactions fall into one of the four classes (Figure 1B): (i) 

compound docking or pose prediction, (ii) compound screening, (iii) compound profiling, 

and (iv) compound binding affinity prediction.

Compound binding pose prediction is performed for a single compound and a single binding 

pocket, although the latter is possibly represented by more than one structure. Solving this 

problem requires generation of a large number of diverse compound poses with their 

subsequent scoring and ranking in the pocket structure(s). Real life difficulty arises when 

none of the pocket structures is a cognate structure (i.e. the structure co-crystallized with the 

compound in question). Methods for solving the compound pose prediction problem can be 

efficiently benchmarked if the answer in the form of co-crystallized complex is available but 

eliminated from the prediction (the so called cross-docking problem). Pose prediction is 

considered successful if the best ranking compound pose reproduces all essential contacts 

observed in the co-crystal complex (answer). Root-mean-square deviation (RMSD) of the 

compound to its crystallographic pose after the superposition of the binding pocket 

structures is frequently used to evaluate the docking algorithm performance, however, it is 

not as accurate or informative as the contact-based measures.19 Notably, the correlation, or 

even the relative ranking correspondence between the pose accuracy and scoring is not 
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required beyond the best scoring pose being sufficiently accurate according to the selected 

accuracy evaluation criteria.

In compound screening, different compounds have to be docked and scored in a single 

binding pocket which is possibly, and preferably, represented by more than one structure. 

Based on the calculated docking scores, each compound is assigned a level of confidence on 

the assumption that it binds to the target pocket. The output of a screening algorithm is a 

“yes” (binder) or “no” (non-binder) prediction for each compound in the screened database, 

ideally complemented by a numerical indication of prediction confidence in each case. 

Screening methods can be benchmarked when an answer to the problem is available in the 

form of a compound set in which some of the compounds are experimentally confirmed 

binders to the pocket in question while others are not (inactives or decoys). For realistic 

difficulty, the negative part of the compound answer set must be similar to the active 

compounds by physico-chemical properties or even by chemical structure.20 The screening 

prediction is considered successful if the actives are consistently ranked higher by the model 

than the inactives or decoys. Again, correlation between compound scores and binding 

affinity is not required, although it may improve screening accuracy.

In compound profiling, a single compound is docked and scored in the binding pockets of 

multiple proteins, each possibly represented by more than one structure. The output of the 

profiling procedure is an assignment, for each target pocket, of the likelihood that the 

compound in question binds to this pocket. As with compound screening, correlation 

between compound scores and binding affinity is irrelevant. Large scale benchmarking of 

the profiling problem is hard due to the limited availability of experimental datasets. 

Authors are aware of only a few initiatives in experimental profiling of large compound sets 

against a wide panel of targets (e.g. 21,22). Due to protein-specific shifts in the binding 

energy that are unaccounted in any of the existing scoring functions, the absolute compound 

scores are typically calculated in different scales for different target pockets; therefore, 

normalization and/or parameterization is required in order to achieve comparable scoring 

between different targets. This is however hard to achieve without overtraining of the 

models due to the limited availability of benchmarking sets.

Finally in binding affinity prediction: one or more compounds are docked and scored in one 

binding pocket possibly represented by more than one structure. In this application, the 

success is defined by the correlation of the predicted binding scores with the experimentally 

measured compound binding affinities. The methods for binding affinity prediction can be 

benchmarked although care should be taken to ensure that the experimental affinities in the 

benchmarking sets come from uniform sources and assays.

The above classification encompasses the majority of the computational drug discovery 

applications. The fourth task, binding energy prediction, benefits the most from the ab initio 

methods due to smaller benchmarking sets and high danger of overtraining when empirical 

or knowledge-based methods are used. For some targets, the computational analysis is 

bound to go beyond docking and scoring: for example, understanding of potency, specificity 

and selectivity of covalent inhibitors and transition state analogs requires analysis of 

reaction paths and reactive intermediates.23,24 In recent years, covalently acting drugs draw 
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growing interest and attention,25,26 making this an extremely important field of research, 

Finally, full characterization of drug candidates includes their interaction not only with their 

intended or unintended targets, but also with metabolizing most – enzymes importantly, 

cytochromes P450,27,28 – i.e. requires tools for understanding of metabolic activation/

degradation and formation of reactive metabolites.

