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Abstract

This review article is a compendium of six individual manuscripts, a Commentary, and an Executive Summary.
This body of work is entitled ‘‘The Impact of Sex and Gender on Adaptation to Space’’ and was developed in
response to a recommendation from the 2011 National Academy of Sciences Decadal Survey, ‘‘Recapturing a
Future for Space Exploration: Life and Physical Sciences for a New Era,’’ which emphasized the need to fully
understand sex and gender differences in space. To ensure the health and safety of male and female astronauts
during long-duration space missions, it is imperative to examine and understand the influences that sex and
gender have on physiological and psychological changes that occur during spaceflight. In this collection of
manuscripts, six workgroups investigated and summarized the current body of published and unpublished
human and animal research performed to date related to sex- and gender-based differences in the areas of
cardiovascular, immunological, sensorimotor, musculoskeletal, reproductive, and behavioral adaptations to
human spaceflight. Each workgroup consisted of scientists and clinicians from academia, the National Aero-
nautics and Space Administration (NASA), and other federal agencies and was co-chaired by one representative
from NASA and one from the external scientific community. The workgroups met via telephone and e-mail
over 6 months to review literature and data from space- and ground-based studies to identify sex and gender
factors affecting crew health. In particular, the Life Sciences Data Archive and the Lifetime Surveillance of
Astronaut Health were extensively mined. The groups identified certain sex-related differences that impact the
risks and the optimal medical care required by space-faring women and men. It represents innovative research
in sex and gender-based biology that impacts those individuals that are at the forefront of space exploration.

Introduction and Process

Sex and gender significantly influence health on
Earth and in space. To ensure the health and safety of

male and female astronauts during long-duration space mis-
sions, it is imperative to examine and understand the influ-
ences that sex and gender have on physiological and
psychological changes that occur during spaceflight.

For over 20 years, there has been an increased effort to
comprehend how men and women are similar and different in
all aspects of health. Federal agencies have policies to ensure
that men and women are included in clinical trials and that
findings are evaluated for sex- and gender-based differences.
In the 2001 Institute of Medicine report ‘‘Does Sex Matter,’’1

‘‘sex’’ was defined as the classification of male or female
according to an individual’s genetics and ‘‘gender’’ refers to
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a person’s self-representation as male or female based upon
social interactions.

The National Aeronautics and Space Administration
(NASA) sponsored a workshop with the University of Mis-
souri in 2002 and published its findings in ‘‘Sex, Space and
Environmental Adaptation: A National Workshop to Define
Research Priorities Regarding Sex-Differences in Human
Responses to Challenging Environments.’’2 The findings
included a comprehensive review of existing data and rec-
ommendations to fill gaps in NASA’s knowledge base.

The 2011 National Academy of Sciences Decadal Survey
‘‘Recapturing a Future for Space Exploration: Life and
Physical Sciences for a New Era’’3 emphasized the need to
fully understand sex and gender differences. In response, in
2013, NASA and the National Space Biomedical Research
Institute (NSBRI) commissioned a study that resulted in a
workshop and this report.

In this study, six workgroups investigated the current body
of published and unpublished human and animal research
performed to date related to sex- and gender-based differ-
ences in the areas of cardiovascular, immunological, senso-
rimotor, musculoskeletal, reproductive, and behavioral
adaptations to human spaceflight. Each workgroup consisted
of scientists and clinicians from academia, NASA, and other
federal agencies and was co-chaired by one representative
from NASA and one from the external scientific community.
The workgroups met by telephone and e-mail over 6 months
to review literature and data from space- and ground-based
studies to identify sex and gender factors affecting crew
health. In particular, the Life Sciences Data Archive (LSDA)
and the Lifetime Surveillance of Astronaut Health (LSAH)
were extensively mined.4,5 NASA and NSBRI co-hosted a
public virtual workshop on June 25, 2013,6 in which the
workgroup co-chairs presented key findings and recommen-
dations for biomedical research priorities.

The remainder of this executive summary provides a
synopsis of the key findings and recommendations provided
by the six workgroups.

Results and Key Findings

Key demographics

As of June 2013, the demographics of the international
astronaut and cosmonaut population indicated that a total of
534 humans have flown in space—477 men and 57 women
(approximately 11% of the total).7,8 A total of 129 NASA
astronauts have flown to the International Space Station
(space station), comprising 103 men and 26 women (ap-
proximately 20% of the total). Female NASA space station
astronauts are on average 2 years younger than male astro-
nauts. While there were no significant differences in the
percentage of male (76%) and female space station astro-
nauts (69%) who were married, a significantly greater per-
centage of male astronauts had a least one child (67% versus
38%) and overall, men had more children than women.
From a professional perspective, female NASA space sta-
tion astronauts have almost twice as many doctorate-level
degrees as their male counterparts (50% versus 28%);
conversely male NASA space station astronauts had more
military experience (73% versus 39%). Sex and gender
differences as well as these social determinants could im-
pact adaptation to spaceflight.

