Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Mar 28;92(7):3056–3059. doi: 10.1073/pnas.92.7.3056

Isolation of an amino-terminal deleted recombinant ADP-ribosylation factor 1 in an activated nucleotide-free state.

J X Hong 1, X Zhang 1, J Moss 1, M Vaughan 1
PMCID: PMC42358  PMID: 7708774

Abstract

ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins that activate cholera toxin ADP-ribosyltransferase in vitro and participate in intracellular vesicular membrane trafficking. ARFs are activated when bound GDP is replaced by GTP and inactivated by hydrolysis of bound GTP to yield ARF-GDP. Usually, ARFs are isolated in an inactive GDP-bound state and require addition of GTP along with detergent or phospholipid for activity. Purified mutant recombinant ARF1 lacking the first 13 amino acids (r delta 13ARF1-P) stimulated cholera toxin activity essentially equally with or without added GTP (and phospholipid or detergent), at least in part due to the presence of bound nucleotides, which later were identified as GTP and GDP. Nucleotide-free r delta 13ARF1 (r delta 13ARF1-F), prepared by dialysis against 7 M urea, was active without added GTP in the absence of SDS but inactive without added GTP in its presence. Renaturation of r delta 13ARF1-F in the presence of GTP, ITP, or GDP yielded, respectively, r delta 13ARF1-GTP and r delta 13ARF1-ITP, which were active, and r delta 13ARF1-GDP, which was inactive. Effects of phospholipids and detergents on nucleotide exchangeability evaluated as effects on activity of rARF1 and r delta 13ARF1-F differed. With r delta 13ARF1-F, 100 microM ITP and 100 microM GTP were essentially equally effective in the presence of cardiolipin or SDS. The finding that r delta 13ARF1 differs from rARF1 in the effects of phospholipids and detergents on nucleotide binding is consistent with the conclusion that the ARF amino terminus plays an important role in nucleotide binding and its specificity as well as the molecular conformation and associated activity.

