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Abstract

Background & Objective: Recreational waters impacted by fecal contamination have been linked to gastrointestinal illness
in swimmer populations. To date, few epidemiologic studies examine the risk for swimming-related illnesses based upon
simultaneous exposure to more than one microbial surrogate (e.g. culturable E. coli densities, genetic markers). We
addressed this research gap by investigating the association between swimming-related illness frequency and water quality
determined from multiple bacterial and viral genetic markers.

Methods: Viral and bacterial genetic marker densities were determined from beach water samples collected over 23
weekend days and were quantified using quantitative polymerase chain reaction (qPCR). These genetic marker data were
paired with previously determined human exposure data gathered as part of a cohort study carried out among beach users
at East Fork Lake in Ohio, USA in 2009. Using previously unavailable genetic marker data in logistic regression models,
single- and multi-marker/multi-water quality indicator approaches for predicting swimming-related illness were evaluated
for associations with swimming-associated gastrointestinal illness.

Results: Data pertaining to genetic marker exposure and 8- or 9-day health outcomes were available for a total of 600
healthy susceptible swimmers, and with this population we observed a significant positive association between human
adenovirus (HAdV) exposure and diarrhea (odds ratio = 1.6; 95% confidence interval: 1.1–2.3) as well as gastrointestinal
illness (OR = 1.5; 95% CI: 1.0–2.2) upon adjusting for culturable E. coli densities in multivariable models. No significant
associations between bacterial genetic markers and swimming-associated illness were observed.

Conclusions: This study provides evidence that a combined measure of recreational water quality that simultaneously
considers both bacterial and viral densities, particularly HAdV, may improve prediction of disease risk than a measure of a
single agent in a beach environment likely influenced by nonpoint source human fecal contamination.
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Introduction

Beach water advisories are issued to discourage human contact

(e.g., swimming, wading, etc.) when water is potentially harmful to

human health. In the United States, many of these advisories are

issued at freshwater beaches when densities of fecal indicator

bacteria (E. coli or enterococci) are observed or predicted to be in

excess of single-day maximum criteria. Prior to November 26,
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2012, the U.S. Environmental Protection Agency (USEPA) had

established single-day maximum criteria, which were derived from

several large epidemiological studies performed in the early 1980s

[1]. In 2003, the 1986 E. coli criteria were supported by a

comprehensive meta-analysis demonstrating E. coli was the most

consistent indicator for predicting gastrointestinal illness in

freshwater [2]. This same study indicated that methods for

quantifying E. coli were problematic for same-day water quality

advisories. The method required 18–24 h incubation and there-

fore was untimely for communication of risk to susceptible

beachgoers [2].

Since the 2003 meta-analysis, several epidemiological studies

evaluating associations between illness and more rapid measures of

fecal indicators have been performed with an emphasis on genetic

markers of bacterial or viral contamination, which have demon-

strated the effectiveness of rapidly measured Enterococcus via

quantitative polymerase chain reaction (qPCR) for predicting

human illness at sewage-impacted Great Lakes and marine

beaches [3,4]. However, in epidemiology studies on swimmers at

non-point source-impacted beaches, associations between qPCR-

based bacterial markers and gastrointestinal (GI) illness were not

observed [5,6]. A potential reason for the lack of association in

both studies could have related to the source of fecal contamina-

tion, which was likely dominated by avian sources [7], potentially

presenting less risk for swimming-associated gastrointestinal (GI)

illness than equivalent amounts of human-associated fecal

contamination [8]. The diffuse nature of the source(s) of fecal

contamination has been proposed as a possible explanation for the

lack of association between bacterial genetic markers and human

illness [9–11].

To date, few epidemiological studies on beachgoers have been

performed at areas dominated by human-associated non-point

source contamination, particularly in freshwater environments.

Several peer-reviewed epidemiological studies have evaluated

illness associations with human enteric viruses in European

recreational waters [12–14] and U.S. waters [6,15,16]. Epidemi-

ological studies pertaining to viruses are highly relevant as viruses

are known to have a broad distribution in the aquatic environment

[17], and are the most observed etiological agents in disease

outbreaks associated with untreated U.S. recreational waters [18].

Recent epidemiological studies on swimmers [9–11] have

suggested that viruses were the primary etiologic agents associated

with recreational water illnesses based upon relatively short

incubation periods following swimming exposure [10,19]. Simi-

larly with regards to incubation periods, among limited-contact

recreational users of freshwater in Chicago, Illinois (U.S.A.), most

gastrointestinal illnesses generally developed within three days of

water exposure [19].

To date, the majority of recreational water-related epidemio-

logical studies have been performed to identify effective single

indicators, often bacterial, for practical application among those

making beach management decisions. Multiple fecal indicators

and multiple genetic markers have been evaluated in recreational

waters with respect to their association with each other as well as

GI illness frequency among swimmers. There is some inconsis-

tency in the findings of studies that have studied associations (or

the lack thereof) between fecal indicator densities and measured

pathogen and/or viral levels in freshwater [20] and coastal

nvironments [21,22], and legitimate concerns remain regarding

the use of single bacterial indicators for predicting and commu-

nicating swimming-associated illness risks to the general public

[23–25].

