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Abstract

We report automated and time efficient (2 h per sample) profiling of muscle using ultra-

performance liquid chromatography (LC) coupled directly with high-definition mass spectrometry 

(HDMSE). Soluble proteins extracted from rat gastrocnemius (n=10) were digested with trypsin 

and analysed in duplicate using a 90 min RPLC gradient. Protein identification and label-free 

quantitation were performed from HDMSE spectra analysed using TransOmics Informatics for 

Proteomics software. In total 1,514 proteins were identified. Of these, 811 had at least 3 unique 

peptides and were subsequently used to assess the dynamic range and precision of LC-HDMSE 

label-free profiling. Proteins analysed by LC-HDMSE encompass the entire complement of 

glycolytic, beta-oxidation and tricarboxylic acid enzymes. In addition, numerous components of 

the electron transport chain and protein kinases involved in skeletal muscle regulation were 

detected. The dynamic range of protein abundances spanned 4 orders of magnitude. The 

correlation between technical replicates of the 10 biological samples was R2 = 0.9961 ± 0.0036 

(95 % CI = 0.9940 – 0.9992) and the technical coefficient of variation averaged 7.3 ± 6.7 % (95 % 

CI = 6.87 – 7.79 %). This represents the most sophisticated label-free profiling of skeletal muscle 

to date.
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Skeletal muscle accounts for ~40 % of adult body mass and is the major site of both protein 

turnover and insulin-mediated glucose disposal. As such, abnormalities in muscle insulin 

sensitivity and protein metabolism contribute to the pathogenesis of diseases, such as type 2 

diabetes, and age-related declines in physical function. Conversely, the protective effects of 

exercise against non-communicable diseases and frailty are in part underpinned by muscle 
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adaptations. Therefore proteome profiling of physiological and patho-physiological muscle 

adaptations may discover clinically relevant biomarkers. Despite its importance, skeletal 

muscle is a relatively understudied area in proteomics, somewhat due to the relative 

difficulty in achieving deep analysis of the muscle proteome. Thus, there remains a need for 

a reproducible and time-efficient method for screening muscle samples.

Currently, the majority of muscle proteome data comes from 2DE (e.g. [1]), which affords 

robust comparative analysis of protein species but does not easily resolve proteins at the 

extremes of the MW and pI ranges. Moreover, because 2DE separates proteins to their 

constituent species, the number of non-redundant proteins identified may be relatively small 

(e.g. <300 proteins). In contrast, orthogonal separation by SDS-PAGE and RPLC coupled to 

ESI tandem mass spectrometry (i.e. GeLCMS/ MS) is able to catalogue larger numbers of 

muscle proteins. For instance, Højlund et al. [2] identified 945 proteins encompassing the 

entire complement of metabolic enzymes and some regulatory kinases. However, the 

number of proteins that can be differentially profiled using label-free GeLC-MS/MS is much 

fewer. Primarily this is because the extensive sample fractionation makes it difficult to 

measure equivalent proteins or peptides in each biological replicate. At present, the largest 

number of skeletal muscle proteins to be differentially profiled by GeLC-MS/MS is 438, 

reported in [3], wherein spectral counting was used to investigate responses to aerobic 

exercise in patients with type 2 diabetes. Interestingly, Parker et al. [4] reports that the 

efficiency of data-dependent acquisition (DDA) tandem mass spectrometry (MS/MS) to 

identify muscle proteins is essentially consistent across 3 different experimental designs (i.e. 

1D LC-MS/MS, 2D LC-MS/MS and GeLC-MS/MS). This suggests the mass spectrometer 

may be a limiting factor in the analysis of the muscle proteome.

