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Abstract

Advances in modern sequencing technologies allow us to generate sufficient data to analyze hundreds of bacterial
genomes from a single machine in a single day. This potential for sequencing massive numbers of genomes calls for fully
automated methods to produce high-quality assemblies and variant calls. We introduce Pilon, a fully automated, all-in-one
tool for correcting draft assemblies and calling sequence variants of multiple sizes, including very large insertions and
deletions. Pilon works with many types of sequence data, but is particularly strong when supplied with paired end data
from two Illumina libraries with small e.g., 180 bp and large e.g., 3–5 Kb inserts. Pilon significantly improves draft genome
assemblies by correcting bases, fixing mis-assemblies and filling gaps. For both haploid and diploid genomes, Pilon
produces more contiguous genomes with fewer errors, enabling identification of more biologically relevant genes.
Furthermore, Pilon identifies small variants with high accuracy as compared to state-of-the-art tools and is unique in its
ability to accurately identify large sequence variants including duplications and resolve large insertions. Pilon is being used
to improve the assemblies of thousands of new genomes and to identify variants from thousands of clinically relevant
bacterial strains. Pilon is freely available as open source software.
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Introduction

Massively parallel sequencing technology has dramatically

reduced the cost of genome sequencing, making the generation

of large numbers of microbial genomes accessible to a wide range

of biological researchers. For example, a single Illumina

HiSeq2500 has the ability to generate the equivalent of 300

bacterial genomes of sequencing data in a single day using only

one flow cell. Comparisons of whole genome sequence data from

hundreds of microorganisms have provided unprecedented views

on all aspects of microbial diversity, and there is growing

recognition that ‘hundreds’ of genomes is the minimum scale

needed to address pressing questions related to microbial

evolution, diversity, pathogenicity and resistance to antimicrobial

drugs [1–4]. As such, the methods needed to analyze these large

volumes of data — including assembling and calling variants

relative to a reference — must be robust, accurate, scalable, and

able to operate without human intervention.

Several computational methods exist that make improvements

to the quality of draft assemblies by recognizing and correcting

errors involving (i) single bases and small insertion/deletion events

(indels) [5], (ii) gaps [6], (iii) read alignment discontinuities [7] or

by reconciling multiple de novo assemblies into an improved

consensus assembly [8]. However, no single tool performs

integrated assembly improvement of all error types. Computa-

tional tools for identifying sequence polymorphisms also exist

[9,10], but focus primarily on identifying variants in the human

genome [11], and particularly small events (SNPs and small indels)

or structural rearrangements (chromosomal rearrangements) [11].

Furthermore, many of these tools require multiple steps to identify

and subsequently filter variants to remove noise and false calls. In

addition, for tools able to identify variants that exceed the length of

the sequence reads (read-length) being evaluated, they generally

indicate the approximate chromosomal location and estimated size

of the predicted variant relative to the reference, but often do not

provide exact coordinates [11]. For insertions that are longer than
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the read-length - particularly common in the microbial world -

current tools do not assemble and report the inserted sequence.

We introduce Pilon, an integrated software tool for compre-

hensive microbial genome assembly improvement and variant

detection, including detection of variants that exceed sequence

read-length. Conceptually, Pilon treats assembly improvement and

variant detection as the same process (Figure 1). Both start with an

input genome — either an existing draft assembly or a reference

assembly from another strain — and use evidence from read

alignments to identify specific differences from the input genome

supported by the sequencing data. Applying those changes to a

draft genome assembly yields an improved assembly, while

reporting the changes with respect to a reference genome yields

variant calls.

In genomic regions where read alignments are poor, Pilon is

capable of filling out and correcting sequence through an internal

local reassembly process. This capability allows Pilon to further

improve assemblies by filling gaps and correcting local mis-

assemblies, and it also enables Pilon to capture many large

insertion, deletion, and block substitution variants in their entirety.

These larger events are often completely missed or inaccurately

characterized by conventional variant calling tools that rely solely

on read alignments. Pilon has built-in heuristics to determine

which corrections and calls are of high confidence, so no separate

filtering criteria need be specified. This allows for the automated

processing of hundreds or thousands of data sets representing

different microbial species with minimal human intervention.

We benchmarked Pilon both as an assembly refinement tool

and variant caller. For assembly refinement, we used finished

reference genome sequences from Mycobacterium tuberculosis F11,

Streptococcus pneumoniae TIGR4 and Candida albicans SC5314

as benchmarks to evaluate the accuracy of Pilon in improving draft

assemblies. Pilon-improved assemblies were more contiguous and

complete than non-Pilon-improved assemblies and contained

improved sequences for genes implicated in pathogen-host

interaction and virulence. We also evaluated Pilon’s performance

against tools specializing in assembly base quality improvement

and gap filling, and, in each case, Pilon made more correct

improvements while making far fewer mistakes than the other

tools. For variant calling, we used read data from M. tuberculosis
F11 to call polymorphisms against the finished M. tuberculosis
H37Rv genome to evaluate Pilon’s ability to accurately call

polymorphisms. Pilon performed as well or better when compared

with two state-of-the-art variant detection tools in calling small

variants, and Pilon differentiated itself in its ability to identify

large-scale variants.

Results

Assembly improvement evaluation
Assessing accuracy on bacterial assemblies. To test the

accuracy of Pilon’s improvements on bacterial assemblies, we

sequenced and created draft assemblies for two bacterial strains

with finished references: S. pneumoniae TIGR4 and M. tubercu-
losis F11 (see Methods). These strains were chosen because they

represent different GC content (40% and 66% GC content,

respectively) and both possess genomic features that are known to

confound assemblers, leading to mis-assembled and/or incomplete

genome sequences [12–14]. Sequence reads from both libraries

were aligned back to their respective draft assemblies using BWA
[15], and Pilon was run with those alignments.

To assess the benefits of running Pilon, we compared the

original draft and Pilon-improved assemblies to each other and to

their respective finished genome sequence. Pilon made significant

improvements to the contiguity of both draft assemblies, increasing

the contig N50 size by 443 Kbp for S. pneumoniae TIGR4 (see

Table 1) and 196 Kbp for M. tuberculosis F11, even though the

F11 draft assembly had been generated with assistance from a

Figure 1. Simplified overview of the Pilon workflow for assembly improvement and variant detection. The left column depicts the
conceptual steps of the Pilon process, and the center and right columns describe what Pilon does at each step while in assembly improvement and
variant detection modes, respectively. During the first step (top row), Pilon scans the read alignments for evidence where the sequencing data
disagree with the input genome and makes corrections to small errors and detects small variants. During the second step (second row), Pilon looks
for coverage and alignment discrepancies to identify potential mis-assemblies and larger variants. Finally (bottom row), Pilon uses reads and mate
pairs which are anchored to the flanks of discrepant regions and gaps in the input genome to reassemble the area, attempting to fill in the true
sequence including large insertions. The resulting output is an improved assembly and/or a VCF file of variants.
doi:10.1371/journal.pone.0112963.g001
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close reference. In addition, Pilon assemblies were more complete,

with the M. tuberculosis F11 and S. pneumoniae TIGR4 Pilon-

improved assemblies containing an additional 11,516 bp and

9,608 bp, respectively.