To address these knowledge gaps, this study examined

previously undescribed samples which were archived during our

prospective cohort study [26] that gathered culture-based E. coli
and human exposure data. In our 2010 study [26], new GI

illnesses among swimmers were associated with increasing culture-

based E. coli densities at East Fork Lake (Ohio, USA); however, no

assessment of associations between genetic marker densities and

human health occurred. In 2012, the U.S. Environmental

Protection Agency (EPA) emphasized a need for additional

evaluation of rapid molecular methods for the timely determina-

tion of water quality to protect recreational water users [27].

Building upon this need, we examined associations between GI

illness incidence among swimmers exposed to multiple genetic

markers targeting both viruses and bacteria in this non-point

source human-impacted beach environment. This study presented

a unique opportunity to successfully use our historical exposure

and health data coupled with our previously unexplored genetic

material to do a timely assessment of the effectiveness of viral and

bacterial molecular markers for predicting GI illness risk among

swimmers who used the East Fork beach in 2009.

Materials and Methods

Overall Approach
The exposure and health data were collected using the

prospective cohort study approach adopted by Wade et al. in

their epidemiological studies related to recreational water [3,4].

This study builds upon our epidemiological investigations of

recreational water-related illnesses by evaluating human illness

associations with our recently qPCR-determined densities of

bacteria and viruses. In brief, beach water samples, beach water

quality data, and beach user exposure/behavior data were

collected at East Fork State Park (39.0198u N; 84.1432u W) near

Cincinnati, Ohio, U.S.A. Approvals to use this location for water

sample collection and beachgoer interviews were kindly provided

orally and in writing by Chris Dauner (Park Manager, East Fork

State Park), and Dan West (Chief, Ohio Department of Natural

Resources, Division of Parks and Recreation). Complete health

and exposure data were collected from 891 beachgoers from 278

households. As described in our 2010 study [26], participants

reported their health status via a telephone questionnaire after an

eight- to nine-day follow-up period. More recently we quantified

densities of four viral (human adenovirus (HAdV), human

enterovirus (HEntV), and human norovirus genogroup I (HNoV

GI) and genogroup II (HNoV GII)) and four bacterial (E. coli by

uidA and 23S, Enterococci by 23S, Bacteroides-Prevotella by

HuBac) markers from 23 samples collected over 23 weekend days

from 2009 using qPCR and paired them with human exposure

data.

Ethics Statement
Approvals for the study design, questionnaires, verbal consent

procedures, and related materials were obtained from the

Institutional Review Board (IRB) at The Ohio State University

(IRB Protocol #2009H0107). For this study, adult participants (18

years of age or older) capable of providing verbal consent were

welcomed into the study by investigators or key personnel trained

and authorized by the university to obtain consent. The written

consent waiver permitting verbal consent was granted given the

low study risk and because written consent would have required

surname information and the gathering of consent documentation

in a periodically windy and wet beach environment. Thus, written

consent procedures would have increased the likelihood of losing

or damaging documentation which would have then included

participant surnames that could potentially be matched with

telephone numbers and health data. Verbal consent was recorded
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on the datasheet for each household interviewed. In addition,

participants were provided with a card sharing contact informa-

tion for the principal investigator and the ethics coordinator in the

Office of Responsible Research Practices at the university.

Enrollment and Exposure Survey
The East Fork Beach Study [26] recruited beach user

households into the study at the beach and interviewed them

upon their departure to ascertain information regarding their

activities at the beach on that same day. For each household in the

study, an adult spokesperson provided investigators with informa-

tion requested from a standard script. The obtained information

was used for classifying exposure status and obtaining information

related to potential confounding variables (age, gender, ethnicity,

food consumption, source of food/drink, number of beach visits

per year, duration of time at the beach, hand hygiene, extent of

sand exposure, distance traveled, and number of other beach

users). More specifically, individuals were asked whether any

household members had: (1) no water contact; (2) waded, played

or swam in the water; and/or (3) immersed their head in the

water. Questions pertaining to any recent or on-going illnesses

were also asked. Individual beach users were dichotomously

classified as having or not having each of the above-mentioned

exposures as well as any prevalent symptoms of gastrointestinal

illness. These exposure data were recently paired with date-specific

E. coli genetic marker density data to further establish our

exposure classification of each beach user.

Health Outcomes Survey
Health outcome data were obtained by Marion et al. [26] in

which enrolled households were contacted eight to nine days after

their beach visit via telephone. Only adult household members

who were at the beach at the time of enrollment were eligible for

interview participation. Interviews were conducted using a

standard questionnaire inquiring about illness among household

members at the beach at the time of enrollment. Reported illnesses

were recorded as a yes/no response for a variety of symptoms (e.g.,

stomach cramps, nausea, diarrhea, vomiting, headache, fever, etc.)

for each person who visited the beach. For comparing with other

studies, persons were further classified by gastrointestinal illness.

Similar to the Wade et al. studies [3,4], persons were defined to

have experienced ‘‘GI illness’’ if they were reported to have had

any one of the following: nausea, stomach ache or stomach

cramps, diarrhea (three or more loose or watery stools in a 24-hour

period), or vomiting. With respect to nausea, all persons in this

study who reported nausea were considered positive for GI illness.

This GI illness definition is slightly different than the Wade et al.

studies [3,4], which only included nausea cases into their GI illness

definition when the condition interfered with daily activities. In

our study, we were unable to make this distinction as we did not

ascertain if the nausea interfered with daily activities. Beyond the

‘‘GI Illness’’ definition, using the highly credible gastrointestinal

illness (HCGI) definition employed by Colford [5] as ‘‘HCGI-1’’,

we likewise coded individuals as positive for HCGI if they were

reported to have experienced any of the following: (1) vomiting; (2)

diarrhea and fever, (3) stomach-ache and fever, or (4) nausea and

fever.

