Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Jul;76(1):109–116. doi: 10.1172/JCI111932

Increased insulin sensitivity and responsiveness of glucose metabolism in adipocytes from female versus male rats.

M Guerre-Millo, A Leturque, J Girard, M Lavau
PMCID: PMC423720  PMID: 3894416

Abstract

This study was undertaken to examine whether there were sex-associated differences in the action of insulin on glucose metabolism in adipocytes. Insulin binding and the dose-response curves for glucose transport (assessed by measuring the cell-associated radioactivity after 15-s incubation with 50 microM [6-14C]glucose) and [U-14C]glucose (5 mM) metabolism into CO2 and lipids were compared in retroperitoneal adipocytes from age-matched (84 d) male and female rats. In addition, the activity of fatty acid synthetase, one of the key lipogenic enzymes, was determined. Fat cell size was not significantly larger in females than in males (0.238 vs. 0.209 microgram lipid per cell). At insulin concentrations less than or equal to 1.6 nM, adipocytes from females bound significantly more insulin than did adipocytes from males, due to an increased apparent affinity of the receptors for insulin. Accordingly, the sensitivity of glucose transport to insulin was greater in females than in males: insulin concentration eliciting half-maximal stimulation (ED50) = 0.19 nM vs. 0.41 nM. At maximal insulin stimulation the rates of glucose transport (12 times the basal values) were similar in the two sexes. In contrast, the maximal effect of insulin on glucose conversion to CO2 plus lipids was much greater in the adipocytes from females than males (increment over basal: 472 vs. 249 nmol/10(6) cells per 2 h). Fatty acid synthesis contributed approximately 40% of the incremental difference between the two types of adipocytes, while glyceride-glycerol synthesis contributed less than 10%. The insulin dose-response curves for adipocytes from females were shifted to the left for all the metabolic pathways investigated. The mean ED50 for total glucose metabolism in females was 50% of that in males (0.07 nM vs. 0.15 nM). Marked sex-associated differences in the action of insulin on glucose metabolism were also observed in subcutaneous inguinal adipocytes (increment over basal: 137 and 56 nmol/10(6) cells per 2 h, ED50 = 0.13 nM and 0.30 nM in females and males, respectively). The intracellular capacity to metabolize glucose through the fatty acid synthesis pathway, as assessed by FAS activity, was higher in adipocytes from females than in those from males and was greater in retroperitoneal than in inguinal adipocytes. Furthermore, by plotting the individual data, a highly significant correlation (r = 0.92, P less than 0.001) was found between the absolute effect of insulin on glucose metabolism at maximal stimulation and the fatty acid synthetase activity of the cells. These results indicate that the response of glucose metabolism to insulin in adipocytes from female as compared with male rats is characterized by two main features: (a) an increased sensitivity primarily due to an increase in insulin binding, and (b) an increased responsiveness closely associated with a postreceptor increase in the lipogenic capacity of the cell. These findings might be relevant to the differential disposition of male and female rats to develop fatness.