Observed gains in genome coverage and contig N50 were

principally due to Pilon’s ability to recognize and fill (or partially

fill) by local assembly ‘‘captured gaps’’, i.e., missing sequence

between contigs within a scaffold. When run with default settings,

Pilon does not introduce ambiguous bases or additional Ns during

this process. Across the two draft assemblies, Pilon completely and

accurately filled 17 of the 44 captured gaps (39% closure rate)

including 8 gaps that represented more than 1 Kbp in sequence

length (see Table S1). None of Pilon’s gap closures were incorrect,

though one was judged to be ‘‘no worse’’: the sequence used to

bridge the gap was correct, but an error in the original assembly in

one of the gap flanks was not detected by Pilon. An additional 14

gaps (32% of total captured gaps) were partially filled by Pilon, and

13 (93%) of those extensions were error-free. The one partial fill

judged to be ‘‘Incorrect’’ involved a repetitive structure that Pilon

extended into flanking sequence belonging to a different copy of

the repeat.

We compared Pilon’s ability to close gaps in these assemblies

with two other tools commonly used for this purpose, IMAGE [16]

and GapFiller [17] (see Table S1b). Pilon’s overall gap closure rate

was only somewhat higher than that of the other tools, but its

accuracy was dramatically better. Across the two assemblies,

IMAGE closed 13 captured gaps (30% closure rate) but only two

of those closures were found to be correct by alignment with the

reference (15% precision). Similarly, GapFiller closed 16 of

captured gaps (36% closure rate) in the two assemblies, but only

four of its closures were correct (25% precision). In addition to

filling captured gaps, Pilon also corrected 43 single-bases and 4

small indels across both genomes, and all 47 changes were found

to be correct by alignment against the reference (100% accuracy;

see Table S2). By comparison, iCORN [18] made 47 single-base

changes and 2 single-base deletions, but only 35 of the 49 (71%) of

its changes were correct.

Optionally, Pilon can also make changes to genomic locations at

which it finds significant evidence for more than one alternative,

choosing the allele with the most support even where the evidence

is insufficient to make a confident call. When run with this option

on these assemblies, Pilon made 10 changes to ambiguous bases,

but only 3 were verified to be correct. This option is turned off by

default starting with Pilon version 1.8.

Pilon also detected and attempted to fix local mis-assemblies by

reassembling contig regions that were suspected to be incorrectly

assembled. Three of these regions were correctly fixed (see Table 1

and Table S1) and a fourth we classified as ‘‘No worse’’. For the

latter, Pilon correctly identified a repetitive region within the

original M. tuberculosis F11 draft assembly that contained extra

sequence with respect to the M. tuberculosis F11 reference.

However, Pilon’s change introduced a deletion with respect to the

reference, underscoring the difficulty of accurately assembling

repetitive regions with short read data [13].

For the M. tuberculosis F11 and S. pneumoniae TIGR4 Pilon

improved assemblies, there were 13 and 4 regions, respectively,

where Pilon detected a problem in the draft assembly, but was

unable to provide solutions. In each of these cases, Pilon flagged

the coordinates of the problematic region, and, in 10 of these

cases, it also reported the length of the detected tandem repeat

confounding resolution of the region. For example, Figure 2 shows

scaffold00001 coordinates 3159800–3159898 of the M. tubercu-
losis F11 draft assembly, along with Pilon-generated genome

browser tracks representing some of the internal metrics it used to

identify this region as problematic. In this case, Pilon noted that it

was unable to resolve a 57 bp tandem repeat, which enabled an

experienced analyst to confirm the presence of a mis-assembly and

accurately narrow the bounds of the unresolvable region. Manual

comparison of the draft assembly with the reference revealed that

there should have been three full and one partial copies of the

57 bp repeat in tandem, whereas the draft assembly only

contained one full and one partial copy of the repeat.

Effect of assembly improvements on gene calls. To assess

the impact of Pilon-improvement on gene calls (i.e., functional

interpretation of the genome), we examined Pilon improvements

with respect to genes by investigating the regions that were

affected by Pilon modifications and the effect of these modifica-

tions on coding sequences. Thirty-two genes and seven intergenic

regions were impacted by Pilon changes to the M. tuberculosis F11

Pilon-improved assembly; of these, nearly all (95%; 37 of 39) were

correct improvements. Nearly half (13) of the genes that were

affected by a fix involved transposases that were completely or

partially filled with sequence that perfectly matched the reference

genome (see Table S3). One additional transposase had a single

base pair corrected with perfect match to the reference. A

particularly complex 13 Kbp region in M. tuberculosis F11 is

highlighted in Figure 3. This region harbors three sets of

transposases in close proximity that were not captured in the

draft M. tuberculosis F11 assembly, but were accurately filled in by

Pilon. Two of the gaps were completely closed, and the third

transposase set was completely captured along with an additional

gene. However, due to Pilon’s conservative overlap requirement

for closure (95 bp), that gap was not closed despite a 42 bp overlap

in the extended flank sequences.

Of the remaining 19 genes, 6 were PE/PPE family protein

encoding genes. Five corrections were perfect and, in one case

(TBFG_11946), Pilon identified the problematic region, but could

not completely resolve the problem. However, the correction that

Table 1. Summary assembly statistics before and after Pilon improvement.

Genome M. tuberculosis F11 S. pneumoniae TIGR4 C. albicans SC5314

Contig N50 Increase 196 kb 443 kb 56 kb

Bases Added 11,516 9,608 33,804

Gaps Closed 9 9 54

Gaps Shrunk 7 7 102

Single-base Modifications 20 27 26,939

Mis-assembly fixes 3 1 44

In all cases the assemblies were more contiguous, contained more bases, and had fewer gaps and errors after Pilon improvement.
doi:10.1371/journal.pone.0112963.t001
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Pilon applied did not make the situation worse. Pilon also

identified and accurately corrected a mis-assembly (highlighted in

Figure S1) in which a gene had been truncated due to a collapsed

repeat in the draft assembly.

In S. pneumoniae TIGR4, 20 genes and 12 intergenic regions

were affected by fixes from Pilon. A majority (15 of 20) of the

improved genes were transposases, of which Pilon was able to

completely or partially fill 8 that matched completely and perfectly

with the reference; the remaining 7 were individual base pair

corrections. Pilon was also able to partially fill other genes

encoding repetitive cell wall surface proteins - including choline

binding protein A [19] and pneumococcal surface protein A [20] -

both implicated in adhesion and virulence in S. pneumoniae.

Assessing accuracy on the assembly of the larger,

polymorphic genome of C. albicans. To evaluate Pilon’s

ability to accurately improve assemblies of diploid genomes

containing a high level of heterozygosity, we ran Pilon on an

Illumina ALLPATHS-LG assembly of the SC5314 strain of C.
albicans (Methods), for which there is a high quality reference

curated by the Candida Genome Database (www.candidagenome.

org). At 14.3 Mb, the C. albicans genome is 3- to 7-fold larger than

the bacterial genomes evaluated here. It consists of 8 chromosomes

that are present at diploid levels with an average of one SNP found

at every 330–390 bases, although large regions of most chromo-

somes display loss of heterozygosity [21,22].

Pilon was capable of improving the assembly and added .

33 Kb of sequence (see Table 1). While the increase in contig N50

was relatively small (56 Kb), Pilon completely or partially filled

61% (156 of 256) of the total captured gaps including in both

homo- and hetero-zygous regions of the genome. Homozygous

Figure 2. Example Pilon generated genome browser tracks. This region was flagged by Pilon as containing a possible local mis-assembly, but
Pilon was unable to determine a fix due to a tandem repeat sequence. The tracks shown here include: Pilon Features track indicating the extent of the
region flagged by Pilon as containing a potential mis-assembly, Valid Coverage track indicating the sequence coverage of valid read pair alignments
excluding the clipped portions of the alignments, Clipped Alignments track indicating the number of reads soft-clipped at each location, Pct Bad
Alignments track indicating the percentage of the total reads aligned to each location which are not part of Valid Coverage. These tracks are created
with the ‘—tracks’ command-line option. Together, these tracks reveal the true bounds of the mis-assembly, and indicate that there are likely missing
copies of the tandem repeat in the draft assembly. In this case, manual analysis revealed the draft assembly was missing two of three full copies of a
57-base tandem repeat.
doi:10.1371/journal.pone.0112963.g002

Figure 3. Comparative view of a transposase-rich region of the M. tuberculosis F11 genome (coordinates 1,991,000 to 2,006,300)
obtained from the draft (A) and Pilon-improved (B) assemblies. In the draft assembly, three regions containing transposases (shown in blue)
remained unassembled resulting in gaps. In the Pilon-improved assembly, all three sets of transposases were successfully assembled. The Pilon-
improved assembly also contained a hypothetical gene, TBFG_11790 (shown in red), missing from the draft assembly. Though TBFG_11790 was not
fully closed in the Pilon-improved version, closer inspection revealed that there was a 42 bp overlap in assembled sequence at this site. By default,
Pilon will not close gaps unless there is at least 95 bp overlapping sequence to minimize spurious joins.
doi:10.1371/journal.pone.0112963.g003
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regions had a slightly higher fraction of completely closed gaps

(33%; 8 of 24) as compared to heterozygous regions (20%; 46 of

232). Of completely filled gaps, 93% had full length alignment to

the reference (including 300 bp of their flanking sequences) at 94%

sequence identity or higher. Less than 100% identity is to be

expected when comparing a heterozygous genome assembly

against a flat reference. In several of the lower-identity cases,

most of the base differences were in the flanks present in the draft

assembly rather than the filled gap itself, suggesting that the gaps

may have been caused by the original assembler’s inability to

assemble sequence through a highly polymorphic region.

Pilon also identified and corrected regions in the reference

assembly where the read alignment evidence disagreed, including

44 regions that were likely mis-assembled. The nearly 27,000

corrected single-bases were mostly at heterozygous sites; Pilon

identified these as potential bases to fix, as the majority of read-

evidence favored an alternate allele from the reference base in the

draft. These positions represented about half of the ,70,000

heterozygous SNP positions in this Candida genome [23]. While

we did not investigate every change that Pilon made to this

assembly, our results indicate that Pilon is suitable to be run on

larger diploid genomes and can improve the quality of a draft

assembly, resulting in fewer and longer contigs and an improved

gene set.

Assembly improvements in a production

environment. Given promising results from the benchmarking

experiments, we implemented Pilon in the Broad Institute’s de
novo genome assembly production pipeline and assessed its

performance by comparing assembly metrics from Pilon-improved

assemblies of 50 representatives of the Enterobacteriaceae (includ-

ing Escherichia, Klebsiella, and Enterobacter) to non-Pilon

improved versions. Pilon reduced the mean number of contigs in

the 50 assemblies from 33.7 to 20.9 (see Figure S2), a 38%

reduction in total contigs representing closure of 47% of captured

gaps. As a result, Pilon nearly doubled the contig N50 from

392 Kbp to 780 Kbp (99% increase; see Figure S3), capturing, on

average, an additional 14,681 bp of sequence per assembly. This

increase in genome size equates roughly to the addition of ,14

genes per genome (based on the average bacterial gene size of

,1 kb). Scaffold numbers were unchanged since, currently, Pilon

does not attempt to join or break scaffold structures.

Variant detection evaluation
Assessing accuracy of polymorphism calls. To test the

accuracy of Pilon’s variant detection capability, we used BWA to

align approximately 200-fold coverage of reads from the same M.
tuberculosis F11 fragment and long insert libraries used in the

assembly improvement assessment to the M. tuberculosis H37Rv

finished reference genome. We generated two sets of variant calls

with Pilon, one using both fragment and long insert reads as input,

and one using only fragment reads. We also ran two popular

variant detection tools, GATK UnifiedGenotyper (GATK-UG)

and SAMtools/BCFtools (SAMtools), starting with the same

aligned fragment BAM. All variant sites, including substitutions,

deletions or insertions, were identified and two categories of

variants were assessed: single nucleotide polymorphisms (SNPs)

and multi nucleotide polymorphisms (MNPs) greater than 1 bp.

Predicted polymorphisms were compared to a curated truth set of

variants produced by comparing the M. tuberculosis F11 finished

genome to the finished M. tuberculosis H37Rv genome (see

Methods), resulting in a list of 1,325 events (summarized in

Table 2) of which the majority were SNPs. We then compared

Pilon’s performance to that of the other two variant detection

algorithms.

Overall, Pilon performed better in identifying SNPs, including

single nucleotide insertions and deletions than did GATK-UG or

SAMtools (Table 3). Pilon identified 8 to 11 percentage points (pp)

more single nucleotide substitutions, 4 pp more single nucleotide

deletions, and 4 to 8 pp more single nucleotide insertions from the

curation set than did GATK-UG or SAMtools, respectively.

Pilon’s ability to precisely call single nucleotide substitutions was

also high - only 3% of calls were not accounted for in the curation

set - which was on par with the other two tools. Similarly, Pilon

had perfect precision in calling single nucleotide insertions and

only 5% of single nucleotide deletion calls were not accounted for

in the curation set.

For MNPs, we allowed for a combination of two or more

smaller events in the prediction set to contribute to a larger variant

since there may be equivalent ways of representing the changes as

a series of smaller edits (see Methods). Pilon greatly outperformed

the other two variant callers in accurately identifying variants that

involved more than one nucleotide (see Table 3; bottom three

rows). Pilon identified three times as many multi nucleotide

insertions as either GATK-UG or SAMtools (63% versus 17 or

21% of curated events), but made slightly more false predictions.

For multi nucleotide deletions, Pilon identified two times as many

events from the curation set than did GATK-UG or SAMtools

and made fewer unsupported calls. In addition, Pilon identified all

six curated multi-substitution events while the other two tools

missed at least one, even when multiple SNPs were accounted for

in these regions.

We next examined how overlapping the three tools were in

either missing or overcalling variants. Panel A of Figure 4

summarizes the total number of variants appearing in the curation

set that could not be detected by one or more of the variant callers.

Pilon uniquely missed only one curated variant, while SAMtools

and GATK-UG missed many more (32 and 13, respectively). The

majority of variants that were missed by Pilon were also missed by

SAMtools and GATK-UG (52 events). In addition, all three tools

made predictions that were not supported by the curation set

(summarized in Panel B of Figure 4), but, among unique

unsupported events, Pilon and GATK-UG had ,3-fold fewer

than SAMtools. Altogether, there were only 21 predictions where

two or more of the tools agreed that there should be a variant

called, most of which were SNPs, although four of the seven events

shared by Pilon and GATK-UG were multi-nucleotide indels (5–

15 nt in length).

Given the broad definition of ‘multi’ in Table 3 (.1 bp), we

also evaluated how well Pilon performed for variants that were

larger than 50 bp (see Table 4). We chose 50 bp since it is a length

that is larger than the size of events for which short-read aligners

are typically able to align, but shorter than the individual read

length of the data used (101 bp). Overall, Pilon was able to

accurately identify 74% of these large variants, including 100% of

substitutions, 68% of insertions and 77% of deletions from the

curated list. Of the eleven insertions that were missed by Pilon,

eight involved a repetitive element (5 tandem insertions and 3

IS6110 insertions). Similarly, the six deletions not detected by

Pilon involved deletion of one or more copies of a tandem repeat.