Sample Collection and Water Analysis
Beach water samples used for obtaining genetic marker data

were collected on the same day as enrollment and administration

of the exposure questionnaire on summer weekends during the

time of day generally used for swimming. In total, 91% of samples

were collected at the median time of 13:4563 h. Two samples

(9%) were collected after 16:00 on days when daily swimming

attendance was low (n = 4, n = 28) in anticipation of more

swimmers late in the day. For each day, 3 L was collected into

multiple autoclaved 500 mL bottles (Nalgene, Rochester, NY,

USA) and sterile Whirl-Pak bags (Nasco, Fort Atkinson, WI, USA)

over 23 weekend days. Samples were collected near the beach

center in water with an approximate depth of one meter by

sweeping containers 30 cm below the water surface. Within

30 minutes after collection, a 1 L sample aliquot was used for

membrane filtration for culturable E. coli, a 1 L sample aliquot

was temporarily stored (24–48 h) at 4uC and then immediately

filtered for bacterial marker analysis, and a 1 L aliquot was stored

at 220uC for virus analysis.

E. coli densities were quantified for three separate filtration

volumes (20, 50, and 100 mL) for each sample using the culture-

based method described in EPA Method 1603 [27] and Marion et

al. [26]. Other water quality parameters including temperature,

pH, dissolved oxygen, and turbidity were also measured using a

YSI 600XL data sonde (Yellow Springs Instruments, Yellow

Springs, Ohio, U.S.A.) and a Hach 2100P Turbidimeter (Love-

land, Colorado, U.S.A.) as described in Marion et al. [26]. UV

index data were obtained from the National Oceanic and

Atmospheric Administration [28]. Rainfall, lake stage (surface

elevation), and lake inflow data were obtained from the U.S. Army

Corps of Engineers [29].

A detailed description of sample preparation, water concentra-

tion, and quantification of the bacterial and viral marker densities

by qPCR is provided as (Text S1), including a description of the

primers and probes used in this study (Table S1). In brief, samples

were filtered to capture bacteria for quantifying the following

bacterial markers: uidA genes (uidA) and 23S rRNA genes (23S E.
coli) of E. coli, 16S rRNA genes of Bacteroides-Prevotella (HuBac),

and 23S rRNA genes of Enterococcus spp. (23S Enterococcus). For

concentrating viruses (HEntV, HAdV, HNoV GI, and HNoV

GII), membrane filtration was performed using cation (Al3+)-

coated membranes. DNA or RNA was then extracted from the

microbes captured on the membranes using a QIAmp DNA Stool

Kit or the RNeasy Mini Kit (Qiagen, Valencia, CA, USA),

respectively. RNA extracts for HEntV were amplified by reverse

transcription (RT)-PCR and quantified using TaqMan real-time

RT-PCR (RT-qPCR) with the QIAGEN OneStep RT-PCR Kit

(Qiagen, Valencia, CA, USA). DNA extracts for HAdV and all

bacterial markers were amplified by PCR and quantified using a

TaqMan-based real-time qPCR system. All RT-qPCR and qPCR

reactions except HNoV GI and HNoV GII were carried out in an

ABI 48-well StepOne Real Time System (Applied Biosystems,

Foster City, CA). RT-qPCR assays for HNoV GI and HNoV GII

were carried out with an Eppendorf Mastercycler RealPlex2

(Eppendorf, Germany). Quantification of the markers was then

determined using standard curves generated by plotting Ct values

(y) versus the log gene copy numbers of the target microbes (x) and

each limit of detection (LOD) was determined based on the lowest

gene copy number from which above 90% of the replicates could

be amplified in each qPCR assay. Additionally, with regards to

these samples, the presence/absence of qPCR inhibition was

previously evaluated for East Fork samples [20] using the

Sketa22 qPCR assay as described in Haugland et al. [30].

Data Analysis
The analysis focused on healthy susceptible individuals, and

persons who were classified as prevalent or existing cases based

upon responses to the enrollment questionnaire were excluded in

analyses using incident cases. Logistic regression was employed to

evaluate crude associations between genetic marker exposure and
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new illness among swimmers reporting head immersion. The data

for the microbiological terms, including E. coli density data, were

skewed, accordingly they were log (base 10)-transformed. Prior to

log-transforming E. coli results, samples with 0 CFU/100 mL

were assigned a value of 1 CFU/100 mL. In scatterplots and

models containing genetic marker densities, for markers not

detected after 45 cycles, densities were assigned a value of half the

detection limit in log CFUs per 100 mL or log gene equivalents

(GE) per 100 mL for bacterial and viral markers, respectively.

Multivariable logistic regression was used for estimating odds

ratios for any GI illness, diarrhea, and HCGI among swimmers

and non-swimmers (negative controls) as recommended in

observational studies [31] and done by Colford et al. [9] in their

beach user health study. The swimmer population was defined as

beach users who reported immersing their head in the beach

water. Non-swimmers were defined as beach users reporting no

water contact or limited water contact that did not include head

immersion in the beach water. All swimmers were assumed to

have been exposed to the same density of E. coli and the various

genetic markers observed from the single sample collection for that

day. Densities of E. coli and the various genetic markers were

determined from the single mid-day water sample collection.

The multivariable logistic regression models considered poten-

tial confounders and/or modifying influences, including covariates

related to demographic, exposure, meteorological, and water

quality factors. Since data were obtained from households, for the

purpose of statistical analysis, the data were treated as clustered by

household [32]. For constructing multivariable models, a back-

ward selection approach was employed whereby covariates were

dropped stepwise based on the highest p-value until arriving at the

most parsimonious model [32]. The rule of ten events (cases) per

covariate was used in logistic regression modeling [33]. Due to the

low frequency of HCGI cases, HCGI model construction was

limited to only two microbiological terms by relaxing the rule of

ten events per covariate [34].

Multivariable logistic regression models were evaluated for fit

via the Hosmer-Lemeshow Goodness-of-Fit Test [32] and for

model discrimination via the area under the receiver-operating-

characteristic curve (AUC) [32]. The modeling efforts and

assessments of logistic model fit and discrimination were

performed using Stata 11 (Stata Corporation, College Station,

TX, USA). A time-series plot was generated with Minitab 16

(Minitab Inc., State College, PA, USA).

Results

Water Quality
Among the 23 weekend water samples collected for qPCR

analysis, bacterial markers were more readily detected than viruses

(Table 1). HEntV and HAdV were detected in 22% (5/23) and

35% (8/23) of all samples, respectively, whereas, HNoV GI and

GII were not detected (0/23). As previously reported [20], qPCR

inhibition was not observed in any of the 23 samples. Culturable

E. coli densities greater than 0 CFU/100 mL were observed in

91% (21/23) of all samples. The time-series plot of culturable E.
coli and HAdV densities by day (Figure 1) demonstrate the lack of

association between the two water quality parameters, which was

confirmed by correlation analysis (Spearman’s r= 0.147;

p = 0.503). Overall, culturable E. coli densities exceeded Ohio

single-day maximum criteria (.235 CFU/100 mL) in 8.6% (2/

23) of our samples; however, no beach advisories were issued by

local or state authorities due to their adherence to the one sample

per week guideline used by the Ohio Department of Health for

inland waters. Other water quality parameters are summarized in

Marion et al. [26].

Study Population
A total of 891 individuals were included in this study (from 278

households). The study population was 93% white, 2.5% black,

1% Hispanic and 3.5% other. The average study participant age

was 24 years (median = 21 years). Young children (#5 years)

represented 13% of the participants on whom data were available.

Females were more represented (56%) than males (44%). The

population described in this report is a subset of the 965

individuals from 300 households in our previous study [26],

which was conducted over 26 weekend days. Genetic marker data

were only obtained for 23 of 26 days of the 2009 East Fork Beach

Study [26], and accordingly, this study reports the results of the

investigation using genetic marker data. The collection of sufficient

water for obtaining qPCR data was an additional task added to the

previous study on the third sample day.

Among the participants in this study, 618 (69%) individuals

reported head immersion in East Fork beach waters. Prevalent GI

illness was reported for 18 (2.9%) of these swimmers at enrollment

(Table 2). Chronic GI problems were self-reported at enrollment

in 9 (50%) of these 18 individuals. All 18 individuals with prevalent

GI illness (including chronic GI problems) were excluded from the

exposure-related illness models. The prevalence of fever, nausea,

and stomach cramping among participants was not ascertained at

enrollment.

Water Quality and Human Illness
The qPCR-based densities for bacteria and viruses do not show

any significant associations (p,0.05) with HCGI, GI, and diarrhea

in single marker models using univariable and multivariable

logistic regression when treating marker densities as continuous

terms or binary terms in models (Table 3). Among all the

continuous terms, HAdV had the strongest association with

HCGI (crude OR (cOR) = 1.6; 95% CI 0.90–2.9) and diarrhea

(adjusted OR (aOR) = 1.5; 95% CI 0.98–2.4); however, these

associations were not significant but were noteworthy (p = 0.105;

p = 0.066, respectively). When evaluating the association of either

HEntV or HAdV detection with HCGI, GI, and diarrhea

Figure 1. Time series plot for HAdV and E. coli densities
measured during the 2009 swimming season at the study
beach (East Fork Lake, Ohio).
doi:10.1371/journal.pone.0112029.g001
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incidence, no association was observed (p.0.05). The covariates

used in the illness models are summarized in Table S2 and

Table S3, respectively. The most significant covariate, food

consumption at the beach (see Table S2 and Table S3), was used

in all genetic marker and E. coli models except the HCGI model,

as food consumption at the beach was common to all HCGI cases.

Beyond food consumption at the beach, specific conductivity and

previous 72-hour UV results were the most significant covariates

in all of the GI illness models. With respect to the diarrhea illness

model, food consumption and previous 72-hour UV data were

used as covariates, as they were identified as most significant

through the backward elimination approach. In evaluating HCGI

models relying on two microbiological terms, the only two-term

model achieving significance was a combined model using HAdV

and culturable E. coli (p = 0.003; likelihood ratio test). None of the

bacterial markers were significant predictors of HCGI in models

using an additional marker.