Full text

PDF
109

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Craig B. W., Hammons G. T., Garthwaite S. M., Jarett L., Holloszy J. O. Adaptation of fat cells to exercise: response of glucose uptake and oxidation to insulin. J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1500–1506. doi: 10.1152/jappl.1981.51.6.1500. [DOI] [PubMed] [Google Scholar]
  2. Crandall D. L., Fried S. K., Francendese A. A., Nickel M., DiGirolamo M. Lactate release from isolated rat adipocytes: influence of cell size, glucose concentration, insulin and epinephrine. Horm Metab Res. 1983 Jul;15(7):326–329. doi: 10.1055/s-2007-1018710. [DOI] [PubMed] [Google Scholar]
  3. Cushman S. W., Wardzala L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem. 1980 May 25;255(10):4758–4762. [PubMed] [Google Scholar]
  4. Czech M. P., Malbon C. C., Kerman K., Gitomer W., Pilch P. F. Effect of thyroid status on insulin action in rat adipocytes and skeletal muscle. J Clin Invest. 1980 Sep;66(3):574–582. doi: 10.1172/JCI109889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DOLE V. P., MEINERTZ H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960 Sep;235:2595–2599. [PubMed] [Google Scholar]
  6. Di Girolamo M., Rudman D. Variations in glucose metabolism and sensitivity to insulin of the rat's adipose tissue, in relation to age and body weight. Endocrinology. 1968 Jun;82(6):1133–1141. doi: 10.1210/endo-82-6-1133. [DOI] [PubMed] [Google Scholar]
  7. DiGirolamo M., Howe M. D., Esposito J., Thurman L., Owens J. L. Metabolic patterns and insulin responsiveness of enlarging fat cells. J Lipid Res. 1974 Jul;15(4):332–338. [PubMed] [Google Scholar]
  8. Flint D. J., Clegg R. A., Vernon R. G. Adipose tissue metabolism during early pregnancy in the rat: temporal relationships of changes in the metabolic activity, number of insulin receptors, and serum hormone concentrations. Arch Biochem Biophys. 1983 Jul 15;224(2):677–681. doi: 10.1016/0003-9861(83)90255-2. [DOI] [PubMed] [Google Scholar]
  9. Flint D. J., Sinnett-Smith P. A., Clegg R. A., Vernon R. G. Role of insulin receptors in the changing metabolism of adipose tissue during pregnancy and lactation in the rat. Biochem J. 1979 Aug 15;182(2):421–427. doi: 10.1042/bj1820421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foley J. E., Kashiwagi A., Chang H., Huecksteadt T. P., Lillioja S., Verso M. A., Reaven G. Sex difference in insulin-stimulated glucose transport in rat and human adipocytes. Am J Physiol. 1984 Mar;246(3 Pt 1):E211–E215. doi: 10.1152/ajpendo.1984.246.3.E211. [DOI] [PubMed] [Google Scholar]
  11. Fried S. K., Lavau M., Pi-Sunyer F. X. Role of fatty acid synthesis in the control of insulin-stimulated glucose utilization by rat adipocytes. J Lipid Res. 1981 Jul;22(5):753–762. [PubMed] [Google Scholar]
  12. Fried S. K., Lavau M., Pi-Sunyer F. X. Variations of glucose metabolism by fat cells from three adipose depots of the rat. Metabolism. 1982 Sep;31(9):876–883. doi: 10.1016/0026-0495(82)90176-7. [DOI] [PubMed] [Google Scholar]
  13. Gammeltoft S., Gliemann J. Binding and degradation of 125I-labelled insulin by isolated rat fat cells. Biochim Biophys Acta. 1973 Aug 17;320(1):16–32. doi: 10.1016/0304-4165(73)90161-x. [DOI] [PubMed] [Google Scholar]
  14. Gliemann J., Rees W. D., Foley J. A. The fate of labelled glucose molecules in the rat adipocyte. Dependence on glucose concentration. Biochim Biophys Acta. 1984 May 22;804(1):68–76. doi: 10.1016/0167-4889(84)90100-9. [DOI] [PubMed] [Google Scholar]
  15. Guerre-Millo M., Lavau M., Horne J. S., Wardzala L. J. Proposed mechanism for increased insulin-mediated glucose transport in adipose cells from young, obese Zucker rats. Large intracellular pool of glucose transporters. J Biol Chem. 1985 Feb 25;260(4):2197–2201. [PubMed] [Google Scholar]
  16. Guerre-Millo M., Leturque A., Lavau M., Girard J. Effect of insulin on glucose transport and metabolism in isolated fat-cells of gonadal adipose tissue from mature age-matched male and female rats. Biochem J. 1985 Jan 15;225(2):343–348. doi: 10.1042/bj2250343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Guynn R. W., Veloso D., Veech R. L. The concentration of malonyl-coenzyme A and the control of fatty acid synthesis in vivo. J Biol Chem. 1972 Nov 25;247(22):7325–7331. [PubMed] [Google Scholar]
  18. Jen K. L., Greenwood M. R., Brasel J. A. Sex differences in the effects of high-fat feeding on behavior and carcass composition. Physiol Behav. 1981 Jul;27(1):161–166. doi: 10.1016/0031-9384(81)90315-2. [DOI] [PubMed] [Google Scholar]
  19. Kahn C. R., Freychet P., Roth J., Neville D. M., Jr Quantitative aspects of the insulin-receptor interaction in liver plasma membranes. J Biol Chem. 1974 Apr 10;249(7):2249–2257. [PubMed] [Google Scholar]