Four of these tandem repeat regions were correctly reported by

Pilon as possible tandem repeat variants in its standard output, but

Pilon currently makes no attempt to provide a definitive copy

number call in the presence of significant tandem repeat

structures. Pilon also identified three events .50 bp that did not

match variants in the curation set. These unsupported calls

occurred within complex variable regions of the genome in which

multiple nearby repeat structures prevented Pilon from correctly

identifying the precise correct location or form of the events.

Variant Detection and Genome Assembly Improvement with Pilon
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Since Pilon performed well in identifying and resolving MNPs

and since GATK-UG and SAMtools were not explicitly designed

to call these large variants, we sought to compare Pilon’s MNP

calls to that of methods specifically designed for MNP detection

[11]. Though neither was described for use on microbial data, we

evaluated how well BreakDancer [24] and CLEVER [25], two

algorithms developed to detect large variants in eukaryotes,

performed in calling MNPs on the M. tuberculosis test set.

BreakDancer was unable to identify any MNP found in the

curation set and CLEVER identified 21 multi nucleotide deletions,

of which only 1 corresponded to a variant in the curated list. No

large insertions or substitutions were predicted (data not shown).

Evaluating Pilon variant calls without long insert

data. It is unsurprising that Pilon was better able to call larger

variants since it is optimized to use both fragment (or small) and

long (or large) insert libraries. Since many sequencing projects do

not have access to long insert data and to also make a more direct

comparison to existing variant callers that are not optimized to

accept these data, we evaluated Pilon’s performance using data

from fragment insert libraries alone. To do this, we ran Pilon using

the aligned fragment paired end reads from the M. tuberculosis
F11 genome to the M. tuberculosis H37Rv finished reference

genome. We then compared this output (‘‘Pilon-frags’’) to the

previously analyzed output from GATK and SAMtools and to

Pilon output using data from both library types (‘‘Pilon’’).

Pilon-frags performed well in identifying both single and multi

nucleotide variants (see Table 3). Pilon-frags identified only 2 pp

fewer single nucleotide substitutions, 4 pp fewer single insertions

and 4 pp fewer single deletions as compared to the original Pilon

output. Pilon-frag performance in calling SNPs was better or on

par with both GATK-UG and SAMtools. Remarkably, Pilon-frags

was also able to identify a large fraction of the MNPs, with nearly

identical performance to Pilon with long insert read data. Pilon-

frags also performed very well in calling variants larger than 50 bp

(see Table 4), with one less insertion call and 4 fewer deletions calls

as compared to Pilon.

To better understand the qualitative differences in what Pilon

and Pilon-frags reported, we examined the concordance between

results for each variant type. For SNP calls, we observed high

concordance in the outputs from Pilon-frags and Pilon (95.2%;

871 of 915 events) (see Table S5). Discordance in SNPs often

involved a position where a variant was found in both Pilon runs,

but was considered high quality in one and low quality in the

other. In fact, only 7 of 915 SNPs (0.8% of total) were confidently

predicted to differ between the two Pilon run conditions,

suggesting that the value of long insert library data when calling

SNPs is small. However, for SNPs within repetitive regions of the

genome, long insert data appeared to be very helpful in

disambiguating these events (Table S6). Small indel variant calls

were also highly concordant for the two Pilon runs (93.3%; 56 of

60 events), and 78.5% concordance (73 of 93) for large indels.

For larger variants, the discordance between Pilon with and

without long insert data was larger (see Table S5), particularly in

regions of the genome encoding transposable IS6110 repeat

elements. While Pilon-frags detected many of these events, the

sequences that were assembled and reported at these sites were

often incomplete, as illustrated in Table S7. Given the length of

the IS6110 repeat (,1.3 Kbp), the fragment pairs — only

,180 bp apart — were unable to span the entire length of the

IS6110 elements, leading to two large indels being called, one

coming in from each side of the IS6110 e.g. Table S7, position

1,541,957. Pilon’s improved ability to capture the full sequence of

larger insertions is the primary value of including long insert read

data for variant calling applications.

Assessing large-scale genome duplications. In addition to

identifying substitutions and indels of various sizes, Pilon is able to

identify areas in which the read evidence suggests additional copies

of large genomic regions (.10 Kbp) compared with the input

draft assembly or reference genome. These regions could indicate

large collapsed repeats in an assembly improvement application or

large genomic duplications in a variant detection application. To

evaluate Pilon’s ability to identify large duplications, we re-

sequenced M. tuberculosis T67, a strain previously reported to

harbor a large-scale duplication [26], using fragment and long

insert libraries, and aligned the reads to the M. tuberculosis
H37Rv finished reference. Pilon was then run to detect variants in

T67 using H37Rv as a reference.

Pilon identified two duplication events that were .10 Kbp in

size and separated by ,3 Kbp at M. tuberculosis H37Rv

coordinates 3,494,063–3,551,070 (57 Kbp) and 3,554,192–

3,712,284 (158 Kbp) resulting in a combined duplication of

,215 Kbp. The left gene boundary (Rv3128c) of the first

predicted duplication and right gene boundary (Rv3427c) of the

second predicted duplication corresponded to the upstream and

downstream boundaries in the previously reported M. tuberculosis
T67 duplication [26]. Upon closer inspection, the 3 Kbp

intervening region contained two copies of the IS6110 element,

which are routinely found in multiple copies within the M.
tuberculosis genome (16 copies in H37Rv) [27]. Because these

elements occur so frequently in the genome, the incremental

coverage from the duplication was not sufficient for Pilon to

identify them as part of the duplication event, breaking a true large

duplication into two reported pieces.

Discussion

Pilon is an assembly improvement algorithm and variant caller

that identifies differences between a draft assembly or closely

Table 2. Summary of variant types curated in the M. tuberculosis H37Rv and M. tuberculosis F11 finished genome comparison.

Type of variation between F11 and H37RV Total found

Single substitution 1012

Single insertion 26

Single deletion 31

Multi substitution 13

Multi insertion 56

Multi deletion 47

The full list can be found in Table S8.
doi:10.1371/journal.pone.0112963.t002
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related reference assembly using evidence supported by the

sequencing data, resulting in either an improved assembly or a

list of variants in VCF format. We have demonstrated Pilon’s

performance on several microbial genomes with varying GC-

content and different ploidy. Our results indicate that applying

Pilon yields more contiguous and accurate assemblies. Further-

more, variant calls made by Pilon are of high quality when

compared with other state-of-the-art tools, and Pilon’s ability to

find insertion and deletion events considerably larger than read-

lengths sets it apart from traditional variant calling tools.

For many of the sub tasks that Pilon performs, there are a

variety of existing tools that might be used in sequence to achieve

similar output as Pilon. However, using existing tools to achieve

the full complement of analyses performed by Pilon would require

implementation of a complicated workflow that hands data around

to various tools, and development of post-processing algorithms to

ensure that results from the various tools are in agreement. Pilon is

a single, benchmarked tool that performs comparably well, if not

better, than other tools that do only a fraction of the work. In

addition, Pilon is easy to use and is successfully being utilized for

assembly and variant detection of thousands of data sets in Broad

Institute’s production pipelines.

We showed that the assembly improvements that were

introduced by Pilon were both accurate and biologically relevant.

In particular, several highly repetitive genes that were captured by

Pilon are known to play a role in virulence and host-pathogen

interactions [28,29]. To date, it has been difficult to study these

genes comparatively, because they are often not captured or are

only partially captured in draft assemblies. Furthermore, we were

able to place more genes with repetitive features accurately in the

genome. In the M. tuberculosis case, Pilon improved the sequence

accuracy and placement of genes encoding transposases, which

have an important role in genome reorganization in this species

[27] and are used in strain typing schemes [30]. In addition, for

M. tuberculosis, Pilon had a significant impact on the repetitive,

GC-rich and not well understood PE and PPE genes, an expanded

family of highly repetitive genes that account for about 10% of the

gene repertoire in this species [31], and are implicated in

pathogen-host interactions and virulence [32,33]. Pilon was able

to resolve these repetitive structures because of its ability to use the

long-distance mate pair information afforded by long insert

libraries. In addition, data from long insert libraries often enable

Pilon to completely fill in large sequence insertions and assemble

across gaps.

For variant calling, the primary benefit of Pilon over other

variant callers is its ability to capture large sequence polymor-

phisms and highly polymorphic local regions by performing a local

assembly to generate complete sequences. By capturing interven-

ing sequences in large variants, Pilon enables a more comprehen-

sive view of the biological differences between strains e.g., new

genes that confer antibiotic resistance or virulence. In addition, by

integrating the SNP and large sequence variant detection in a

single tool, Pilon is less likely to erroneously call SNPs in regions

that are affected by a large variant. Long insert libraries provide

information that resolves larger, multi-nucleotide events, in

particular by allowing Pilon to completely assemble inserted

sequences. However, even without long insert libraries, most of

these events are identified, albeit often with an incomplete

alternative sequence.

Pilon was also able to perform comparatively well in calling

small variants, including SNPs and small indels. While all three

variant callers benchmarked in this study had similar precision in

their calls, Pilon demonstrated better recall (fewer false negatives)

on single-base polymorphisms. There are two reasons for this.
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First, there are a few local areas of the genome with very high

polymorphism rates between F11 and H37Rv. When the local

polymorphism rate is very high, the short-read aligners are unable

to produce enough good alignments for any of the tools to call the

base differences from the resulting pileups. However, Pilon was

able to detect some of these problem areas and reassemble them

into block substitutions, correctly capturing dozens of polymorphic

locations the other tools were unable to resolve. Second, the use of

long insert libraries allowed Pilon to make definitive calls inside

some repeat regions by heavily weighting long insert reads which

were unambiguously anchored to the flanks of the repeat area,

capturing additional true SNPs.

We note that GATK contains a highly sophisticated collection

of tools for variant calling. However, several of its tools and their

associated best practices for human variant calling are not

applicable to many microbial projects, because they rely upon a

database of known variant locations (such as those found at

dbSNP) to perform recalibration. For microbial variant calling, the

extent of variation across the microbial species under investigation

is typically unknown, so no such catalog of variation is available a
priori. There is also a fundamental difference between GATK and

Pilon’s approach to variant calling. GATK’s UnifiedGenotyper is

designed to be aggressive in detecting possible variants, relying on

a user-controlled VariantFiltration step to filter out calls of lower

confidence or quality to minimize false positives. Pilon, on the

other hand, relies exclusively on internal heuristics to make a

determination of which calls are confident. This makes Pilon easy

to use ‘‘out of the box’’ in a highly automated environment,

though it is less configurable than GATK for custom applications.

There are several areas where improvements could be made in

future versions of Pilon with respect to assembly improvement and

variant calling. First, it seems likely that there will be some benefit

in iteratively applying Pilon in the assembly improvement and

insertion variant calling process. Currently, Pilon builds out the

gap/inserted sequence without re-aligning reads to build off the

newly extended sequence. Using an iterative strategy has recently

been used with some success by PAGIT [6]. Second, Pilon

currently does not attempt to make fixes to larger structural issues

within assemblies or make changes to scaffold architecture. With

data from long insert libraries, it should be feasible to break and/

or join scaffolds accurately. Third, tandem repeats continue to be

challenging and may require a more specific approach. These

regions are inherently difficult with short read data because there

is no unambiguous information in the data to determine how

many copies are present. This challenge is true for any de novo
assembly; in order to resolve a tandem repeat, reads are needed

that anchor into unique sequence on either side and read through

the entire tandem repeat sequence. Lacking this, tandem copy

numbers can only be speculated from mate-pairing information,

depth of coverage calculations and library insert sizes.

Currently, Pilon is rather conservative in its corrections: (i) it

uses a large cut-off to merge overlaps, and (ii) it will not attempt to

Figure 4. Venn diagram of the overlap in false negative (A) and false positive (B) calls by the three variant detection tools, Pilon,
GATK UnifiedGenotyper and SAMtools. False negative calls are the number of unique events from the curation set that was missed by each
tool. Overlaps in the Venn diagram show the number of variants that were missed by multiple tools. False positive calls are the number of predictions
from M. tuberculosis F11 that were not supported by the curation set. Overlaps indicate predictions that were shared among tools.
doi:10.1371/journal.pone.0112963.g004

Table 4. Pilon’s performance in calling variants in M. tuberculosis F11 that were larger than 50 nt.

Pilon Pilon-frags

Missed Called Missed Called

Insertion 11 23 12 22

Substitution 0 5 0 5

Deletion 6 20 10 16

Variants are divided by type across the rows. Missed variants are those that were annotated in the curation, but were not identified by Pilon. The called variants are
those that were annotated in the curation that Pilon accurately identified.
doi:10.1371/journal.pone.0112963.t004
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resolve significant tandem repeats structures definitively. Notwith-

standing the challenges encountered with tandem repeats, Pilon

does an excellent job with other repetitive sequences and is able to

fix many genes of known repetitive gene families and is able to fill

in many transposable elements.

While we have evaluated Pilon’s assembly improvements on

both haploid and diploid genomes and obtained positive results for

both, we acknowledge that there is still significant opportunity for

future improvement in Pilon’s handling of diploid genomes. Pilon

could be enhanced to understand IUPAC ambiguity codes in its

input genome and generate them in its output, and Pilon’s

heuristics for identifying insertions and deletions in diploid

genomes could be improved, including its ability to recognize

and report heterozygous indels. Finally, the local reassembly

process could be improved to perform better in heterozygous

regions. Even so, our results indicate that in its current form, Pilon

is able to make valuable improvements to diploid genomes.

We have evaluated Pilon’s performance using microbial

genomes with finished references. However, there is no inherent

limitation on the size of genomes to which Pilon can be applied.

For example, we have used Pilon to improve assemblies of larger

genomes, including 16 strains of the Anopheles genus (,200 Mbp

diploid genome), but we were unable to verify the accuracy of

Pilon’s improvements since these genomes have not been finished.

Pilon runs within minutes on small microbial genomes and will

complete overnight on larger eukaryote genomes, such as

Anopheles, which is similar to the tools included in our

benchmarking.

Conclusion

Ultimately, Pilon has great utility and addresses an urgent need

for better and more efficient methods to deal with the thousands of

microbial genomes that are being produced. We have shown that

Pilon performs well as compared to the state-of-the-art for both

assembly improvement and variant detection, often outperforming

these tools. Pilon is also unique in its user-friendly integrated

approach to assembly improvement and is unique in its ability to

identify large variants accurately in microbial genomes. As a

recent addition to the production process for microbial genomes at

Broad Institute, Pilon has been used to automatically improve the

quality of over 8,000 prokaryote and eukaryote genomes prior to

their submission to Genbank, and it has been used to call variants

on over 6,000 genomes.

Material and Methods

Detailed algorithm description
Input requirements. Pilon requires an input genome in

FASTA format and one or more BAM files containing sequencing

reads aligned to the input genome. The BAM files must be sorted

in coordinate order and indexed. For Illumina data, these BAM

files are usually produced by an aligner such as BWA [15] or

Bowtie 2 [34]. It is recommended that single best hit or random

selection among equal best alignments is used as input into Pilon.

Pilon can use three types of BAM files:

1. Fragments: paired read data of short insert size, typically ,

1 Kbp. Reads should be in forward-reverse (FR) orientation;

2. Long inserts: paired read data of longer insert size, typically .

1 Kbp. Reads should be in forward-reverse (FR) orientation.

Sequencing of long insert libraries that are generated using the

standard Illumina mate-pair library preparation protocol

typically result in reverse-forward (RF) read orientation, so

they will need to be reversed in the BAM file.

3. Unpaired: unpaired sequencing read data.

To use Pilon with default arguments, read length should be 75

bases or longer and total sequence coverage should be 50x or

greater, though deeper total coverage of .100x is beneficial. Pilon

can also make use of longer reads, such as those from Sanger

capillary sequencing and circular-consensus or error-corrected

reads from Pacific Biosciences (PacBio) sequencing. However,

Pilon is not currently tuned to the error model of raw PacBio

reads, and their use may introduce false corrections.

Pilon makes extensive use of pairing information when it is

available, so paired libraries are highly recommended. Pilon is

capable of using paired libraries of any insert size, as it scans the

BAMs to compute statistics, including insert size distribution.

Improving local base accuracy and identifying

SNPs. Pilon improves the local base accuracy of the contigs

through analysis of the read alignment information. First, Pilon

parses the alignment information from the input data and

summarizes the evidence from all the reads covering each base

position. Alignments can be less trustworthy near the ends of

reads, especially in differentiating between indels and base

changes, so Pilon ignores the alignments from a small number of

bases at each end of the read, which is configurable at run time.

For each base position in the genome, Pilon builds a pileup

structure which records both a count and a measure of the

weighted evidence for each possible base (A,C,G,T) from the read

alignments. The contribution of base information from each read

is weighted by the base quality reported by the sequencing

instrument as well as the mapping quality computed by the

aligner.

When Pilon is building pileups from paired alignment data, only

reads from ‘‘valid’’ pairs (i.e., those with the PROPER_PAIR flag

set in the BAM by the aligner, indicating the reads of a pair align

in proper orientation with a plausible separation) contribute

evidence to the pileups. It is crucial that the PROPER_PAIR flag

is set accurately by the tool that produced the BAM file. A count of

non-valid alignments covering each position is also kept to help

identify areas of possible mis-assembly. Pilon also keeps track of

‘‘soft clipping’’ in the alignments, which exclude sub-sections of a

read which aligned poorly. A tally of soft-clip transitions is kept at

each genomic location as another aid in identifying possible local

misassemblies.

From the pileup evidence, Pilon classifies each base in the input

genome into one of four categories:

1. Confirmed: the vast majority of evidence supports the base in

the input genome;

2. Changed: the vast majority of evidence supports a change of

the base in the input genome to another allele;

3. Ambiguous: the evidence supports more than one alternative at

this position;

4. Unconfirmed: there is insufficient evidence to make a

determination at this position due to insufficient depth of

coverage by valid reads.

Ambiguous bases can occur for several reasons. If the genome is

diploid, this is expected at heterozygous polymorphic locations.

Difficult-to-sequence regions may result in a large enough fraction

of sequencing errors to result in an ambiguous call. Finally, if the

input genome has a smaller number of copies of a repeated

genomic structure than occurs in the true genome (a ‘‘collapsed

repeat’’), the aligned reads may have originated from more than

Variant Detection and Genome Assembly Improvement with Pilon

PLOS ONE | www.plosone.org 9 November 2014 | Volume 9 | Issue 11 | e112963



one instance of the repeat structure; where there are differences in

the true instances of the repeat, the alignments can show mixed

evidence.

Paired read information, especially information from long insert

libraries which span a longer distance, is extremely valuable in

helping resolve ambiguous locations due to collapsed repeats. Pairs

for which one read lands inside a repeat element, but the other

lands in unique anchoring sequence on the flanks of the repeat

help to resolve the true base content of the repeat structure. Data

from long inserts will typically have a higher alignment mapping

quality than short-range fragment pairs that lie completely within

the repeat because the fragment pairs may not be able to be placed

uniquely among the repeats. Since Pilon uses mapping quality to

weigh the evidence from each read, the long inserts can often pick

the correct haplotype variations of the repeat structure.

Pilon includes corrections to single-base errors in its output

genome, and optionally, it can also change ambiguous bases to the

allele with the preponderance of evidence.

Finding and fixing small indels. While recording the base-

by-base pileup evidence, Pilon also records the location and

content of indels present in the alignments. Indel alignments which

represent equivalent edits to the input genome may appear at

different coordinates in the alignments. For instance, if the input

genome has the sequence ACCCCT, but the read evidence

suggests one of the Cs should be deleted (ACCCT), each individual

read alignment might show a deletion at any of the four C
coordinates. Pilon shifts alignment indels to their leftmost

equivalent edit in the input genome, so that the evidence from

all the equivalent edits is combined into evidence for a single event

at a one location.

Pilon makes an insertion or deletion call if a majority of the valid

reads support the change, though that threshold is lowered

somewhat for longer events, as it is typically more difficult for

aligners to identify longer indels in short read data. Called indels

from the input genome are fixed in Pilon’s output genome.

Fixing mis-assemblies, detecting large indels, and filling

gaps. Pilon is capable of reassembling local regions of the

genome when there is sufficient evidence from the alignments that

the contiguity of the input genome does not match the sequencing

data. For assembly improvement applications, this could be an

indication of a local mis-assembly. For variant calling applications,

this could be caused by insertions or deletions too large to be

reflected in the short read alignments.

Pilon tries to identify areas of potential local read alignment

discontiguity in the contigs of the input genome by employing four

heuristics: (i) a large percentage of reads containing a soft-clipped

alignment at a given base position, (ii) a large ratio of invalid pairs

to valid pairs spanning a location, (iii) areas of extremely low

coverage and (iv) rapid drops in alignment coverage over a

distance on the order of a read length. Once Pilon has identified

an area for local reassembly, it treats the suspicious region (which

may be a single base or a larger region) as untrusted, using

alignments to the trusted flanks on both sides to identify a

collection of reads that might contribute evidence for the true

sequence in the suspicious region.

Unpaired reads with partial alignments to the flanks are

included in the collection. For paired data, Pilon identifies pairs

in which one of the reads is anchored by proper alignment to one

of the flanks (e.g., with forward orientation on the left flank, or

reverse orientation on the right flank), but whose mate is either

unmapped or improperly mapped (e.g., to a remote location in the

genome). For fragment pairs, both reads of such pairs are included

in the collection; for long inserts, only the unanchored read is

included in the collection.

From the collected reads, Pilon builds a De Bruijn assembly

graph (default K = 47). For each k-mer in the reads, it uses the

same pileup structure to record the bases which follow that k-mer,

including weighting by base quality. Then, the pileups are

evaluated to determine the link(s) to the next k-mer(s); this results

in either a single base call, resulting in one forward link to the next

k-mer, or an ambiguous call, resulting in two links forward and a

branch in the assembly graph. This process automatically prunes

the assembly graph of most sequencing errors, as infrequent base

differences are unlikely to present enough evidence to affect the

forward links. A minimum coverage cutoff of five for each forward

link also prunes the assembly graph of many false links that could

appear because of sequencing errors.

Pilon then tries k-mers from the trusted flanks as starting points

to walk into the untrusted region from each side, building all

possible extensions with up to five branching points (25 possible

extensions). Tandem repeats with combined length .K cause

loops in the local assembly graph, and they are detected by noting

when the assembly walk reaches an already-incorporated k-mer.