PREDICTION METHOD INACCURACIES VS INPUT DATA INACCURACIES

As delineated above, most computational chemistry applications are centered on two critical 

steps performed for each compound and each pocket structure: conformational sampling and 

scoring of the obtained poses.29 Conformational searches based on molecular dynamics 

(MD) or Monte Carlo (MC) simulations, enhanced and modified to dramatically increase the 

coverage and convergence rate,30,31 remain the only practical alternatives for sampling; 

given sufficient sampling time these methods usually produce correct or nearly correct 

conformations which may or may not be ranked first in the conformation list. Following the 

conformation generation, the scoring step may be performed in a multitude of ways 

depending on the specific applications; the arsenal of classical scoring functions includes 

force-field based, empirical, and knowledge-based functions 32 and it is increasingly 

enriched by hybrid solutions that involve ligand-centered information (e.g. 33,34). Molecular 

mechanics (MM) force-field scoring functions employ energy terms designed to closely 

approximate ab initio quantum mechanics (QM) calculations (e.g. 35-37); however, they 

typically undergo parameterization by fitting the scores to the experimentally observed 

values (for binding affinity prediction) or by optimizing separation of correct from incorrect 

poses (for docking) or of binders from non-binders (for screening). As a result, the relative 

contributions of physics-based terms in the scoring function have empirical nature and 

reflect, along with the significance of each term, the degree of inevitable numerical 

inaccuracies and variation in its calculation.

The applicability domain of a force-field-based scoring function is limited to those 

interactions and atom types that are present in the input set at the design and 

parameterization stages. Therefore, energy contributions that result from changes in the 

molecular environment on compound binding cannot be accounted for properly.38 For 

example, atomic partial charges in the ligand or the binding site may vary from those 

assigned by the utilized force field due to polarization or charge transfer – the effect that is 

frequently observed with enzymes and metalloproteins.39 Halogen bonds, CH-π,40,41 π-π 

and cation-π interactions are usually not accounted for at sufficient accuracy. In some 

configurations, London dispersion forces may not be properly approximated by the widely 

used potentials. Last, but not the least, force fields cannot properly address processes of 

covalent bond formation or breaking and are therefore inapplicable to simulations of enzyme 

reactions or covalently acting inhibitors.42 Ab initio, force field independent methods that 

can describe these interactions may therefore lead to more accurate compound activity 

predictions.

That being said, the inaccuracies in the scoring functions (force-field based or otherwise) are 

not the main reason for insufficient predictive power of the structure-based computational 

methods.43 The most important reason lies in the inherently incomplete nature of the input 
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data, i.e. the crystallographic structures. Limited resolution of structure determination 

techniques creates ambiguities in side-chain placement, orientation, and protonation states, 

as well as uncertainties in positions and orientations of rotatable polar hydrogens.44 Water 

molecules frequently remain unresolved or ambiguous but may have very pronounced effect 

on predictive properties of a 3D model in cases when they form stable hydrogen-bonding 

networks between the ligand and the binding site or on the contrary, are conformationally 

restricted and therefore unfavorable entropically.45,46 Finally, crystallographic structures 

represent only static snapshots of the target pockets, with their shape largely defined by the 

co-crystallized ligands (the so-called induced fit effect). Even with the current trends in 

structure determination, experimental coverage of all possible binding site conformations is 

impossible. These inevitable limitations stress the critical importance of the ability to 

accurately reconstruct ligand binding poses and interactions when the target pocket is in a 

sub-optimal conformational or protonation state. The only practical solution to the problem 

lies in thorough analysis of compositional (e.g. with and without water) or conformational 

ensembles,34 which greatly increases the amount of 3D information that has to be processed 

in order to analyze interactions of a single ligand with its target.