Using this same bacteria and virus approach for GI illness, we

observed a similar association. Since more GI cases were detected

than HCGI, the model was able to contain an additional two

covariates. In this model, significant (p,0.05) or near significant

odds ratios (p = 0.056) were observed for all covariates in this

model (Table 4), including food consumption, specific conductiv-

ity, E. coli, and HAdV. Increases in water conductivity were

associated with protective effects (aOR,1); whereas, food

consumption, increasing HAdV, and increasing E. coli were

identified as risk factors for GI (aOR.1). The use of two microbial

terms was supported in model building as the removal of the

HAdV term resulted in significantly lower log-likelihood values for

HCGI, GI, and diarrheal models (p,0.05), and the two microbial

terms had the low p-values throughout the entire backward

selection procedure allowing their retention in the model. The

final four-term model was evaluated using a negative control

group (the non-swimmer group), and no significant associations

were observed for any model terms, suggesting no day-effects, and

implying a water quality-related association in our exposed group.

Lastly, all possible models for predicting GI illness using a single

bacterial marker in tandem with either culturable E. coli or viral

marker levels were developed, and no bacterial markers were

associated with illness.

Models constructed for predicting diarrhea using E. coli and

HAdV preliminarily indicate that HAdV is associated with

diarrheal disease incidence as the aOR for HAdV was significant

(p = 0.023) when adjusting E. coli density by including E. coli
density in the model. Compared to the HCGI and GI models, the

diarrheal model provided poor discrimination (AUC ,0.70) with

Table 1. Microbial water quality measured by various genetic markers and E. coli at East Fork Lake, Ohio (N = 23).

Genetic Marker or Fecal Indicator No. Samples Above LODa Detection Limit Median Range

HAdV (log gene equivalents/100 mL) 8 1.6 BDb BD-3.34

HEntV (log gene equivalents/100 mL) 5 1.9 BD BD-2.13

uidA (log copies/100 mL) 19 1.5 2.08 1.50–2.49

23S E. coli (log copies/100 mL) 19 2.46 2.94 2.46–3.19

HuBac (log copies/100 mL) 18 2.05 3.04 2.05–3.39

23S Enterococcus (log copies/100 mL) 17 1.93 2.19 1.93–2.88

E. coli (log CFU/100 mL) 21 NDc 1.01 LOD-3.19

aLimit of Detection or 0 CFU/100 mL for E. coli.
bBelow Detection.
cNot Determined.
doi:10.1371/journal.pone.0112029.t001

Table 2. Health status among study participants at enrollment and follow-up.

Reported Health Outcomes Swimmers (n = 618) Non-Swimmers (n = 274)

Health Status at Beach
Enrollment (No. (%))

Health Status at
Follow-upa (No. (%))

Health Status at Beach
Enrollment (No. (%)

Health Status at
Follow-upa (No. (%))

No Reported GI Problems 600 (97) 562 (94) 259 (95) 251 (97)

Any GI Illness 18 (2.9) 38 (6.3) 15 (5.5) 8 (3.1)

Chronic GI Problems 9 (1.5) NDb 8 (2.9) NDb

Diarrhea 6 (0.97) 28 (4.6) 5 (1.8) 8 (3.1)

Fever ND 10 (1.6) ND 2 (0.73)

Stomach Cramps ND 8 (1.2) ND 8 (1.2)

Nausea + Other GI Illness ND 7 (1.2) ND 1 (0.36)

Nausea Only ND 3 (0.50) ND 0 (0.00)

Vomiting 6 (0.97) 10 (1.6) 3 (1.1) 1 (0.36)

HCGI ND 13 (2.2) 267 (97) 1 (0.37)

aHealth status at telephone follow-up excluding positive cases at enrollment.
Not determined as information was not collected by the questionnaire.
doi:10.1371/journal.pone.0112029.t002
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respect to the ability of the model to properly classify diarrhea

cases (Table 5). The Goodness-of-Fit test results (Table 5) also

demonstrate the GI and HCGI models have better fits, as the p-

values for those models are higher, indicating that the modeled

results are not significantly different than the observed GI and

HCGI results from the health survey.

For considering possible interaction effects, a water quality

index was constructed based upon the detection limit of HAdV

and the median E. coli density. Table 6 presents the four water

quality index values, and the respective E. coli and HAdV

densities represented by each water quality index level. When

evaluating associations for this model, the reference was set as the

Table 3. Odds ratios for HCGI, GI, and diarrhea associated with exposure to varying levels of various molecular genetic markers
and/or fecal indicators at East Fork Lake, Ohio.

Molecular Marker HCGI Any GI Illness Diarrhea

cORa (95% CI) Wald (p) aORb (95% CI) Wald (p) aOR (95% CI) Wald (p)

HEntV (+)c 1.6 (0.34–7.6) 0.552 0.76 (0.21–2.7) 0.674 0.17 (0.02–1.3) 0.081

HAdV (+) 2.1 (0.65–7.1) 0.212 1.3 (0.45–3.5) 0.654 2.2 (0.65–7.6) 0.202

uidA E. coli (+) 1.1 (0.22–5.4) 0.892 0.78 (0.27–2.2) 0.637 0.88 (0.24–3.2) 0.843

23S E. coli (+) 0.69 (0.18–2.7) 0.595 0.78 (0.30–2.0) 0.599 1.1 (0.31–3.8) 0.905

HuBac (+) 1.5 (0.32–7.1) 0.604 1.1 (0.38–3.2) 0.846 0.86 (0.25–2.9) 0.815

23S Enterococcus (+) 0.70 (0.21–2.4) 0.586 0.77 (0.27–2.2) 0.613 0.58 (0.18–1.9) 0.363