Cardiovascular

On Earth, cardiovascular (CV) disease is the leading cause
of death in women and men, with women developing coro-
nary heart disease about a decade later than their male peers.9

Although sex and gender gaps continue to narrow, women
continue to have greater cardiovascular morbidity and mor-
tality, in part because they do not consistently receive optimal
preventive strategies, diagnostic procedures, and treatments.10–12

Differences in CV disease on Earth warrant examination of these
issues in space.

While there has been a paucity of sex- and gender-based
research in this area in space, there have been several notable
findings during the past decade (Fig. 1). One important finding is
that women experience immediate post-flight orthostatic intol-
erance, which is the inability to stand without fainting for pro-
tracted periods. This condition is more prevalent in female
astronauts compared to their male counterparts.13–16 A possible
mechanism for this sex-based difference is that women have
reduced leg vascular resistance as shown during bed rest, which
is used as an analog for microgravity.16 Additionally, women
have greater loss of plasma volume than men during space-
flight.16 There are other known sex differences affecting the
cardiovascular system. For example, in response to stress, wo-
men characteristically respond with an increase in heart rate and
men respond with an increase in vascular resistance.17 Space
implications of these Earth observations require further study.

The visual impairment intracranial pressure (VIIP) syn-
drome is currently one of the most serious spaceflight-related
health risks.18 VIIP manifests with anatomical ocular chan-
ges, ranging from mild (e.g., globe flattening) to clinically
significant (e.g., optic disc edema) symptoms, with a range of
corresponding changes in visual function (e.g., hyperopic
shifts to enlarged blind spots). In two affected crew members,
post-flight lumbar punctures indicated elevated intracranial
pressure (ICP) (i.e., > 25 cm H2O). Prolonged elevation of
ICP can cause long-term loss of visual acuity and potentially
also impact neurological function.19

NASA has a newly developed research program aimed at
identifying the underlying pathophysiology of VIIP, which
would then allow for countermeasure development. Currently,
82% of male astronauts are affected (14 out of 17 studied)
versus 62% of female astronauts (5 out of 8 studied). This
difference is not statistically significant, potentially due to the
small number of subjects (particularly female astronauts)
studied to date. All clinically significant cases described thus
far have occurred in male astronauts,20,21 while female astro-
nauts have exhibited much milder visual impairment symp-
toms. The observation that clinically significant cases of visual
impairment have occurred only in male astronauts may be
related to several factors including higher vascular compliance
in women, which could be protective, and the slightly younger
age of female astronauts compared with male astronauts. Sex
hormone–related differences could impact vascular compli-
ance and plasma volume alterations. Research is underway to
better understand individual susceptibilities (including sex
differences) as well as environmental and behavioral factors
associated with the VIIP syndrome.

Immunologic

Earth-based studies suggest sex differences in immune re-
sponses. Women mount a more potent immune response than
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men, including enhanced production of antibody and cell-
mediated immune responses.22,23 This makes them more
resistant than men to viral and bacterial infections; and, once
infected, women mount more robust responses. As a cor-
ollary, an activated immune system results in higher rates of
autoimmunity; as such, over 70% of people affected by au-
toimmune diseases are women.24,25 These differences may be
attributed to the impact of sex hormones such as estrogen,
progesterone, and testosterone on immune cell function, with
each hormone having distinct effects.

Changes in function and concentration of key constituents
of the immune system related to spaceflight have been re-
ported. In addition, reactivation of latent viral antigens occurs
in flight, which may persist post flight.26–28 Accordingly, an
exploration mission may increase crew risk for adverse health
effects, such as infectious disease, hypersensitivities, auto-
immunity, and malignancy.

Radiation represents a major hazard for space travel. Io-
nizing radiation deleteriously affects hematopoietic and other
immune system cells.29,30 It has been reported that female
subjects are more susceptible to radiation-induced cancer
than are male subjects.31 In humans, radiation-induced breast
cancer contributes to this increased risk for women.31

Moreover, there is also an increased risk for other major types
of radiation-induced cancer, such as lung cancer, in women
compared with men.31

Sensorimotor

Men and women differ in most sensory systems, neural
anatomy, and functional responses. Anatomical sex differ-
ences exist within the human brain, including a more active
corpus callosum and a larger hippocampus in women and a
larger amygdala in men. The sexes also differ in neuron
differentiation and development and in neurochemical path-
ways.32

Sex differences in the visual senses include circular vision
(orientation within a spinning environment), field depen-
dence (perceiving orientation based only on visual cues),
perception of vertical with body tilt (correctly identifying the
true vertical to the ground when the body is titled), and per-
ception of the horizon.33,34 These differences may be due to
biological differences within the vestibular system, including
differences in the inner ear structures, which are significantly
larger in males.35 Men have greater sensitivity for fine detail
and for rapidly moving stimuli, while women exhibit better
color discrimination, possibly because many men suffer from
genetically inherited color blindness.36,37

The sexes respond differently to stress. In rodents, stress
enhances performance in males but impairs it in females.38

The susceptibility of hippocampal cells to chronic stress has
been suggested to play a role in post-traumatic stress disorder
and clinical depression, which are disorders that dispropor-
tionately affect women.39 Moreover, a brief exposure to a
stressful learning situation increases the density of dendritic
spines in male rats but decreases spine density in female rats.40

The common belief is that women are more susceptible to
motion sickness on Earth; however, laboratory tests do not
robustly support this assertion. Clinically, women on Earth
present with more vestibular disorders such as vertigo, pos-
sibly due to the fact that they have fewer myelinated axons in
the vestibular nerve than men.41–43

Upon transition to microgravity on space station missions,
female astronauts reported a slightly higher incidence of
space motion sickness (SMS) compared with men (i.e., 50%
of women reported experiencing SMS versus 38% of men).
Conversely, during return to Earth, male space station as-
tronauts experience entry motion sickness symptoms more
frequently (47%) than their female counterparts (40%).
These differences are not statistically significant, likely due
to the small sample size of the female astronauts within this
dataset. These data were compiled via analysis of NASA’s
LSAH database.5

Hearing sensitivity, when measured at most frequencies,
declines much more rapidly in male astronauts than it does in
female astronauts. These LSAH derived data represent a wide
age range of subjects (i.e., four decades) and show a more
rapid decline in hearing in the left ear, for men only. Within
the general population, hearing also declines more rapidly in
men than in women, due in part to environmental factors or
occupational exposure (e.g., construction or factory work).
No evidence suggests that the sex-based hearing differences
in the astronaut population are related to microgravity ex-
posure, and the small sample size of female astronauts pre-
cludes making any definitive conclusions.44

Musculoskeletal

The human musculoskeletal response to unloading is highly
variable among individuals, with tenfold differences often ob-
served. For example, after 30 days of unilateral lower limb
suspension in animals, individual responses in muscle loss
ranged from 2.5% to a nearly 20% in plantarflexor cross-sec-
tional area compared with before the suspension.45 Similarly, 6
months in microgravity aboard the Mir space station resulted in
a 2% to 24% loss of cancellous bone in the distal tibia.46 These
individual differences make it difficult to ascertain whether
there are sex-specific effects of unloading. The initial start point
for bone and muscle may influence the rate of loss with un-
loading in spaceflight and whether that rate of loss is linear over
an approximately 3-year period, which is the approximate
timeframe for current notional concepts of Mars surface mis-
sions. This is particularly germane when developing counter-
measures for women and men, since men generally have
greater muscle and bone mass.

On Earth, osteoarthritis of the knee is significantly more
common in women than in men.47 Sex-based risk factors in-
clude the loss of estrogen’s anabolic effect on cartilage after
menopause, a higher incidence of predisposing knee injuries
such as anterior cruciate ligament tears, and increased joint
laxity in women.48 Since muscles serve to stabilize and dam-
pen forces across joints,49 loss of muscle mass and strength
after prolonged unloading can contribute to joint injury risk
and early degenerative joint changes, especially in the knee.

Reproductive

There are several reproductive health concerns for astro-
nauts in space that may be primarily related to microgravity
and radiation. In both populations, temporary infertility has
been associated with high-dose, acute ionizing radiation ex-
posures, as the gonads are highly sensitive to such expo-
sures.50 Women have a higher incidence of radiation-induced
cancers, largely driven by lung, thyroid, breast and ovarian
cancers, and therefore are permitted to spend significantly
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less time in space than men.51 For example, a 45-year-old
man has a 344-day limit versus a 187-day limit for a 45-year-
old woman, due to radiation exposures on the space station
that would be typical at the time of solar maximum. Theo-
retically, there is also more time for post-flight carcinogen-
esis to occur in women due to their increased longevity.

Thirteen female astronauts have given birth to 18 children
following spaceflight and have not experienced any increased
pregnancy complications or increased assisted reproductive
technology failures compared to the general population (E. S.
Baker, unpublished data). There have not been systematic
follow-up health studies of the offspring. Human bed rest
studies found reductions in live spermatozoa, suggesting that
spermatogenesis in men may be affected by exposure to
microgravity.52

Several hypothalamic transmitters are altered by real or sim-
ulated spaceflight. Alterations in hypothalamic pituitary gonadal
and hypothalamic pituitary adrenal axes have been reported
following spaceflight. Changes include reduced levels of tes-
tosterone in men53 that appear to rebound upon return to Earth.54

Oxytocin dampens the stress response in men and women by
reducing cortisol levels.55,56 Oral contraceptives (OC) reduce
the release of oxytocin as well as cortisol.57 Therefore, females
using OCs during spaceflight may not experience increased
cortisol levels and the associated stress response.