Full text

PDF
3056

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balch W. E., Kahn R. A., Schwaninger R. ADP-ribosylation factor is required for vesicular trafficking between the endoplasmic reticulum and the cis-Golgi compartment. J Biol Chem. 1992 Jun 25;267(18):13053–13061. [PubMed] [Google Scholar]
  2. Bobak D. A., Bliziotes M. M., Noda M., Tsai S. C., Adamik R., Moss J. Mechanism of activation of cholera toxin by ADP-ribosylation factor (ARF): both low- and high-affinity interactions of ARF with guanine nucleotides promote toxin activation. Biochemistry. 1990 Jan 30;29(4):855–861. doi: 10.1021/bi00456a600. [DOI] [PubMed] [Google Scholar]
  3. Donaldson J. G., Cassel D., Kahn R. A., Klausner R. D. ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6408–6412. doi: 10.1073/pnas.89.14.6408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Donaldson J. G., Finazzi D., Klausner R. D. Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature. 1992 Nov 26;360(6402):350–352. doi: 10.1038/360350a0. [DOI] [PubMed] [Google Scholar]
  5. Helms J. B., Rothman J. E. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature. 1992 Nov 26;360(6402):352–354. doi: 10.1038/360352a0. [DOI] [PubMed] [Google Scholar]
  6. Hong J. X., Haun R. S., Tsai S. C., Moss J., Vaughan M. Effect of ADP-ribosylation factor amino-terminal deletions on its GTP-dependent stimulation of cholera toxin activity. J Biol Chem. 1994 Apr 1;269(13):9743–9745. [PubMed] [Google Scholar]
  7. Kahn R. A., Gilman A. G. Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem. 1984 May 25;259(10):6228–6234. [PubMed] [Google Scholar]
  8. Lee C. M., Haun R. S., Tsai S. C., Moss J., Vaughan M. Characterization of the human gene encoding ADP-ribosylation factor 1, a guanine nucleotide-binding activator of cholera toxin. J Biol Chem. 1992 May 5;267(13):9028–9034. [PubMed] [Google Scholar]
  9. Lippincott-Schwartz J. Bidirectional membrane traffic between the endoplasmic reticulum and Golgi apparatus. Trends Cell Biol. 1993 Mar;3(3):81–88. doi: 10.1016/0962-8924(93)90078-f. [DOI] [PubMed] [Google Scholar]
  10. Monaco L., Murtagh J. J., Newman K. B., Tsai S. C., Moss J., Vaughan M. Selective amplification of an mRNA and related pseudogene for a human ADP-ribosylation factor, a guanine nucleotide-dependent protein activator of cholera toxin. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2206–2210. doi: 10.1073/pnas.87.6.2206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moss J., Stanley S. J. Histone-dependent and histone-independent forms of an ADP-ribosyltransferase from human and turkey erythrocytes. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4809–4812. doi: 10.1073/pnas.78.8.4809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Noda M., Tsai S. C., Adamik R., Moss J., Vaughan M. Mechanism of cholera toxin activation by a guanine nucleotide-dependent 19 kDa protein. Biochim Biophys Acta. 1990 May 16;1034(2):195–199. doi: 10.1016/0304-4165(90)90076-9. [DOI] [PubMed] [Google Scholar]
  13. Price S. R., Nightingale M., Tsai S. C., Williamson K. C., Adamik R., Chen H. C., Moss J., Vaughan M. Guanine nucleotide-binding proteins that enhance choleragen ADP-ribosyltransferase activity: nucleotide and deduced amino acid sequence of an ADP-ribosylation factor cDNA. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5488–5491. doi: 10.1073/pnas.85.15.5488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Price S. R., Welsh C. F., Haun R. S., Stanley S. J., Moss J., Vaughan M. Effects of phospholipid and GTP on recombinant ADP-ribosylation factors (ARFs). Molecular basis for differences in requirements for activity of mammalian ARFs. J Biol Chem. 1992 Sep 5;267(25):17766–17772. [PubMed] [Google Scholar]
  15. Randazzo P. A., Terui T., Sturch S., Kahn R. A. The amino terminus of ADP-ribosylation factor (ARF) 1 is essential for interaction with Gs and ARF GTPase-activating protein. J Biol Chem. 1994 Nov 25;269(47):29490–29494. [PubMed] [Google Scholar]
  16. Randazzo P. A., Yang Y. C., Rulka C., Kahn R. A. Activation of ADP-ribosylation factor by Golgi membranes. Evidence for a brefeldin A- and protease-sensitive activating factor on Golgi membranes. J Biol Chem. 1993 May 5;268(13):9555–9563. [PubMed] [Google Scholar]
  17. Regazzi R., Ullrich S., Kahn R. A., Wollheim C. B. Redistribution of ADP-ribosylation factor during stimulation of permeabilized cells with GTP analogues. Biochem J. 1991 May 1;275(Pt 3):639–644. doi: 10.1042/bj2750639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Serventi I. M., Cavanaugh E., Moss J., Vaughan M. Characterization of the gene for ADP-ribosylation factor (ARF) 2, a developmentally regulated, selectively expressed member of the ARF family of approximately 20-kDa guanine nucleotide-binding proteins. J Biol Chem. 1993 Mar 5;268(7):4863–4872. [PubMed] [Google Scholar]
  19. Sewell J. L., Kahn R. A. Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4620–4624. doi: 10.1073/pnas.85.13.4620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tsai S. C., Adamik R., Moss J., Vaughan M. Identification of a brefeldin A-insensitive guanine nucleotide-exchange protein for ADP-ribosylation factor in bovine brain. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3063–3066. doi: 10.1073/pnas.91.8.3063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tsai S. C., Haun R. S., Tsuchiya M., Moss J., Vaughan M. Isolation and characterization of the human gene for ADP-ribosylation factor 3, a 20-kDa guanine nucleotide-binding protein activator of cholera toxin. J Biol Chem. 1991 Dec 5;266(34):23053–23059. [PubMed] [Google Scholar]
  22. Tsai S. C., Noda M., Adamik R., Chang P. P., Chen H. C., Moss J., Vaughan M. Stimulation of choleragen enzymatic activities by GTP and two soluble proteins purified from bovine brain. J Biol Chem. 1988 Feb 5;263(4):1768–1772. [PubMed] [Google Scholar]
  23. Tsai S. C., Noda M., Adamik R., Moss J., Vaughan M. Enhancement of choleragen ADP-ribosyltransferase activities by guanyl nucleotides and a 19-kDa membrane protein. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5139–5142. doi: 10.1073/pnas.84.15.5139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tsuchiya M., Price S. R., Tsai S. C., Moss J., Vaughan M. Molecular identification of ADP-ribosylation factor mRNAs and their expression in mammalian cells. J Biol Chem. 1991 Feb 15;266(5):2772–2777. [PubMed] [Google Scholar]
  25. Walker M. W., Bobak D. A., Tsai S. C., Moss J., Vaughan M. GTP but not GDP analogues promote association of ADP-ribosylation factors, 20-kDa protein activators of cholera toxin, with phospholipids and PC-12 cell membranes. J Biol Chem. 1992 Feb 15;267(5):3230–3235. [PubMed] [Google Scholar]
  26. Weiss O., Holden J., Rulka C., Kahn R. A. Nucleotide binding and cofactor activities of purified bovine brain and bacterially expressed ADP-ribosylation factor. J Biol Chem. 1989 Dec 15;264(35):21066–21072. [PubMed] [Google Scholar]
  27. Welsh C. F., Moss J., Vaughan M. Isolation of recombinant ADP-ribosylation factor 6, an approximately 20-kDa guanine nucleotide-binding protein, in an activated GTP-bound state. J Biol Chem. 1994 Jun 3;269(22):15583–15587. [PubMed] [Google Scholar]
  28. Zeuzem S., Feick P., Zimmermann P., Haase W., Kahn R. A., Schulz I. Intravesicular acidification correlates with binding of ADP-ribosylation factor to microsomal membranes. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6619–6623. doi: 10.1073/pnas.89.14.6619. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES