Skip to main content
. 2013 Dec 1;34(6):413–425. doi: 10.1111/cpf.12105

Table 2.

Novel PET tracers for human use: Potential in atherosclerosis risk stratification?

Target Modality Study type Notes Reference
Active calcification using 18F-NaF Hybrid PET/CT Retrospective study of cancer patients First report and feasibility study of atherosclerosis in different arterial vascular beds using 18F-NaF Derlin et al. (2010)
MΦ activity (SSTR2) Hybrid PET/CT Retrospective study of cancer patients First study of MΦ activity in atherosclerosis using the tracer 68Ga-DOTATATE Rominger et al. (2010)
MΦ activity (SSTR2) and glycolysis Hybrid PET/CT Retrospective study of cancer patients First comparison of 18F-FDG and 68Ga-DOTATATE in atherosclerotic disease Li et al. (2012)
Hypoxia Standalone PET Prospective study of cancer patients First study of hypoxia using 18F-FMISO uptake in cancer patients Valk et al. (1992)
Hypoxia Standalone PET Prospective study of cancer patients First study of hypoxia using 62Cu-ATSM uptake in cancer patients Takahashi et al. (2000)
Angiogenesis (αVβ3) Standalone PET Biodistribution and pharmacokinetics study First study of angiogenesis using 18F-Galacto-RGD in cancer patients Beer et al. (2005)

αVβ3, integrin receptor dimer alphaVbeta3; CT, computed tomography; 62Cu-ATSM, 62Cu-diacetyl-bis(N4methyl-thiosemicarbazone); 18F-FDG, 2-[18F]-fluoro-2-deoxy-D-glucose; 18F-FMISO, 18F-fluoromisonidazole; 18F-NaF, 18F-sodium fluoride; 68Ga-DOTATATE, 68Ga-[1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraaceticacid]-ᴅ-Phe1,Tyr3-octreotate; MΦ, macrophages; PET, positron emission tomography; SSTR2, somatostatin receptor subtype 2.