QUANTUM MECHANICAL CONTRIBUTIONS TO DRUG RESEARCH: 

CONQUERING THE COMPUTATIONAL COMPLEXITY

Although quantum mechanics characterization of the interactions between proteins and 

ligands is not a new approach in computational chemistry,47 it has been gaining increasing 

popularity in the recent years.38,48,49 QM methods overcome the deficiencies of classical 

force-field scoring functions by avoiding atom type assignment and parameterization. For a 

system with defined positions of the nuclei, they provide a reliable foundation for ligand 

geometry evaluations and energy estimates.

A QM calculation starts with a structure or a model of the complex and, although minor 

conformation refinement can be achieved in the course of QM-based evaluation, the input 

model largely defines the result. In this sense, QM is heavily dependent on other methods – 

crystallography, MM docking/refinement, or molecular dynamics in the question of pose 

generation. Despite the fact that the accuracy of input conformations is critical for the 

success of a QM simulation, there is a huge gap in the definition of “accurate” between QM 

and other applications. For example, in the docking field, ligand pose prediction that lies 

within 2Å RMSD (heavy atoms only!) from the crystallographic answer is considered a 

success; a QM simulation requires accuracy of ≤0.5 Å (including all hydrogens).50

The QM description of a system is not sufficient for its full characterization because it is (i) 

static and (ii) in vacuo. It is incapable of accounting for ensemble-mediated conformational 

entropy or solvation effects. Some publications interpret it as QM providing a description of 

enthalpy, while entropy must be accounted by other methods; this is not entirely accurate as 

the aspects accounted for by QM have mixed enthalpy-entropy nature. To completely 

describe the Gibbs free energy in the system, the conformational entropy effects are added 

via analysis of MM or MD generated conformational ensembles; to account for solvation, 

the QM approach must be married to implicit solvation models such as REBEL,51 
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polarizable continuum model (PCM), Poisson-Boltzmann/Solvent Accessibility (PB/SA), 

COSMO, and others (reviewed in 52).

The recent and not so recent theoretical advances allow very accurate QM treatment of 

covalent and, quite importantly, non-covalent interactions in small systems. For example, 

with a sufficient level coupled-cluster theory binding energies in non-covalent complexes of 

rigid small molecules can be calculated with errors not exceeding 1 kcal/mol.53 Due to basis 

set superposition error (BSSE) accurate calculations of van der Waals interactions require at 

least avg-cc-pVDZ basis set 48. The complexity of these calculations, however, is such that 

only systems of no more than 70 atoms can be treated. Advancing to larger complex sizes 

requires lower level theory and leads to immediate loss of “chemical” accuracy. Although in 

the recent blind assessment of host-guest binding energy predictions (SAMPL3,54), QM 

methods produced the most accurate predictions (R2 = 0.94), the obtained RMS errors were 

as large as 5.9 kcal/mol.

Ab initio QM calculations for most protein-ligand complexes are extremely time-consuming 

at the present state of computational technology, even for a single frozen position of the 

nuclei involved (i.e. single point calculation). Therefore, a large number of efforts are 

devoted to the design of simplified representations and computationally efficient approaches 

that could make QM methods applicable to real-life-size drug discovery problems. These 

approaches are based on (i) reducing the size of the system to be treated by QM methods; 

(ii) use of semiempirical QM (SQM) methods, and (iii) system fragmentation and 

decomposition.

QM/MM

Methods based on reducing the system size frequently divide the system into QM (usually 

the ligand and its immediate vicinity) and MM (the rest of the system) parts – the so-called 

QM/MM approach. The QM part may include ions and parts of the protein, and can be 

treated at any desired level of theory making the approach very attractive for calculations of 

metalloenzymes. Burger et al studied interactions of 43 binders and 17 decoys to the 

Cytochrome c Peroxidase50 using B3LYP/6-31G* representation for the ligand and 

CHARMM22 for the protein. When combined with PCM solvation terms, their calculated 

QM/MM energy was able to impressively score more than 75% of the binders above all but 

one of the decoys.

If not only the ligand but also parts of the protein are included in the QM region (i.e. if 

division occurs across covalent bonds), evaluation of the interaction energy between the two 

(QM and MM) parts becomes a highly non-trivial task for which several approaches have 

been designed.42 Binding of 28 hydroxamate inhibitors to matrix metalloproteinase 9 was 

studied by Khandelwal et al55 using docking, QM/MM optimization, MD and a single point 

QM/MM evaluation of the time-averaged complexes. To accurately describe the Zn 

coordination interactions, the QM region consisted of four protein residues, the inhibitor, 

and the zinc ion, all represented with DFT functional B3LYP, while the remainder of the 

protein was treated with MM. The interface between QM and MM regions was mediated by 

frozen orbitals; the region interaction was described by point charge/wave electrostatic 

interactions and atom/atom van der Waals interactions. Addition of solvent accessible 
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surface area (SASA) term for ligand desolvation produced excellent agreement (R2 = 0.9) 

with the experimental binding energies.

Semiempirical QM

Unlike QM/MM, SQM methods still represent the entire system quantum mechanically. 

Calculation speed is gained by reducing the basis set and neglecting or simplifying the most 

computationally intensive integrals. While giving reasonable results for covalent 

interactions, these approximations largely lead to loss of information on determinants of 

non-covalent binding, i.e. hydrogen bonding and dispersion forces, which is corrected by 

introduction of parameterized force-field based terms.56 As with classic QM, entropy and 

solvation terms are added to obtain the binding energy estimates. For example, in their SQM 

study of interactions of 29 guests of cucurbit[7]uril (CB7) host using the Mining Minima 

(M2) method and the PM6-DH+/COSMO energy model, Muddana and Gilson57 predicted 

the binding energies with R2 = 0.79. In the publication by Fanfrlik et al.,58 interactions of 11 

known inhibitors with HIV-1 protease were studied using semiempirical PM6-DH2 

formalism. Consistent with the known role of entropy in the binding of these ligands, PM6-

DH2 scoring of the MM docked poses produced only a weak positive correlation with the 

experimental affinities (R = 0.3); however the inclusion of AMBER entropy term, SMD 

desolvation and combined PM6-DH2/SMD deformation energy helped to achieve 

significant improvement (R = 0.8). The general applicability of this technology remains 

questionable, as its performance on 15 inhibitors of CDK2 59 was strikingly different: the 

PM6-DH2 enthalpic term alone produced a good correlation with experiment (R2 = 0.87); 

inclusion of the desolvation and ligand entropy terms decreased it to R2 = 0.77, and 

incorporation of interaction entropy further decreased it to R2 = 0.56.

Because SQM optimization and evaluation still takes several hours for a host-guest system 

and from several days to several weeks for a protein-ligand system on a single CPU, the 

methods can hardly be applied to the tasks of large-scale compound screening or 

optimization. To overcome this barrier, Zhou and Caflisch60 developed a clever scheme 

allowing evaluation of docked poses of millions of compounds. They chose to represent the 

polar interaction centers in the ATP binding site of EphB4 kinase with tiny QM probes: 

methanol, acetate, methylammonium, guanidinium ions, water and hydrogen fluoride were 

chosen to represent the polar groups of Ser/Thr/Tyr, Asp/Glu, Lys, Arg, backbone carbonyl 

and backbone amide groups, respectively. These probes and the ligand were described in 

PM6 formalism and SQM energies of the poses were calculated taking <0.5 s for a rigid 

probe and ~30 s for a flexible probe on a single Opteron 244 2.4GHz. A series of QM-, 

MM-based and manual hit filtering steps eventually led to selection of 23 compounds for 

validation in an in vitro enzymatic assay against EphB4; among them, one low micromolar 

inhibitor was confirmed. Although this success rate is rather low and the confirmed hit is 

rather weak, the study represents the first promising attempt to employ QM methodologies 

in high throughput virtual compound screening.

Fragmentation and Decomposition

A revolution in the QM treatment of large systems was brought around by the development 

of linear scaling algorithms that are based on fragmentation of the system and 
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decomposition of the interactions in a way that takes full account of short distance 

interactions but simplifies or neglects the effects of spatially distant features. Examples 

include the divide-and-conquer (DivCon61) and fragment molecular orbital (FMO62) 

methodologies. An added bonus of fragmentation methods is that they can be adapted easily 

for parallel computation which is currently becoming widely accessible to researchers.

Illustrating its potential of describing the complete ligand-protein system, FMO was applied 

to studies of ligand interaction determinants in nuclear receptors (e.g. estrogen α, 

progesterone, peroxisome proliferator-activated γ, vitamin D, and retinoid X), FK506 

binding protein, metalloenzymes (e.g. farnesyl pyrophosphate synthase63), and multiple 

viral and bacterial targets.62 In the article by Mazanetz et al,64 the binding of 28 inhibitors to 

cyclin-dependent kinase 2 was studied with ab initio FMO; 14 of them were represented by 

crystallographic poses while for the remaining 14, the poses were modeled by analogy and 

minimized in MMFF94×. The complexes were evaluated by FMO at MP2/6-31G* theory 

level which, even in the absence of solvation, produced acceptable agreement with 

experimental ΔGbind (R2 = 0.68). The addition of PB/SA solvation and PLS of relative 

weights of the different terms improved the correlation to R2 = 0.94 (R2 = 0.84 on cross-

validation).

The power of divide-and-conquer approach was illustrated in 65 where the first large-scale 

validation of a QM-based protein-ligand complex scoring function (QMScore) was 

attempted. The benchmarking set contained as many as 165 non-covalent complexes and 40 

metalloenzymes. The obtained correlation between predicted and experimental affinities 

achieved R2 = 0.48 without fitting and R2 = 0.55 with fitting. For the metalloenzymes, the 

correlation was R2 = 0.68 and R2 = 0.70 without and with fitting, respectively. Despite the 

modest correlation values, this work is a huge step forward from other smaller single target 

studies, as it validates application of a uniform QM-based methodology across heterogenous 

target and chemical sets. It also illustrated the fact that in multi-target studies, introduction 

of target-specific binding energy shifts may be the only practical way to bring all calculated 

energies to the same scale and to make them uniformly comparable across the set.

QM-based atomic charges

In an alternative approach, QM-based partial atomic charges may be calculated, assigned to 

atoms in the ligand and the binding site, and used in force-field based scoring and ranking. 

This new charge assignment is expected to be more accurate, especially for complexes with 

significant charge transfer or polarization. Among several QM methods for calculation of 

partial atomic charges,66-68 the one most relevant to protein-ligand binding calculations is 

Restrained Electrostatic Potential (RESP 68). However, due to the computational complexity 

of QM charge calculations, much effort in the recent years was devoted to development of 

faster schemes closely approximating RESP and other QM changes.

In Ref. 69 the use of using PM6 partial charges resulted in accurate ligand pose prediction 

for 42 out of 53 diverse benchmark complexes, while the use of Gasteiger charges resulted 

in only 28 accurate geometries. However, accuracy of the binding affinity estimation using 

AutoDock scoring function was not influenced by the partial charge calculation method 

indicating the inadequateness of the scoring function for this purpose.
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The influence of different charge assignment protocols on prediction of binding energy was 

also analyzed on a set of diverse 161 protein-ligand complexes with known binding mode, 

using an empirical scoring function with the electrostatic term.70,71 Correlation coefficients 

between predicted and experimental binding free energy values were 0.89, 0.90, 0.91, and 

0.92 for MMFF, TPACM4, AM1-BCC,72 and RESP, respectively: an improvement that is 

not dramatic, but is nevertheless encouraging due to its consistency with the employed level 

of theoretical difficulty.

The influence QM/MM ligand charge assignment on performance of MM rigid-receptor 

docking was investigated for 44 inhibitors of checkpoint kinase 1.73 Compounds were 

docked in the rigid receptor; the polarizable ligand charges were calculated at the B3LYP/

6-31G* level and used in the consequent round of re-docking and re-scoring. The use of 

QM/MM charges improved the correlation between experimental and calculated inhibitor 

potencies from R2 = 0.622 to R2 = 0.766 when solvation-free scoring functions were used. 

However, further pose optimization and evaluation with MM-GBSA resulted in higher 

correlation coefficients (R2 = 0.85) for both MM and QM/MM charge assignment, largely 

compensating the beneficial effect of QM charge assignment. This illustrates that in many 

cases, simulations with force-field based charges are sufficiently accurate, as long as 

solvation is properly accounted for.

CONCLUSION

The QM and QM-based methods for ligand docking and scoring briefly reviewed above 

showed promising results in application to individual proteins, as long as very accurate and 

complete complex models (including all necessary water molecules and hydrogen atoms) are 

available. In these somewhat idealized situations, QM approaches may provide 

unprecedented accuracy in ranking the binding poses and, most importantly, predicting 

binding energies. They also significantly decrease the dependence of inevitable calculation 

error43 on the system size as compared to MM methods.74 Detailed studies of a single target 

and a small set of ~20-50 compounds are now very amenable to QM methodology, making 

it a preferred choice for the tasks of binding energy prediction and compound potency 

optimization.

While the associated computational expenses do not warrant the use of QM for larger scale 

screening studies, it has proved invaluable for characterization of pockets with polarization 

and charge transfer (e.g. metalloenzymes), covalent interactions, reactive intermediates and 

transition state analogs. The logical next step in their development would be systematic 

benchmarking on large diverse sets of protein structures and chemical compounds. This kind 

of benchmarking is a widely accepted practice in classical MM methods,75-77 but is only at 

the initial stages in the QM field.65

Along with software development,78 QM calculations take advantage of the new hardware. 

Both single-processor and supercomputing power increases by Moore’s law. For instance, 

the 18176 core (Opteron QC 2.2 GHz) Chinook supercomputer used by Odoh and co-

workers 79 ranked 21st in the Top500 List in November 2008 but only 313rd in November 

2012 (http://top500.org/system/176078). Another notable modern trend is massively parallel 
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general-purpose calculations on graphical processing units (GPU), and a GPU-based 

supercomputer has been recently reported to be used as a web-server for protein-ligand 

docking that accounts for quantum entanglement contribution.80

With these advances, QM methods in analysis of protein-ligand interactions become 

increasingly popular. We analyzed the trends in the field by counting the relevant 

publications in the Web of Science database (http://thomsonreuters.com/products_services/

science/science_products/a-z/web_of_science/) for the last ten years. This analysis shows 

(Figure 2) that the annual number NPL of publications devoted to protein-ligand problem 

grows exponentially with an annual increase of approximately 4%. The same is true for the 

number NQM of papers on quantum mechanics. Interestingly, the number NPL,QM of 

publications that involve both topics simultaneously grows with the annual increase rate of 

28%, illustrating the rapid evolution of this area of research. Quantum mechanics 

approaches currently constitute less than 1% of all protein-ligand problem publications (i.e. 

NPL,QM/NPL < 1%); however, extrapolation of the present growth trends will result in at 

least 10-fold increase (up to 5%) of their role in the next decade. If the trends continue, by 

2028 virtually all articles on QM will address the protein-ligand problem (NPL,QM = NQM) 

and every seventh published article in the area will use a QM approach.

While sharing the general optimism on the subject, we have to realize that induced fit and 

crystallographic errors and ambiguities are a reality. Non-ideal three-dimensional structures 

dramatically reduce the reliability of QM computations.65 Methods that are tolerant to minor 

structural deviations and are capable of handling diverse conformational ensembles are 

essential to address this issue. Therefore, rather than seeing QM completely taking over the 

field, we expect diverse approaches, some working from high-accuracy and others from high 

volume side of the problem, to slowly converge in their quest of utilizing protein structure 

for drug research.
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Figure 1. 
(A) Retrospective dynamics and projected estimates for the structural coverage of the human 

proteome and pocketome (B) Main classes of computational drug discovery applications.
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Figure 2. 
Number of articles per year in Web of Science database, returned by search with keywords 

“(protein AND ligand) OR docking” (protein-ligand problem), “quantum mechanics”, and 

“quantum mechanics AND ((protein AND ligand) OR docking)” (quantum mechanics in 

protein-ligand problem), restricted to published in English in the past ten years. Linear fits 

are calculated and extrapolated to 2028.
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