Table 4. Confusion matrix for the best glmnet model, α = .11, using all features.
Predicted Class | |||||||||||||||
22q | 4p | 5p | CDL | fraX | MPS2 | MPS3 | Noon | Pro | PWS | SLO | Sot | TCS | WBS | ||
True Class | 22q | 0.80 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.04 |
4p | 0.00 | 0.42 | 0.00 | 0.17 | 0.00 | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 0.00 | 0.17 | 0.00 | 0.08 | |
5p | 0.19 | 0.06 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.19 | |
CDL | 0.00 | 0.00 | 0.00 | 0.47 | 0.18 | 0.00 | 0.00 | 0.06 | 0.00 | 0.06 | 0.06 | 0.00 | 0.00 | 0.18 | |
fraX | 0.00 | 0.00 | 0.00 | 0.11 | 0.67 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.22 | |
MPS2 | 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.17 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.17 | |
MPS3 | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.00 | 0.43 | |
Noon | 0.08 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.54 | 0.00 | 0.00 | 0.00 | 0.15 | 0.08 | 0.08 | |
Pro | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.60 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | |
PWS | 0.15 | 0.00 | 0.08 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 0.23 | |
SLO | 0.00 | 0.07 | 0.07 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.67 | 0.00 | 0.00 | 0.13 | |
Sot | 0.13 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.07 | 0.67 | 0.00 | 0.00 | |
TCS | 0.10 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.60 | 0.10 | |
WBS | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.90 |
Rows indicate the percentages of predicted syndromes for each of the syndromes in the study.