Herein we used a Q-TOF mass spectrometer incorporating an additional gas-phase 

separation (i.e. ion mobility separation; IMS), which improves the resolution of complex 

peptide mixtures [5]. In addition, data-independent acquisition (DIA) was used whereby the 

instrument was programmed to alternate between low-energy (MS) and elevated-energy 

(MSE) modes to record parent- and product-ion data, respectively. Finally, we performed the 

first label-free profiling of muscle using the recently released Progenesis QI for Proteomics 

(QIP) application (Nonlinear Dynamics, Newcastle, UK) that has been specifically 

developed to combine the strengths of IMS and DIA, i.e. HDMSE. QIP accurately aligns 

data to a common reference chromatogram so there are no missing values, and samples are 

normalized using a global scaling factor that improves the signal:noise ratio over ratiometric 

scaling to a spiked purified protein (e.g. ‘hi-3” method advocated in [6]). We combined 

these advances in mass spectrometry and bioinformatics with 1D nano-flow RP UPLC to 

create a time-efficient and robust technique for routine comparative analysis of skeletal 

muscle samples.

Gastrocnemius muscles were obtained from genetically heterogeneous N:NIH rats 

(described in [7]) and in-solution trypsin digestion was performed according to [8]. Peptide 

mixtures were analysed by ultra performance LC (nanoACQUITY, Waters, Milford, MA) 

and online IMS mass spectrometry (SYNAPT G2-S, Waters, Manchester, UK). Samples 

(200 ng tryptic peptides) were loaded in aqueous 0.1% (v/v) formic acid via a Symmetry C18 

5 µm, 2 cm × 180 µm trap column (Waters, Milford, MA). Separation was conducted at 35 

Burniston et al. Page 2

Proteomics. Author manuscript; available in PMC 2014 November 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



°C through an HSS T3 C18 1.8 µm, 25 cm×75 µm analytical column (Waters, Milford, MA). 

Peptides were eluted using a gradient rising to 40 % acetonitrile 0.1% (v/v) formic acid over 

90 min at a flow rate of 300 nL/min. Additionally, a Lockmass reference (100 fmol/ µL 

Glu-1-fibrinopeptide B) was delivered to the NanoLockSpray source of the mass 

spectrometer at a flow rate of 500 nL/min, and was sampled at 60 s intervals.

For all measurements, the mass spectrometer was operated in a positive ESI mode at a 

resolution of >25,000 FWHM. Prior to analysis, the time of flight analyser was calibrated 

with a NaCsI mixture from m/z 50 to 1990. HDMSE analyses were conducted within the 

Triwave ion guide. Accumulated ions were separated according to their drift time 

characteristics in the N2 gas-filled mobility cell prior to collision induced dissociation (CID) 

alternating between low (4 eV) and elevated (14–40 eV) collision energies at a scan speed of 

0.9 s per function over 50–2000 m/z.

Analytical data were LockMass corrected post-acquisition using the doubly charged 

monoisotopic ion of the Glu-1-fibrinopeptide B. Charge reduction and deconvolution of 

potential parent-fragment correlation was achieved in the first instance by means of 

retention and drift time alignment, as described previously [9].

HDMSE spectra were aligned using Progenesis QIP. Prominent ion features (approximately 

1200 per chromatogram) were used as vectors to match each dataset to a common reference 

chromatogram. An analysis window of 10 min – 100 min and 50 m/z – 1650 m/z was 

selected, which encompassed a total of 47,109 features (charge states of +2, +3 or +4) and 

3,924 of these features were separated by IMS. Protein identifications and quantitative 

information were extracted using the dedicated algorithms in ProteinLynx GlobalSERVER 

(PLGS) v3.0 (Waters, Milford, MA). Peak lists were searched against the Uniprot database 

(date 2nd July 2012) restricted to ‘Rattus’ (7500 entries). The initial ion-matching 

requirements were ≧1 fragment per peptide, ≧3 fragments per protein and ≧1 peptide per 

protein. The enzyme specificity was trypsin allowing 1 missed cleavage, carbamidomethyl 

of cysteine (fixed) and oxidation of methionine (variable). Parent- and fragment-ion ppm 

errors were calculated empirically and decoy databases were used to calculate the 

identification error rate. Scoring of the database searches was refined by correlation of 

physicochemical properties of fragmented peptides from theoretical and experimental data. 

Peptide identifications were imported to Progenesis QIP and filtered to exclude peptides 

with scores less than 5.5 [10]. In total, 16, 749 peptides were identified and 1,018 had been 

resolved by IMS.

Proteins were grouped if they were identified by similar sets of peptides and, in total, 

HDMSE identified 1,514 protein groups. Of these, 811 had 3 or more unique peptides and 

were subsequently used to investigate the breadth and precision of label-free profiling. 

Metabolic enzymes were the most numerous gene ontology phrase and proteins in this 

subset encompassed the entire complement of glycolytic, betaoxidation and tricarboxylic 

acid enzymes. In addition, numerous components of the electron transport chain and protein 

kinases important in skeletal muscle regulation were detected (Figure 1). Consistent with the 

fast-twitch phenotype of the gastrocnemius, the relative abundance (RA) of enzymes 

involved in glycolysis and the tricarboxylic acid cycle were an order of magnitude greater 
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than enzymes of fatty acid β-oxidation. Furthermore, the ratio of heart-type lactate 

dehydrogenase B (RA = 63,302) and the muscle isoform of lactate dehydrogenase A (RA = 

557,602) was approximately 1:8. Kinases involved in skeletal muscle regulation were also 

detected, the most abundant (RA = 254,111) was sucrose-non-fermenting protein kinase/

AMPactivated protein kinase-related protein kinase, SNARK (Q66HE5). This protein is 

implicated in contraction-induced glucose transport in skeletal muscle [11], but is not 

currently listed as expressed in skeletal muscle in the Uniprot knowledge base. Consistent 

with the known order of abundance of p38 mitogen-activated protein kinase isoforms, p38γ 

(Q63538; RA = 25,332) was more abundant that p38δ (Q9WTY9; RA = 7,118) and p38α 

(P70618; RA = 2,171).

The dynamic range of protein abundance spanned 4 orders of magnitude (Figure 2), There 

was a trend for variation to be greater in low abundance proteins (Figure 3A), nonetheless, 

the correlation between technical replicates of 10 biological samples was R2 = 0.9961 ± 

0.0036 (95 % CI = 0.9940 – 0.9992). The coefficient of variation averaged 7.3 ± 6.7 % (95 

% CI = 6.87 – 7.79 %) and ~95 % (767 of 811) of proteins had a technical coefficient of 

variation of less than 20 % (Figure 3B). Herein we used genetically heterogeneous animals, 

and when data were organised to encompass both biological and technical variability the 

average coefficient of variation was 21.3 ± 15.9 % (range 4.5 % to 104.4 %; Figure 3C). The 

variability of 95 % of proteins (770 proteins) was <54 %, therefore, we estimate [12] a 

sample size of n = 9 would be sufficient to detect a 40 % difference (α = 0.05, 80 % power) 

in protein abundance between 2 independent groups.

The major strengths of our HDMSE technique include its precision, time-efficiency and 

applicability to archived muscle including unlabelled human samples. LCMS/ MS analysis 

of stable isotope-labelled amino acids [either in culture (SILAC) or mammals (SILAM)] is 

considered the gold-standard approach for differential proteome profiling. Differences 

between archetypal fast- and slow-twitch muscles have been investigated using the ‘SILAC’ 

mouse [13], and recently 2,474 proteins were identified [14] in mixed-fibre muscles of these 

animals. This unprecedented level of muscle proteome coverage was achieved by high-

resolution LC-MS/MS of muscle digests separated in to 12 fractionations by off-gel 

isoelectric focusing. The correlation between replicate muscle samples was not provided but 

values of R2 = 0.93 and 0.95 were reported from equivalent analysis of lung and liver 

proteins.

Here, we report a correlation of R2 >0.99 between technical replicates and an average 

coefficient of variation of 7.3 %. This high level of reproducibility may be due to our use of 

a simpler 1D RPLC and IMS separation strategy alongside DIA, which does not rely on 

stochastic selection of precursor ions so suffers less from inconsistent sampling of peptides. 

Moreover, because the instrument alternates between MS and MSE this greatly improves the 

MS duty-cycle compared to DDA and affords more detailed detection of peak profiles, 

further increasing measurement precision [10]. These factors each contribute toward 

enhancing reproducibility of Progenesis QIP analysis. The current profiling compares 

favorably against DIGE of skeletal muscle [15] where 70 % of spots had a coefficient of 

variation less than 14 %. Using HDMSE, the average coefficient of variation of enzymes in 

the glycolytic, tricarboxylic acid cycle and fatty acid β-oxidation pathways was 3.8 %, 4.3 % 

Burniston et al. Page 4

Proteomics. Author manuscript; available in PMC 2014 November 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



and 4.5 %, respectively (Figure 1). This level of precision is equivalent to 

spectrophotometric assays optimised for individual ‘key/ rate-limiting’ metabolic enzymes. 

Importantly, because HDMSE profiling simultaneously monitors all enzymes within each 

pathway, bioinformatic analysis of this highly parallel data may be used to discover novel 

interactions that correlate with changes in muscle (patho-) physiology.

Skeletal muscle is an accessible and clinically relevant tissue but proteomic analysis of 

muscle is challenging because approximately half of the total protein mass is occupied by 

just 10 highly abundant contractile and metabolic proteins. Indeed, and the dynamic range of 

muscle protein abundance is thought to be equivalent to that of the plasma proteome (i.e. 

spanning ~12 orders of magnitude). Our HDMSE profiling of soluble muscle proteins 

spanned 4 orders of magnitude in protein abundance, which is equivalent to DIGE analysis 

of similar samples in our hands [15] and GeLCMS/ MS analysis using spectral counting [3]. 

Orthogonal separation of SILAC peptides [14] achieved 6 orders of magnitude but required 

20 h instrument time per sample. Similarly, label-free GeLC-MS/MS [3] required 

approximately 30 h per sample and profiled 438 proteins. Here, 1D RPLC of less than 2 h 

duration was used to analyse 811 soluble muscle proteins. This substantial increase in time 

efficiency and proteome coverage achieved at a high level of precision.

In conclusion we report a time-efficient method for precise profiling of >750 skeletal muscle 

proteins. Specifically, the current work represents a 20-fold increment in time efficiency and 

almost 2-fold improvement in proteome coverage compared to the equivalent exemplary 

label-free analyses using GeLC-MS/MS. Moreover, our technique does not require stable 

isotope labelling so can be applied to studies in both human and non-human animal models.
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Figure 1. Profiling of soluble muscle proteins
The metabolic pathways of fatty acid β-oxidation, glycolysis and the tricarboxylic acid 

(TCA) cycle are redrawn from the Kyoto Encyclopaedia of Genes and Genomes (KEGG). 

For clarity the respiratory chain is not shown in its entirety, instead only subunits detected 

by HDMSE profiling are highlighted. In addition, protein kinases important in muscle 

regulation are displayed. Orange boxes display the common name of each enzyme, the 

adjacent boxes detail the UniProt protein ID and accession number, below these the total 

number of peptides is given. Numbers in parentheses represent the number of detected 

peptides that were unique to that protein and subsequently used for quantitative analyses. 

The technical coefficient of variation for each protein is also given.
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Figure 2. Dynamic range of HDMSE profiling
The relative abundance of proteins identified by HDMSE spanned 4 orders of magnitude. 

The most abundant protein was glycogen phosphorylase (2.1e06 AU). Consistent with the 

expected fast/ glycolytic phenotype of gastrocnemius, glycolytic and TCA enzymes were 

more abundant (~3.5e05 AU) than enzymes of fatty acid oxidation such as β-hydroxyacyl-

CoA dehydrogenase (3.6e04 AU). Regulatory proteins, including mitogen activated protein 

kinase (MAPK) p38δ and the gamma 1 subunit of AMP kinase were detected at an 

abundance of ~5.0e03.
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Figure 3. Technical and biological variability
The relative abundance of a protein was inversely related to the level of technical variation 

(A). Technical coefficient of variation (B) was normally distributed, and 95 % (767 of 881) 

proteins identified had coefficient of variation of less than 20 %. Biological variability 

(range 4 – 104 %; C) was greater than technical variation.
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