Pilon currently does not attempt to determine the copy number of

such tandem repeats; instead, it will report the length of the repeat

structure encountered in its standard output, and it will not

attempt to close the two sides.

When no tandem repeat is detected, the resulting extensions

from each side are combinatorially matched for possible perfect

overlaps of sufficient length (2K+1) to be considered for closure. If

there is exactly one such closure and it differs from the input

genome, the assembled flank-to-flank sequence will replace the

corresponding sequence in the input genome. Since the default k-

mer size is 47, an overlap of 95 bases is required for closure.

If there are no closures or more than one possible closure, Pilon

will identify a consensus extension from each flank. If an optional

argument is set to allow opening of new gaps, Pilon will replace the

suspicious region with the consensus extensions from each flank

and create a gap between them; otherwise, it simply reports that it

was unable to find a solution. These reports identify areas that an

assembly analyst might wish to investigate manually.

Pilon also attempts to fill gaps between contigs in a scaffold

(‘‘captured gaps’’) in the input genome. In order to fill captured

gaps, Pilon employs the same local reassembly technique described

above, treating the gap itself as the ‘‘untrusted’’ region. If there is a

unique closure, the gap is filled; otherwise, consensus extensions

from each flank are used to reduce the size of the gap. Pilon does

not currently attempt to join or break scaffolds.

Large collapsed repeat (segmental duplication)

detection. Pilon includes heuristics that attempt to flag areas

indicative of large (.10 Kbp) collapsed repeats with respect to the

input genome. These are characteristically large contiguous areas

that appear to have double (or higher) read coverage compared to

the rest of the genomic element being analyzed. Long insert data

are excluded from this computation, as we have found long insert

coverage to be far more variable across some genomes. Pilon does

not attempt to fix these potentially collapsed regions, but it does

report them in its standard output for further investigation.

In variant calling applications, large segmental duplications in

the sequenced strain with respect to the reference have the same

signature as large collapsed repeats in a draft assembly; a

duplicated region of the genome will result in double the number

of reads covering that sequence. Pilon’s reporting of large

collapsed repeat regions can be used to identify candidate

segmental duplications.

Output files. Pilon generates a modified genome as a FASTA

file, including all single-base, small indel, gap filling, mis-assembly

and large-event corrections from the input genome. In the
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PLOS ONE | www.plosone.org 10 November 2014 | Volume 9 | Issue 11 | e112963



assembly improvement case, this is the improved assembly

consensus. In variant detection mode, this is the reference

sequence which has been edited to represent the consensus of

the given sample more closely.

Pilon can optionally generate a Variant Call Format (VCF)

[http://vcftools.sourceforge.net/specs.html] file, which lists copi-

ous detailed information about the base and indel evidence at

every base position in the genome, including two scores regarding

variant quality: the QUAL column, and a depth-normalized call

quality (QD) field in the INFO column. For additional details on

the VCF format, we refer to the VCF specification referred above.

Changes generated by local reassembly, often triggered by larger

polymorphisms in variant calling applications, are included as

structural variant records (SVTYPE = INS and SVTYPE =

DEL). Pilon can also, optionally, generate a ‘‘changes’’ file which

lists the edits applied from input to output genome in tabular form,

including source and destination coordinates and source and

destination sequence. Finally, Pilon will optionally (with the —

tracks option) output a series of visualization tracks (‘‘bed’’ and

‘‘wig’’ files) suitable for viewing in genome browsers such as IGV

[35] and GenomeView [36]. Tracks include basic metrics across

the genome, such as sequence coverage and physical coverage, as

well as some of the calculated metrics Pilon uses in its heuristics for

finding potential areas of mis-assembly, such as percentage of valid

read pairs covering every location.

Pilon’s standard output also contains useful information,

including coverage levels, percentage of the input genome

confirmed, a summary of the changes made, as well as some

specifically flagged issues which were not corrected, such as

potentially large collapsed repeat regions, potential regions of mis-

assembly which were not able to be corrected, and detected

tandem repeats that were not resolved.

Data generation
All sequencing data used for these experiments were generated

from an Illumina HiSeq 2000 machine. For sequencing M.
tuberculosis F11 and T67, two libraries were generated: one PCR-

free 180 bp insert paired fragment library [37] and large insert 3–

5 Kbp long insert library [38]. S. pneumoniae TIGR4 data also

consisted of two libraries: one robotically size selected 180 bp

insert paired fragment library [37] and a large insert 3–5 Kbp long

insert library [38]. The sequencing data for C. albicans SC5314

was generated from three libraries: a robotically size-selected

180 bp insert paired fragment library [37], a gel-cut 4 Kbp long

insert library [39], and a 40 Kb Fosill library [40]. Sequencing

data were submitted to the Sequence Read Archive with

identifiers: SRX347313, SRX347312, SRX105400,

SRX110130, SRX347317 and SRX347316.

Evaluation methods
Assembly improvement. All draft assemblies were generat-

ed using ALLPATHS-LG [41]. The draft assembly for Mycobac-
terium tuberculosis F11 utilized 100x of the 180 bp insert fragment

library and 50x of the 3–5 Kb long insert library and was executed

using ALLPATHS-LG v45395 utilizing the ASSISTED_PATCH-

ING = 2.1 parameter and the M. tuberculosis H37RV reference

genome for assisting (GenBank accession: CP003248). The draft

assembly for S. pneumoniae TIGR4 was created using ALL-

PATHS-LG v45925 with default parameters and using 100x of the

180 bp insert fragment library and 50x of the 3–5 Kb long insert

library. The C. albicans SC5314 utilized 100x of the 180 bp insert

fragment library, 100x of the gel-cut 4 Kb long insert library and

50x of the Fosill library, and was assembled with ALLPATHS-LG

v39846 utilizing the ASSISTED_PATCHING and HAPLOI-

DIFY options with the C. albicans SC5314 reference sequence as a

reference for assisting.

We benchmarked Pilon’s ability to close gaps in the draft

bacterial assemblies against two tools built for this purpose,

IMAGE v2.4.1 [16] and GapFiller v1.10 [17]. The same sets of

sequencing reads used as input to Pilon were used for IMAGE

(fragment library only) and GapFiller (fragment and long insert

libraries). IMAGE was run in the manner implemented in the

PAGIT [6] example scripts: 6 iterations, one with a kmer size of

61, three with a kmer size of 49, and two with a kmer size of 41.

GapFiller was run for 10 iterations with a libraries.txt file

specifying a ratio r = 0.5 and library insert sizes computed by

Pilon from the aligned bams.

To evaluate the quality of Pilon’s single base and small indel

corrections to the draft assemblies, we also ran iCORN v0.97 [18],

the consensus sequence improvement tool in PAGIT, on the same

draft assemblies using the same sets of fragment reads. iCORN

was run in the manner implemented in the PAGIT example

scripts, only changing the library insert size mean and range

parameters. For TIGR4, we used a mean of 180 and a range of

120–300. For F11, we used a mean of 226 and a range of 100–

500, since the PCR-free library preparation resulted in a wider

range of insert sizes.

Fixes to the assemblies (Table S1) made by Pilon and the other

assembly improvement tools were assessed by extracting the

changed region of sequence in the output genome along with

300 bp flanks on each side. These extracted sequences were

aligned to their respective finished reference genomes with

BLASTN [42], and the accuracy of the changes was assessed by

manually inspecting the alignments for accuracy, judging each fix

as ‘‘Correct’’ or ‘‘Incorrect’’. For larger block changes which

resulted from local reassembly (gap filling and fixing of local mis-

assemblies), a third category of ‘‘No worse’’ was established for

situations in which: (i) the draft assembly contained a mis-assembly

in the changed region, (ii) Pilon made a change attempting to fix

the mis-assembly, and (iii) the fix was not entirely correct, but was

no worse than the original problem.