On Earth, calcium oxalate urinary tract stones are more
common in Caucasian men, and struvite stones are more
commonly observed in Caucasian women.58 While no con-
firmed cases of urinary tract stones have been reported in the
U.S. space program during spaceflight, male and female as-
tronauts have experienced stones post flight. There is an in-
creased incidence of spaceflight-associated dehydration and
hypercalciuria, thereby increasing the risk of calcium oxalate
stones in both female and male astronauts.59

While the overall incidence is not much different from that
found on Earth, urinary tract infections in space are more
common in women and have been successfully treated with
antibiotics.60 Transient difficulties with urination are re-
ported by both sexes, but the only astronauts requiring
catheterization have been women. Possible explanations in-
clude differences in hydration, adjustment to voiding in mi-
crogravity, and use of antiemetics.

Regarding conception, reptilian eggs have been success-
fully fertilized during spaceflight;61 however, only one mat-
ing experiment in mice has been conducted in spaceflight and
there were no viable offspring.62

Behavioral

Analysis of space station astronaut neurobehavioral and
sleep measures showed no sex or gender differences in
alertness using the Psychomotor Vigilance Test.63 Similarly,
no significant sex differences have been identified thus far
using self-ratings of workload, tiredness and stress, or sleep
quality in-flight or post-flight (D. F. Dinges, personal com-
munication, 2013).

Ground-based research on sleep and circadian rhythms
suggests that men gain significantly more weight than women
during chronic sleep restriction.64 Furthermore, chronic sleep
restriction may induce greater increases in leptin,65 as well as
greater cellular immune activation of interleukin-6 and tumor
necrosis factor-alpha in women than men.66

On Earth, anxiety and major depressive disorders are about
twice as common in women than in men.67 Symptoms, diag-
noses, comorbidities, and responses to treatment differ for men
and women.58,68–70 There is no evidence that female astronauts
experience the same risk for depressive and anxiety disorders
as their counterparts in the general population. Because all
astronaut candidates undergo a robust process of psychological
screening and selection, the likelihood of sex differences in
affective disorders may be reduced.

Conclusions

Informed decision-making regarding risks, countermea-
sures, and medical treatments for long-duration exploration
missions requires a more thorough understanding of sex and
gender differences in adaptation. Many questions remain un-
answered. For example, to date, the more clinically significant
cases of spaceflight-induced visual impairment have been
observed only in male astronauts, but the sample size of long-
duration female astronauts is still relatively modest. Con-
versely, orthostatic intolerance manifests more frequently in
women. There may be individual and sex differences—
regarding hormone, stress, and immune responses, the sen-
sory system, and the circadian system—that are important to
understand for planning exploration-class missions and de-
signing spacecraft. These factors also influence how astro-
nauts will safely and productively live and work in space.

Interdependencies exist between the six physiological
areas that have been discussed in this analysis. The devel-
opment of appropriate and effective countermeasures will
require an integrated approach. Radiation, for instance, rep-
resents a harsh element of the space environment meriting
more comprehensive research; for this analysis, it was thor-
oughly reviewed only in the areas of reproduction and im-
munology.

With regard to the recommendations detailed in the 2002
report, NASA has made some progress. LSAH and LSDA
serve as repositories and resources for applied and clinical
studies for the research community and were utilized by the
six workgroups throughout this investigation. Increasingly,
the design and execution of experiments funded by NASA
and NSBRI have considered sex and gender in subject se-
lection and data analyses. Inevitably, space research involves
small numbers of test subjects. Current NASA and NSBRI
research announcements provide guidance regarding the
appropriate statistical handling of this special research chal-
lenge. In the latest crew selection, NASA selected eight as-
tronauts, comprising four women and four men. This is a
positive step toward increasing the participation of female
astronauts in spaceflight and experimentation.

This analysis has heavily focused on sex differences be-
cause the data currently available have been amenable to such
an approach. In the future, sex and gender differences will
constitute increasingly important components of an overall
personalized medicine approach to protecting the health of
humans on Earth and in space.

Recommendations

� Select more female astronauts for space missions.
� Encourage and facilitate the participation of more fe-

male and male subjects in both ground and flight re-
search studies.
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� Focus on the responses of individual astronauts to
spaceflight and return to Earth.
� Determine the range of effectiveness of specific coun-

termeasures for individuals.
� Include sex and gender factors into the design of

human spaceflight experiments.
� Incorporate sex and gender and other individual risk

factors into NASA-funded research programs.
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