Log HAdV 1.6 (0.90–2.9) 0.105 1.2 (0.77–1.9) 0.399 1.5 (0.97–2.4) 0.066

Log uidA E. coli 1.0 (0.38–2.9) 0.927 0.76 (0.38–1.5) 0.442 0.98 (0.34–2.9) 0.974

Log 23S E. coli 0.78 (0.38–1.6) 0.489 0.85 (0.50–1.4) 0.526 1.2 (0.48–3.2) 0.648

Log HuBac 1.5 (0.63–3.7) 0.355 1.1 (0.67–1.8) 0.7 0.78 (0.49–1.2) 0.289

Log 23S Enterococcus 0.96 (0.38–2.4) 0.921 0.89 (0.49–1.6) 0.714 0.67 (0.37–1.2) 0.207

aCrude odds ratio.
bAdjusted odds ratios, see Table S2 and S3, to see the covariates used for adjustment.
c(+), Positive detection by qPCR, binary term.
doi:10.1371/journal.pone.0112029.t003

Table 4. Multivariable logistic regression models for predicting new HCGIa, GI, and diarrhea among swimmers immersing their
head and beachgoers not immersing their head in beach water (East Fork Lake, Ohio).

Model & Exposure Covariate b SEb Wald (p) AOR (95% CI)

HCGI Swimmers Log HAdV (gene equivalents/100 mL) 0.8191 0.2864 0.005 2.3 (1.3–3.9)

Log E. coli (CFU/100 mL) 1.101 0.3571 0.002 3.0 (1.5–6.1)

Constant Term 27.003

GI Swimmers Log HAdV (gene equivalents/100 mL) 0.421 0.1978 0.034 1.5 (1.0–2.2)

Log E. coli (CFU/100 mL) 0.6515 0.2473 0.009 1.9 (1.2–3.1)

Consumed Food at the Beach 1.543 0.7019 0.029 4.7 (1.2–19)

Specific Conductivity (mS) 20.092 0.0477 0.056 0.91 (0.83–1.0)

Constant Term 19.37

GI Non-Swimmers Log HAdV (gene equivalents/100 mL) 0.0788 0.5481 0.886 1.1 (0.37–3.2)

Log E. coli (CFU/100 mL) 0.2675 0.3346 0.425 1.3 (0.67–2.5)

Consumed Food at the Beach 0.4254 0.8889 0.633 1.5 (0.26–8.9)

Specific Conductivity (mS) 0.04 0.0279 0.154 1.0 (0.98–1.1)

Constant Term 215.33

Diarrhea Swimmers Log HAdV (gene equivalents/100 mL) 0.453 0.1977 0.023 1.6 (1.1–2.3)

Log E. coli (CFU/100 mL) 0.3275 0.2466 0.186 1.4 (0.85–2.3)

Constant Term 24.226

Diarrhea Non-Swimmers Log HAdV (gene equivalents/100 mL) 0.0034 0.4905 0.994 1.0 (0.38–2.6)

Log E. coli (CFU/100 mL) 0.2309 0.336 0.493 1.3 (0.65–2.4)

Constant Term 23.735

aA model could not be constructed for HCGI among non-swimmers due to the low sample size resulting in an insufficient number of HCGI cases for model
development.
doi:10.1371/journal.pone.0112029.t004
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group of days in which E. coli densities were lowest and HAdV

was not detected. Here we observe multiple associations with

increasing viral and/or bacteria densities and both GI and

diarrheal illness incidence. Swimmers with the presumed greatest

exposure to E. coli and HAdV had the greatest odds of reporting

new GI illness (OR = 6.1; 95% CI 1.5–25) compared to swimmers

with the least exposure to E. coli and HAdV. Exposure to the

highest levels of E. coli when HAdV levels were low also presented

increased GI illness risk (OR = 5.4; 95% CI 1.5–19) compared to

those swimmers with low E. coli and low HAdV exposure. In the

diarrheal illness model, significantly increased odds of diarrhea

were only observed in the group who swam on days with elevated

E. coli and HAdV compared to the reference group (OR = 5.2;

1.3–22). Model discrimination for each model (GI and diarrhea)

was evaluated and the AUC values were 0.63 and 0.65,

respectively.

Discussion

This prospective cohort study from an inland U.S. beach

demonstrates the predictive potential of an integrative, multi-

microbial approach for estimating recreational waterborne disease

risk from viral and bacterial indicators. The term ‘indicator’ used

here does not imply fecal indicator, but instead refers to ‘health-

relevant’ indicators. Our results showed a positive association

between increasing densities of individual health-relevant indica-

tors (HAdV and E. coli) and increased odds of GI and HCGI

among swimmers at the studied beach. More importantly, the two-

indicator model (HAdV and E. coli) represented a significant

improvement over single health indicator approaches with this

data. Although speculative, particularly due to the small sample

size of the study, the findings of this two-indicator approach are

etiologically plausible as a combined viral + bacterial (ViBac)

approach may account for GI and HCGI illness associations with

viral and bacterial pathogens. Based upon our cohort study results,

we have some reason to speculate that a multiple health-indicator

approach may be beneficial for natural recreational waters such as

the East Fork beach, which is part of a watershed comprised of

mixed land uses and a high density of septic systems, all of which

may promote a more diffuse type of fecal contamination than

observed in point-source impacted waters. Within the beach

watershed of interest, two municipal wastewater treatment plants

(Williamsburg and Bethel WWTPs) and several smaller WWTPs

operate, while malfunctioning septic systems are presumed to be a

very significant source of contamination [35]. In the East Fork of

the Little Miami River watershed, which includes the study beach,

the septic system density in sub-catchments has been directly

linked to human-associated fecal contamination through the use of

human-associated genetic markers [35]. The only Harsha Lake

(East Fork Lake) tributary investigated by Peed et al. [35] had the

highest mean human-specific marker (HF183) density and the

second highest density of septic systems (41/km2) among

tributaries investigated suggesting diffuse septic system-associated

fecal contamination impacts this beach.

In health studies of swimmers in waters impacted by nonpoint

source and/or diffuse fecal contamination, the lack of association

between bacteria-based genetic markers and human illness has

been observed [5,6,10,16]. Similarly, we did not observe

associations between qPCR-based bacterial densities and human

illness at our inland freshwater beach. The association of

culturable E. coli with HCGI and GI was already observed [26],

but the lack of association of GI and HCGI with human-specific

genetic markers (e.g., HuBac) was unknown in this study

population. Two possible reasons for our findings are as follows:

(1) transport and fate varies considerably between bacterial genetic

markers and viable waterborne pathogens, including viruses; and/

or (2) our sample size was not big enough to detect significant

associations.

With respect to viruses at the beaches with diffuse contamina-

tion, male-specific coliphage density has been associated with

HCGI and GI illness in marine studies [5,16]. Similarly, our study

observed an association between a virus (HAdV) and GI illness;

however, unlike the marine studies, our study did not evaluate

Table 5. Model diagnostics for models from Table 4, pertaining to discrimination (AUC) and model calibration (goodness-of-fit).

Model Name for Swimmers AUCa Goodness-of-Fitb (p)

Multivariable HCGI Model 0.75 0.895

Multivariable GI Model 0.753 0.958

Multivariable Diarrhea Model 0.64 0.206

aArea under the receiver-operator-characteristic curve (AUC).
bHosmer-Lemeshow Goodness-of-Fit Test [32].
doi:10.1371/journal.pone.0112029.t005

Table 6. Odds ratios for GI and diarrhea associated with exposure to varying levels of HAdV and E. coli at East Fork Lake, Ohio.

Water Quality Index Any GI Illness Diarrhea

Cases/n (%) OR (95% CI) Wald (p) Cases/n (%) OR (95% CI)
Wald
(p)

Group 1: Low HAdV & Low E. coli (HAdV ,DLa, log E. coli ,1.05) 3/187 (1.6) Referent 3/189 (1.6) Referent

Group 2: Low HAdV & High E. coli (HAdV ,DL, log E. coli.1.05) 16/199 (8.0) 5.4 (1.5–19) 0.011 9/199 (4.5) 2.9 (0.74–12) 0.126

Group 3: High HAdV & Low E. coli (HAdV. DL, log E. coli ,1.05) 11/126 (8.7) 5.9 (0.88–39) 0.067 9/127 (7.1) 4.7 (0.56–40) 0.153

Group 4: High HAdV & High E. coli (HAdV. DL, log E. coli.1.05) 8/88 (9.0) 6.1 (1.5–25) 0.011 7/90 (7.8) 5.2 (1.3–22) 0.023

aDetection Limit.
doi:10.1371/journal.pone.0112029.t006
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coliphages, focusing solely on viral pathogens. Like the associations

between coliphages and illness [5,16], our finding of HAdV

associations with HCGI and GI incidence in the adjusted models

[Table 4] preliminarily suggests a possible benefit of using a viral

indicator for evaluating recreational water illness risk in certain

environments.

Similar to the Colford et al. study [5], human noroviruses

(HNoV GI and HNoV GII) were not detected; however, human

adenoviruses (HAdV) were detected from eight (35%) samples at

East Fork versus one detection in the Colford et al. study [5]. The

infrequent detection of HEntV (22%) in our study is not entirely

unexpected as enteroviruses have been observed at densities below

1 PFU/100 mL in European waters [36] and have been

infrequently detected (9% of samples) elsewhere [37]. These

findings are similar to earlier findings from Fleisher et al. [14] that

determined positive enterovirus detection (by cell culture) was less

likely than negative detection in United Kingdom waters, which

was also described as a limitation of the utility of the enterovirus

assay for swimming advisory determination. The low detection

frequency of viruses coupled with practicality of measurement

presents challenges for establishing their use unless monitored in

tandem with other indicators of water quality. Their use in a

monitoring scheme may complement fecal indicator bacteria

which have not effectively predicted viral densities in freshwater

and marine environments [17,21,38,39]. Among viruses, adeno-

virus has shown promise as a potential human-associated marker

of fecal contamination, whereby adenovirus presence has been

linked to human-associated fecal problems as reflected by human-

associated bacterial markers [40,41].

Despite a lack of association between viruses and bacteria,

swimming advisories are primarily bacteria-based for practical

reasons. Furthermore, there appears to be growing consensus

among experts suggesting viruses are responsible for many water-

related illnesses [18,19,42]. It is becoming more widely understood

that enteric viruses (e.g., noroviruses, rotaviruses) are responsible

for a substantial number of GI illnesses among U.S. beach users

[18]. With viruses gaining attention and being more frequently

measured, approaches for monitoring viruses to support integra-

tive health risk models for water-associated illnesses are meaning-

ful. Viral indicators of GI illness, particularly enteroviruses and

bacteriophages, were described as promising predictors in 2003 by

Wade et al. [2], but were also described as being limited by the

difficulty and time for cultivation and enumeration. Now, with

increasing use of molecular approaches such as qPCR, viral

detection and enumeration is becoming less difficult and more

rapid. In less contaminated or nonpoint source impacted waters,

the use of a more commonly detected virus, like HAdV, may serve

as an effective viral marker over noroviruses or enteroviruses for

beach monitoring, since the detection frequency of adenovirus

(36%) has been observed to be much greater than norovirus

detection (9%) in European water samples [41,43].

The low detection frequency of norovirus in our samples and

elsewhere may involve RNA virus instability, unstable DNA

amplification potential from single-stranded RNA, and virus

seasonality since the most prevalent human norovirus (GII.4) has

clear winter peak seasonality [44] and therefore is less likely to be

observed in summer surface waters. Unlike HNoV and HEntV,

HAdV is a double-stranded DNA virus presumed to have better

stability in environments and greater opportunities for successful

detects. Furthermore, adenoviruses are believed to be up to 60

times more resistant to damage from ultraviolet irradiation than

RNA viruses [45] likely affording HAdV particles greater integrity

and viability leading to more undamaged infectious particles [46].

Given detection frequencies, Wyn-Jones et al. [41] encourages the

consideration of adenovirus over norovirus as a recreational water

quality indicator

Accordingly, water quality advisories should be protective for

preventing human illness from all potential infectious agents as

deemed practical with the available methods. The need for bacteria-

based indicators of health risk are warranted, as the historical

paradigm supports the notion that individual fecal indicators like E.
coli and enterococci as well as human-specific markers explain the

potential pathogenic bacterial genera (Shigella, Camplyobacter,
Salmonella, etc.) as well as gastrointestinal illness among swimmers.

However, the need for data attempting to address and/or quantify

viral-associated human health risks is significant, and some attempt

has recently been made using a site-specific quantitative microbial

risk assessment (QMRA) for adenovirus illness [47]. Although

speculative, virus monitoring may be beneficial in recreational

waters where the contamination sources of the aquatic system are

complex and impacted by a combination of non-point source

human-associated contamination as well as agricultural runoff, as in

Kundu et al. [47]. The concept of ‘know your beach’ appears to be

particularly important as it relates to water quality when fecal

indicator bacteria are low, and some consideration to broadening

the paradigm to include multiple microbiological terms may be

warranted with further research, with a particular emphasis on

viruses capable of predicting recreational water illnesses more

efficiently. Similar approaches demonstrating the value of a holistic

design, like our combined virus-bacteria model, for enhancing risk

assessments pertaining to water are already gaining attention in

microbial source tracking studies using toolbox approaches [22].

Beyond water quality analysis, additional assessments of other

known exposures presenting health risks, such as sand quality [48]

and hydrology [49] are also recommended to be considered for

more holistic beach condition modeling [25]. In this study, our

integrative risk model using two microbiological terms, a fecal

indicator bacteria and a viral genetic marker, provided a better

assessment of human health risk than any single indicator/marker

approach with limited data. Additional epidemiological studies

using HAdV or other indicators of viral contamination that control

for illnesses explained by bacteria are warranted for improving our

predictive capability of swimming-related illness as well as our

characterization of water quality at inland beaches.

Study Limitations
Future studies with larger populations are needed for drawing

less speculative conclusions. The total swimmer population after

exclusion is relatively small (n = 600) for rigorous analysis and may

be leading us to spurious conclusions. Given the low number of

cases presented, model construction was limited to two to four

covariates, which therefore limited our ability to adequately assess

multiple confounders, interaction effects, and linearity. The cohort

study approach used here and in other U.S. studies [1,3,4] also

presents several methodological limitations [50] related to

potential misclassification of exposure and disease among study

participants. We acknowledge a variety of confounders (assessed

and not assessed) may be responsible for GI illness cases beyond

adverse water quality conditions, such as food consumption at the

beach. For example, personal risk perceptions were not measured

in this study, which have been linked to self-reported illness among

swimmers in other studies [15]. To reduce self-selection bias

among swimmers, this study performed modeling comparing

swimmers in various exposure groups to a low exposure swimmer

group. Exposure misclassification is also relevant, particularly if

beach water quality varies significantly throughout each study day

which would limit reliable exposure estimates from a single daily

sampling effort. Lastly, illness misclassification relying on self-
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reported information was more likely in this study than in studies

using direct follow-up examinations.

Despite this sample size limitation, several constructed models

did provide acceptable discrimination (AUC.0.70; Table 5) and

acceptable model fit, particularly the HCGI and GI models from

Table 4. Although the study presents several limitations, the study

likely represents the only prospective epidemiological investigation

exploring HAdV associations with recreational water-associated

illness at this important beach type (inland lake recreational water).

Future studies with larger samples sizes are warranted, particularly

in beach environments where fecal contamination is human-

associated and from dispersed sources or a mixture of point and

dispersed sources.

Conclusions

N No association was observed between exposure to various

qPCR-measured bacterial markers and recreational water-

associated illness among study participants.

N Increasing levels of qPCR-measured HAdV were associated

with increased odds of recreational water-associated gastroin-

testinal illness among the swimmers.

N Combined measurement of HAdV and culturable E. coli
densities potentially enhances recreational water illness

prediction among swimmers.

N Future studies with larger sample sizes enabling adjustment for

additional confounding variables are needed to permit more

robust investigations of human illness associations with

exposures to HAdV and other viral markers in recreational

water environments.
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