For the assembly improvement statistics, Bases added was

calculated by tallying bases added in locations where resulting fixes

resulted in a net gain of bases during gap filling and mis-assembly

correction processes, as reported in the Pilon standard output

indicated by the "fix gap" or "fix break" lines.

Variant calling. Variant calls were made using M. tubercu-
losis H37Rv (GenBank accession: CP003248) as the reference and

the M. tuberculosis F11 aligned read and long insert fragments as

input data. From the sequenced fragment and long insert libraries,

a random subset of read pairs was selected from each library to

obtain an estimated 200x coverage of the M. tuberculosis H37Rv

reference genome. Each library’s reads were aligned to the M.
tuberculosis H37Rv reference genome using BWA (version 0.5.9-

r16) to generate BAM files suitable for input to the variant calling

processes.

Pilon: Pilon was run with the —variant command line option,

specifying the M. tuberculosis H37Rv reference genome and the

above BAM file(s) as inputs. We evaluated two Pilon variant

calling sets, one generated using both fragment and long insert

library BAMs, and one using only the fragment library BAM.

GATK UnifiedGenotyper: Reads in the fragment library BAM

were realigned by applying the Genome Analysis Toolkit (GATK

version v3.2.2) RealignerTargetCreator and IndelRealigner tools

on the fragment library aligned BAM file. Variants were then

called from the realigned BAM file using UnifiedGenotyper run

with the following settings: -nt 32 -A AlleleBalance -ploidy 1

-pnrm EXACT_GENERAL_PLOIDY -glm BOTH —output_mode
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EMIT_ALL_SITES. Low confidence variants were then filtered

using VariantFiltration (VF) run with the following settings: —

filterExpression "((DP-MQ0),10) || ((MQ0/(1.0*DP)).

=0.8) || (ABHom ,0.8) || (Dels .0.5)" —filterName

LowConfidence.

These VariantFiltration settings filtered out variant calls at

locations with less than 10 unambiguous read alignments, where

80% or more of the read depth had ambiguous mappings, where

fewer than 80% of the reads supported the alternate allele, or

more than half of the reads contained spanning deletions. This

filter expression was based on one previously used to call variants

from the European Escherichia coli O104:H4 outbreak [38],

adjusting depth and allele balance thresholds to yield the best

performance tradeoff between false negative and false positive

results on these data.

SAMtools/BCFtools: The same aligned fragment library BAM

file described above was used as input for variant calling using

SAMtool/BCFtools v0.1.19 according to recommendations found

on the SAMtools webpage (http://samtools.sourceforge.net/

mpileup.shtml). samtools mpileup was used to generate pileups

in bcf format, and variants were called using bcftools using the

-bcg option. Finally, variants were filtered using vcfutils.pl

varFilter -d 10 to filter out calls at locations where the aligned

coverage was less than 10 reads. We chose the minimum depth of

10 to be consistent with the filtering used for GATK Unified-

Genotyper.

CLEVER and BreakDancer: The aligned fragment and

combined fragment and long insert library described above were

used as input for CLEVER v2.0rc3 and BreakDancer 1.3.6.

clever —sorted —use_xa was used to generate calls for

CLEVER. bam2cfg.pl -g –h was used to generate the Break-

Dancer config file, which was then used with breakdancer-max.

Curating differences between F11 and

H37Rv. Differences between the finished M. tuberculosis F11

(GenBank accession: CP000717) and M. tuberculosis H37RV

(GenBank accession: CP003248) references were curated by

employing a banded Smith-Waterman algorithm to align syntenic

regions of the two genomes. Alignments were run, separately, for

each syntenic portion of the two sequences. When the alignment

diverged significantly, the program was run again to pick up at the

next syntenic block. The resulting alignments over syntenic regions

identified coordinates of small blocks of mismatches, typically only

a single-base long, but in some cases up to 289 bp. Areas where

there was a significant break in synteny or where the banded

Smith-Waterman alignment produced questionable results were

analyzed using either Nucmer [43], ClustalW [44] or Blast2 [45]

to verify the nature of the difference and to obtain more accurate

coordinates. In some cases, the alignments proved too difficult to

get accurate coordinates, but approximate definitions of these

differences were obtained. The resulting table of differences

between the two references (Table S8) has each difference

annotated with most likely coordinates, with two exceptions where

the variation between the strains was so high that it was impossible

to know whether each difference was captured individually. The

two highly variable regions corresponded to coordinates 1636857–

1639600 and 3928967–3949709, which, together, account for less

than 0.5% of the M. tuberculosis H37Rv genome. These regions

were excluded from all variant analyses.

Variant Assessment. The resulting variant calls were com-

pared to a manually curated set of differences between M.
tuberculosis F11 and M. tuberculosis H37Rv as described above.

Based on this comparison, recall and precision were calculated

according to the strategy described in [46]. Briefly, recall is a

measure of completeness of calls against the curated truth set; false

negatives lower the recall score. Precision is a measure of the

accuracy of the calls made; false positives lower the precision score.

Specifically, recall = tp_c/(tp_c+fn) and precision = tp_p/(tp_p+
fp), where tp_c is the number of true positive calls based on the

curation set, tp_p is the number of true positive calls from the set of

predicted variants, fp is the number of false calls from the set of

predicted variants, and fn is the number of missed calls from the

predicted variants based on the curation set. The F-measure is the

harmonic mean of the recall and precision rates, providing an

‘‘overall’’ metric that captures tradeoff between recall and precision.

True positives in the prediction set had at least one variant site

called in the curation set. For variants that affected more than a

single base in the curation set (i.e., multi nucleotide polymor-

phisms), we allowed for a combination of two or more smaller

events in the prediction set to be marked as correct, since tools

may call a densely polymorphic region as a block substitution

rather than a series of equivalent single-base changes. For

example, for the multi nucleotide substitution in the curation set,

ACCGT = . CCTGA, three SNP calls at the same location, A.

C, C.T and T.A, would be counted as a true positive. In

addition, predicted variants that affected more than 20 bases were

allowed to match only partially with the curation set because there

can be different ways to manually curate sites that vary among the

M. tuberculosis F11 and H37Rv finished reference genomes. In

particular, resolution of tandem repeats was challenging for both

prediction and curation of variants since it was difficult to

determine which copy of the repeat was inserted or deleted. In

these cases, we counted the variant as correct if a similar event was

predicted within 100 nucleotides.

Availability

Pilon is open source software available under the GNU General

Public License Version 2 (GPLv2). Pilon is written in the Scala

programming language, and it makes extensive use of the open

source Picard Java libraries (http://picard.sourceforge.net) for

parsing BAM and FASTA files. Pilon is compiled into a single Java

Archive (JAR) file which runs inside a 64-bit Java Virtual Machine

environment. Binary and source distributions can be obtained

from GitHub (http://github.com/broadinstitute/pilon/releases/).

Results in this paper were obtained with Pilon version 1.5. A

summary of all command-line options is available in Table S9.

Online documentation, as well as two example data sets to test

Pilon on the same data as was used in this manuscript, are

available from the web site http://broadinstitute.org/software/

pilon/. We provide the Streptococcus pneumoniae TIGR4 data set

as an assembly improvement example and the Mtb F11 data set as

a variant calling example.
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