  20. Lavau M., Fried S. K., Susini C., Freychet P. Mechanism of insulin resistance in adipocytes of rats fed a high-fat diet. J Lipid Res. 1979 Jan;20(1):8–16. [PubMed] [Google Scholar]
  21. Lavau M., Nadeau M., Susini C. Métabolisme in vitro du tissu adipeux épididymaire du rat en état d'obésité nutritionnelle. II. Incubations en présence de glucose marqué. Effects de l'insuline. Biochimie. 1972;54(8):1057–1067. doi: 10.1016/s0300-9084(72)80057-9. [DOI] [PubMed] [Google Scholar]
  22. Lavau M., Susini C., Knittle J., Blanchet-Hirst S., Greenwood M. R. A reliable photomicrographic method to determining fat cell size and number: application to dietary obesity. Proc Soc Exp Biol Med. 1977 Nov;156(2):251–256. doi: 10.3181/00379727-156-39916. [DOI] [PubMed] [Google Scholar]
  23. MARTIN D. B., HORNING M. G., VAGELOS P. R. Fatty acid synthesis in adipose tissue. I. Purification and properties of a long chain fatty acid-synthesizing system. J Biol Chem. 1961 Mar;236:663–668. [PubMed] [Google Scholar]
  24. Olefsky J. M., Kao M. Surface binding and rates of internalization of 125I-insulin in adipocytes and IM-9 lymphocytes. J Biol Chem. 1982 Aug 10;257(15):8667–8673. [PubMed] [Google Scholar]
  25. Olefsky J. M., Saekow M., Kroc R. L. Potentiation of insulin binding and insulin action by purified porcine relaxin. Ann N Y Acad Sci. 1982;380:200–216. doi: 10.1111/j.1749-6632.1982.tb18043.x. [DOI] [PubMed] [Google Scholar]
  26. Pedersen O., Hjøllund E., Lindskov H. O. Insulin binding and action on fat cells from young healthy females and males. Am J Physiol. 1982 Aug;243(2):E158–E167. doi: 10.1152/ajpendo.1982.243.2.E158. [DOI] [PubMed] [Google Scholar]
  27. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  28. Richardson D. K., Czech M. P. Primary role of decreased fatty acid synthesis in insulin resistance of large rat adipocytes. Am J Physiol. 1978 Feb;234(2):E182–E189. doi: 10.1152/ajpendo.1978.234.2.E182. [DOI] [PubMed] [Google Scholar]
  29. Salans L. B., Foley J. E., Wardzala L. J., Cushman S. W. Effects of dietary composition on glucose metabolism in rat adipose cells. Am J Physiol. 1981 Feb;240(2):E175–E183. doi: 10.1152/ajpendo.1981.240.2.E175. [DOI] [PubMed] [Google Scholar]
  30. Schemmel R., Mickelsen O., Tolgay Z. Dietary obesity in rats: influence of diet, weight, age, and sex on body composition. Am J Physiol. 1969 Feb;216(2):373–379. doi: 10.1152/ajplegacy.1969.216.2.373. [DOI] [PubMed] [Google Scholar]
  31. Sclafani A., Gorman A. N. Effects of age, sex, and prior body weight on the development of dietary obesity in adult rats. Physiol Behav. 1977 Jun;18(6):1021–1026. doi: 10.1016/0031-9384(77)90006-3. [DOI] [PubMed] [Google Scholar]
  32. Sonne O., Simpson I. A. Internalization of insulin and its receptor in the isolated rat adipose cell. Time-course and insulin concentration dependency. Biochim Biophys Acta. 1984 Aug 17;804(4):404–413. doi: 10.1016/0167-4889(84)90067-3. [DOI] [PubMed] [Google Scholar]
  33. Susini C., Lavau M. In-vitro and in-vivo responsiveness of muscle and adipose tissue to insulin in rats rendered obese by a high-fat diet. Diabetes. 1978 Feb;27(2):114–120. doi: 10.2337/diab.27.2.114. [DOI] [PubMed] [Google Scholar]
  34. Sutter-Dub M. T., Dazey B., Vergnaud M. T., Madec A. M. Progesterone and insulin-resistance in the pregnant rat. I. In vivo and in vitro studies. Diabete Metab. 1981 Jun;7(2):97–104. [PubMed] [Google Scholar]
  35. Sutter-Dub M. T., Sfaxi A., Strozza P. Glucose metabolism in the female rat adipocyte: lipid synthesis from glucose during pregnancy and progesterone treatment. J Endocrinol. 1983 May;97(2):207–212. doi: 10.1677/joe.0.0970207. [DOI] [PubMed] [Google Scholar]
  36. Suzuki K., Kono T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci U S A. 1980 May;77(5):2542–2545. doi: 10.1073/pnas.77.5.2542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Volpe J. J., Vagelos P. R. Mechanisms and regulation of biosynthesis of saturated fatty acids. Physiol Rev. 1976 Apr;56(2):339–417. doi: 10.1152/physrev.1976.56.2.339. [DOI] [PubMed] [Google Scholar]
  38. Wade G. N., Gray J. M. Gonadal effects on food intake and adiposity: a metabolic hypothesis. Physiol Behav. 1979 Mar;22(3):583–593. doi: 10.1016/0031-9384(79)90028-3. [DOI] [PubMed] [Google Scholar]
  39. Wardzala L. J., Crettaz M., Horton E. D., Jeanrenaud B., Horton E. S. Physical training of lean and genetically obese Zucker rats: effect on fat cell metabolism. Am J Physiol. 1982 Nov;243(5):E418–E426. doi: 10.1152/ajpendo.1982.243.5.E418. [DOI] [PubMed] [Google Scholar]
  40. de Meyts P., Roth J., Neville D. M., Jr, Gavin J. R., 3rd, Lesniak M. A. Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem Biophys Res Commun. 1973 Nov 1;55(1):154–161. doi: 10.1016/s0006-291x(73)80072-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES