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Abstract

Children born to obese mothers are at increased risk for obesity, but the mechanisms behind this association are not fully
delineated. A novel possible pathway linking maternal and child weight is the transmission of obesogenic microbes from
mother to child. The current study examined whether maternal obesity was associated with differences in the composition
of the gut microbiome in children in early life. Fecal samples from children 18–27 months of age (n = 77) were analyzed by
pyro-tag 16S sequencing. Significant effects of maternal obesity on the composition of the gut microbiome of offspring
were observed among dyads of higher socioeconomic status (SES). In the higher SES group (n = 47), children of obese
(BMI$30) versus non-obese mothers clustered on a principle coordinate analysis (PCoA) and exhibited greater homogeneity
in the composition of their gut microbiomes as well as greater alpha diversity as indicated by the Shannon Diversity Index,
and measures of richness and evenness. Also in the higher SES group, children born to obese versus non-obese mothers
had differences in abundances of Faecalibacterium spp., Eubacterium spp., Oscillibacter spp., and Blautia spp. Prior studies
have linked some of these bacterial groups to differences in weight and diet. This study provides novel evidence that
maternal obesity is associated with differences in the gut microbiome in children in early life, particularly among those of
higher SES. Among obese adults, the relative contribution of genetic versus behavioral factors may differ based on SES.
Consequently, the extent to which maternal obesity confers measureable changes to the gut microbiome of offspring may
differ based on the etiology of maternal obesity. Continued research is needed to examine this question as well as the
relevance of the observed differences in gut microbiome composition for weight trajectory over the life course.
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Introduction

Obesity is a substantial public health problem globally. In the

US, it is estimated that 16.9% of children ages 2–19 years and

33.8% of adults $20 years are obese [1,2]. However, early life

antecedents of obesity are not well delineated. In children under 3

years of age, the strongest predictor of obesity in adolescence and

adulthood is parental obesity [3]. Compared to paternal obesity,

maternal obesity has greater predictive value for body mass index

(BMI) of offspring through adolescence [4,5]. However, the

relative influence of genetics versus environmental pathways in

the transgenerational transmission of obesity from parent to child

is unknown.

A novel possible mechanistic pathway linking parental and child

weight is the transmission of commensal microbiota via parental

exposures, particularly maternal. The microbiota are a consortium

of trillions of bacteria that are resident to a variety of human body

niches [6]. The vast majority of these microbes reside within the

gastrointestinal (GI) tract where they form microbial communities

whose structures are stable during periods of homeostasis and

heavily involved in host metabolic and nutritional functions,

including food digestion and vitamin synthesis [7,8].

Disruptions in the relative abundances of microbes that

comprise these communities have been associated with obesity

and high-fat diets [9–14]. For example, obese mice have abnormal

levels of GI Firmicutes and Bacteroidetes, two primary phyla of the

GI tract microbiota [12]. Such skewed bacterial abundances may

lead to alterations in energy procurement from food and related

propensity toward obesity. When microbiota from obese mice are

transferred into germ-free mice, recipient mice have increased

body fat, providing strong evidence of a causal link between the

microbiota and obesity [14].
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Factors affecting the establishment of bacterial abundances in

early life are not well understood. During birth, the neonate is

rapidly colonized by maternal bacteria via vertical transmission

from the gastrointestinal and reproductive tracts as well as

environmental microbes [15–17]. In very early life, mothers are

likely to be primary donors of bacteria through physical contact

and breast milk. Demonstrating such maternal influence, at one

and six months of age, infants of obese mothers have significantly

different bacterial population abundances compared to infants of

non-obese mothers [18]. Importantly, during the first year of life,

the microbiota show great transience and volatility [19]. As solid

foods are introduced to the diet, the structure of the microbiota

stabilizes and begins to reflect the adult profile [20]. Thus, it is

important to determine if maternal influences on gut microbial

groups persist in children past early infancy despite competing

factors.

In addition, the recent advent of next generation pyrosequenc-

ing allows for wider study of microbial communities than

permitted by earlier methods, including denaturing gradient gel

electrophoresis (DGGE) and polymerase chain reaction (PCR).

Utilization of this technology permits the analyses of entire

bacterial communities rather than examination of smaller

classification subsets selected by a priori hypotheses. To our

knowledge, pyrosequencing has not been used in studies associ-

ating parental obesity to child microbiota communities.

Addressing these gaps in the literature, the current study

examined the association between maternal obesity and the gut

microbiota profiles of toddlers at approximately two years of age

using pyrosequencing technology. We hypothesized that the

microbiota of children born to obese mothers would have a

significantly different gastrointestinal microbiota, as assessed using

alpha and beta diversity measurements, when compared to

children born to normal weight mothers. We also hypothesized

that differences in abundances of bacterial populations previously

associated with obesity would be observed in children of obese

versus non-obese mothers.

Methods

Study Design
We recruited 79 women with children approximately two years

of age from the general community of Columbus, Ohio. Children

were excluded if their mother reported the child had a major

health condition or developmental delay. Children were also

excluded if they were already toilet trained. Each woman

completed an online questionnaire which included assessment of

her health behaviors and exposures (e.g., medications) during

pregnancy as well as health and feeding behaviors in her child.

Within 7 days of completing the online questionnaire, each

woman collected a stool sample from her child per the protocol

detailed below. Two samples were removed from statistical

analyses due to low sequence count (,5108), resulting in final

sample of 77 mother-child pairs. This study was approved by the

Ohio State University Biomedical Institutional Review Board. All

women completed written informed consent for themselves and

provided written consent on behalf of their children. Women

received modest compensation for their participation. Data

collection occurred from May 2011 to December 2012.

Parental Characteristics
Women reported information about their age, race (self and

child’s father), marital status, education level (self and child’s

father), and total family income per year. Body mass index (BMI;

kg/m2) was calculated based on the provided maternal and

paternal heights and weights. BMI values $30 were classified as

obese.

Perinatal Health Information
Self-report data was collected regarding exposure to antibiotics

during pregnancy and while breastfeeding (if applicable). With

regard to birth outcomes, women reported the route of delivery

(vaginal versus C-section), gestational age at the time of delivery

and the child’s sex.

Child Diet and Growth
Women reported the occurrence and duration of breastfeeding

and the age at which formula (if applicable), cereals/grains, fruits/

vegetables, and meats were introduced as part of the child’s diet.

The current frequency of each food type was also reported, from

less than once per month to two or more times per day. Women

reported the number of times their child had been exposed to

antibiotic medications, with completion of a full prescription

course (e.g., 10 days) considered as one exposure. Women also

reported child exposure to probiotics in capsule/supplement form

or in formula or food which specified it contained probiotics.

Finally, to determine the child’s growth trajectory, women

reported their child’s height and weight percentile at the most

recent well-visit to the pediatrician. A weight/height ratio was

calculated and children were categorized into three groups: those

whose weight percentile was greater than their height percentile

(n = 11), those in the same percentile bracket (n = 31), and those

whose weight percentile was lower than their height percentile

(n = 33).

Stool Sample Collection and Storage
Women were provided with sterile wooden applicators and

sterile 50 ml plastic conical collection tubes for collection. They

were instructed to sterilely collect the stool sample from child’s

soiled diaper with the wooden applicator and place in the

collection tube. Samples were then stored at 4uC (i.e., refrigerated)

for up to 24 hours until collection by study personnel from the

participant’s home or delivery by the participant to OSUWMC. In

the latter case, women were instructed to transport samples in a

cooler with ice. Upon arrival at the Wexner Medical Center,

samples were placed in long-term storage at 280uC until

pyrosequencing was conducted.

bTEFAP
Bacterial tag-encoded FLX-Amplicon Pyrosequencing (bTE-

FAP) was performed as previously described [21,22]. The 16 s rrn

universal primers 27f (AGA GTT TGA TCM TGG CTC AG)

and 519r (GWATTACCGCGGCKGCTG) were used for specific

16S rrn targeting.

These primers were used for single-step 30 cycle PCR. The

following thermoprofile was used: a single cycle of 94uC for 3

minutes, then 28 cycles of: 30 seconds at 94uC; 40 seconds at

53uC, 1 minute at 72uC, with a single 5 minute cycle at 72uC for 5

minutes for elongation. Amplicons were pooled at equivalent

concentrations and purified (Agencourt Bioscience Corporation,

MA, USA). Sequencing was performed with the Roche 454 FLX

Titanium system using manufacturer’s guidelines.

Sequencing Analysis
Analysis was performed using the open-source software

package, Quantitative Insights Into Microbial Ecology (QIIME),

v.1.7.0. [23]. Sequences were provided via.fasta file and sequence

quality was denoted with a.qual file. Barcodes were trimmed and
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low-quality reads were removed. An average quality score of 25

was used. Minimum sequence length of 200 and maximum length

of 1000 were used. No mismatches were allowed in the primer

sequence. An average of 14862 sequences were attained per

sample, and a total of 77.06% of sequences passed quality filtering.

Sequences were clustered based upon 0.97 similarity using

UClust into operational taxonomic units (OTUs) [24]. A

representative sequence was selected from each OTU and the

RDP classifier was used to assign taxonomy to the representative

sequence [25]. Sequences were aligned using PyNAST [26]

against a Greengenes core reference alignment database [27] and

an OTU phylogenetic tree was assembled based upon this

alignment [28].

Phylogenetic Investigation of Communities by Reconstruction

of Unobserved States, or PiCRUST, was used to identify

differences in predictive metagenome function [29]. In summary,

OTUs were picked from a demultiplexed fasta file containing the

sequences for all 77 subjects using the closed-reference procedure,

against the GreenGenes 13_5 reference database [30]. These

OTUs were normalized by the predicted 16 s copy number, and

functions were predicted from these normalized OTUs with the

use of GreenGenes 13_5 database for KEGG Orthologs. From

this, a BIOM table containing the predicted metagenome for each

sample was attained. Each sample was rarefied at 2,000,000 before

further analysis. Downstream statistical analysis was performed

using STAMP [31].

Statistical Analysis
The Shannon Diversity Index (SDI), a measurement of within-

sample (alpha-diversity) community diversity, as well as Chao1

(estimates richness), equitability (measures evenness), and obser-

ved_species (calculates unique OTUs) were used to ascertain

differences in alpha diversity based on maternal obesity status [32].

All alpha-diversity measurements were calculated with QIIME

and significance was measured using a parametric t-test at a depth

of 5930 sequences for comparison of all obese vs non-obese

groups. Depths of 4534 sequences for comparison of maternal

obesity among the high income group alone, and 5126 sequences

for comparison among the low income group alone were also used.

UniFrac unweighted distance matrices were calculated from the

OTU phylogenetic tree for beta diversity analyses [33]. A

sampling depth of 5108 sequences/sample was used for beta

diversity for all groups.

The adonis statistic, available through the vegan package on the

open-source statistical program R, and further employed in

QIIME, was used to measure differences in variance between

two groups based upon their microbiota UniFrac distance matrices

[34,35]. Groups were split based upon maternal and paternal

BMI, as well as by income level and differences in community

structure were determined using adonis. The permdisp statistic,

also available through vegan, was then performed to verify equal

variances between groups dichotomized by obesity.

Chi-square analyses and two-sample t-tests were used to

determine the demographic and behavioral similarity between

the maternal obesity groups to identify possible confounding

factors. Additionally, Pearson’s correlations, univariate analysis of

variance (ANOVA) and regression analyses were used to examine

associations between variables including maternal BMI, child’s

weight/height ratio and the SDI. The relative abundance of

bacterial groups in samples from children of obese and non-obese

mothers were compared using Mann-Whitney U-tests. All analyses

were performed using SPSS v.21 (IBM, Chicago, IL). For

predictive functional group analysis in STAMP, Welch’s t-tests

were used for two group comparisons, while Kruskal-Wallis H-

tests were used for multiple group comparisons. P-values were

corrected for multiple-tests using the Benjamini-Hochberg method

[36], with a q-value of 0.10.

Results

Participant Characteristics
This study included 77 mother-child pairs. Children were 18–27

months at the time of assessment (Mean = 23.14, SD = 2.00), with

91% falling between 21–26 months. In this sample, 87.0% (n = 67)

of mothers were White, 9.1% (n = 7) were Black and 3.9% (n = 3)

were Asian. The mean maternal age at the time of delivery was

31.1065.43 and 87.0% of women (n = 67) were married. In this

sample, 66.2% of mothers (n = 51) were non-obese (BMI ,30) and

33.8% (n = 26) were obese (BMI $30) based self-reported height

and weight prior to pregnancy. The mean BMI among the obese

women was 35.1364.48 compared to 22.6562.85 among the

non-obese (t(75) = 15.3, p,0.001).

To identify potential factors which may confound the relation-

ship between maternal obesity and the composition of the child

microbiome, we examined the demographic and behavioral

similarity between obese and non-obese women (Tables 1 & 2).

Obese and non-obese women did not differ significantly in race,

marital status, maternal age at the time of delivery, antibiotic

exposure during pregnancy or breastfeeding, or delivery route

(vaginal versus C-section). Obese women had heavier male

partners than did non-obese women, with BMIs of 31.2065.98

vs. 26.9164.60, respectively (t(75) = 3.49, p = 0.001). Obese

women and their partners had completed less education than

non-obese women and their partners (ps #0.014). However,

women did not differ in annual household income based on

obesity status (X2(3) = 1.92, p = .59), although household income

was significantly correlated with both maternal (r = .65, p,0.001)

and paternal education (r = .52, p,0.001).

Maternal obesity and beta diversity in the child gut
microbiome

Unweighted UniFrac distance matrices were used to assess

differences between the microbial communities, known as beta

diversity, in children of obese compared to non-obese mothers.

Permutational multivariate ANOVA using adonis showed that

children of obese versus non-obese mothers had a different

microbiota community structure (r2 = 0.01539, p = 0.044). How-

ever, this did not result in clustering of two distinct populations

using a principle coordinate analysis (PCoA) (Fig. 1). To further

explain the significant adonis statistic in the absence of obvious

clustering, permdisp, a statistic that measures the extent to which

variances in different populations are equivalent, was used to

compare the two groups. Dispersion of the community structures

of children born to obese versus non-obese mothers differed

signficantly, with greater variance among children of non-obese

mothers (p = 0.035, F = 4.843). In contrast, there was no difference

in between-sample community structure as measured via adonis in

children of obese versus non-obese fathers (r2 = 0.01214,

p = 0.801).

Next, we examined whether the strength of the association

between beta diversity and maternal obesity differed among

children of mothers from higher versus lower socioeconomic

backgrounds. Analyses showed no main effects of socioeconomic

indicators; neither maternal education (r2 = 0.01267, p = 0.615)

nor income level (r2 = 0.01331, p = 0.409) were associated with

shifts in the offspring microbial profile. Similarly, neither maternal

education nor income were associated with clustering on a PCoA

(Fig. S1). Next, the interaction between obesity status with both
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education (high school graduate or less versus college graduate or

more) and income (, 50 k versus $ 50 k) was examined. An

interaction effect between income and obesity status was observed;

in the high-income group, a different microbiota community

structure was seen in the children of obese versus non-obese

mothers (r2 = 0.02547, p = 0.041). However, in the lower-income

group, no significant effects of maternal obesity on beta diversity

were observed (r2 = 0.03798, p = 0.139). Also, in dyads from high-

income households, the microbiota of children of obese mothers

had greater homogeneity among the samples compared to those

from non-obese mothers (F = 11.942, p = 0.003). Furthermore,

clustering based on obesity status was observed using a PCoA in

the high income group only (Fig. 2A–B).

Similar effects were seen when using education as an indicator

of socioeconomic status. Among mothers with a high education,

children born to obese mothers had a different community

structure than those born to non-obese mothers (r2 = 0.02049,

p = 0.045) and this was partly explained by significantly greater

homogeneity in variance (F = 6.215, p = 0.02). In contrast, among

children born to women with less education, there were no

significant differences in beta diversity based on maternal obesity

status (r2 = 0.05327, p = 0.61). Thus, similar results were observed

in relation to income and education as indicators of socioeconomic

status. Compared to education level, income was more evenly

distributed in the obese and non-obese groups, providing greater

statistical power. Thus, all downstream analyses focused on

income.

Maternal obesity and alpha diversity in the child gut
microbiome

We next examined the relationship between maternal BMI and

alpha diversity of the child microbiota. First, we examined the

Shannon Diversity Index (SDI), a measure of the overall diversity

within a microbial community. Two samples were below the

threshold for SDI, resulting in a sample of 75 for these analyses.

Results showed that children of obese mothers had a significantly

higher SDI than children of non-obese mothers (t(73) = 2.1,

p = 0.04; Fig. 3A). Greater alpha diversity in children born to

obese mothers was associated with greater equitability

(t(73) = 1.96, p = 0.05; Fig. 3B) and a trend towards greater

richness as estimated by Chao1 (t(73) = 1.83, p = 0.07; Fig. 3C).

Furthermore, children of obese mothers had higher number of

unique OTUs as defined by QIIME variable observed_species

(t(73) = 2.25, p = 0.03; Fig. 3D).

Next, we examined interactions between maternal socioeco-

nomic status and obesity on alpha diversity of the child gut

Table 1. Demographic Characteristics.

Total
(n = 77)

Obese
(n = 26)

Non-Obese
(n = 51)

Obese vs.
Non-Obese

Maternal BMI [Mean (SD)] 26.86 (6.83) 35.13 (4.48) 22.65 (2.85) t(75) = 15.3, p = .000*

Paternal BMI [Mean (SD)] 28.34(5.47) 31.2 (5.98) 26.89 (4.92) t(75) = 3.49, p = .001*

Maternal Age [Mean (SD)] 31.10 (5.43) 31.96 (6.02) 30.67 (5.11) t(75) = 0.99, p = .33

Child Sex [n (%)] X2(1) = 0.79, p = .37

Male 41 (53.2%) 12 (46.2%) 29 (56.9%)

Female 36 (46.8%) 14 (53.8%) 22 (43.1%)

Maternal Race X2(1) = 0.47, p = .47@

White 67 (87.0%) 21 (80.8%) 46 (90.2%)

Black/African-American 7 (9.1%) 5 (19.2%) 2 (3.9%)

Asian 3 (3.9%) 0 (0%) 3 (5.9%)

Marital Status [n (%)] X2(1) = 3.54, p = .06

Married 67 (87.0%) 20 (76.9%) 47 (92.2%)

Unmarried 10 (13%) 6 (23.1%) 4 (7.8%)

Maternal Education [n (%)] X2(2) = 10.67`, p = .005*

High school graduate or less 19 (24.7%) 12 (46.2%) 7 (13.7%)

College graduate (2 or 4 yr) 26 (33.8%) 8 (30.8%) 18 (35.3%)

Some graduate school or higher 32 (41.6%) 6 (23.1%) 26 (51.0%)

Paternal Education [n (%)] X2(2) = 8.51, p = .014*

High school graduate or less 29 (37.6%) 12 (46.2%) 17 (33.3%)

College graduate (2 or 4 yr) 30 (39.0%) 12 (46.2%) 18 (35.3%)

Some graduate school or higher 18 (23.3%) 2 (7.7%) 16 (31.4%)

Income [n (%)] X2(3) = 1.92, p = .59

, 30,000 15 (19.5%) 7 (26.9%) 8 (15.7%)

30,000–49,999 15 (19.5%) 5 (19.2%) 10 (19.6%)

50,000–99,999 30 (39.0%) 10 (38.4%) 20 (39.2%)

$ 100,000 17 (22.0%) 4 (15.4%) 13 (25.5%)

*p,.05.
@White versus non-white.
doi:10.1371/journal.pone.0113026.t001
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microbiome. As with beta diversity, results indicated that effects of

maternal obesity on alpha diversity were driven by the high-

income group. Specifically, in high income households, SDI

(t(73) = 2.30, p = 0.026), Chao1 (t(73) = 2.08, p = 0.043), equitabil-

ity (t(73) = 2.20, p = 0.033), and observed OTUs (t(73) = 2.30,

p = 0.029) were all higher in children of obese versus non-obese

mothers. However, among children in lower income households,

no differences in alpha diversity were detected in relation to

maternal obesity status [SDI (t(73) = 0.537, p = 0.595), Chao1

(t(73) = 20.018, p = 0.992), equitability (t(73) = 0.498, p = 0.619),

observed OTUs (t(73) = 0.674, p = 0.515)] (Fig. 4A–H).

Further analyses demonstrated that the SDI was higher in

children of obese versus non-obese fathers (t(73) = 1.99, p = 0.05)

which corresponded to greater equitability (t(73) = 2.10, p = 0.04).

However, there were no significant differences in either the Chao1

estimation or OTUs (i.e., observed_species in QIIME) between

children born to obese or non-obese fathers (data not shown).

When entered into a regression model together, maternal BMI

remained a significant predictor of the SDI (b= 0.324, p = 0.008)

while paternal BMI was no longer significantly associated

(b= 0.085, p = 0.48) suggesting that maternal BMI was the critical

predictor. In addition, univariate ANOVA demonstrated that the

child weight/height ratio showed no association with the toddler

SDI (F(2,72) = 0.58, p = .565). Moreover, maternal BMI remained

a significant predictor after including the child’s WHR in the

model (b= 3.178, p = 0.002), indicating an effect of maternal BMI

that was independent of the child’s current body composition.

Table 2. Health/Behavioral Characteristics.

Total
(n = 77)

Obese
(n = 26)

Non-Obese
(n = 51)

Obese vs.
Non-Obese

Route of delivery [n (%)] X2(1) = 0.17, p = .68

C-Section 33 (42.9%) 12 (46.2%) 21 (41.2%)

Vaginal 44 (57.1%) 14 (53.8%) 30 (58.8%)

Breastfeeding duration [n (%)] X2(2) = 3.84, p = .147#

Never 5 (6.5%) 4 (15.4%) 1 (2%)

,3 months 7 (9.1%) 3 (11.5%) 4 (7.8%)

3 to 11 months 38 (49.4%) 11 (42.3%) 27 (52.9%)

$12 months 27 (35.1%) 8 (30.8%) 19 (37.2%)

Grains/Cereals introduced [n (%)] X2(1) = 0.06, p = .812‘

#4 months 30 (39.0%) 12 (46.2%) 18 (35.3%)

526 months 41 (53.2%) 11 (42.3%) 30 (58.8%)

$7 months 6 (7.8%) 3 (11.5%) 3 (5.9%)

Vegetables, fruits, and/or meats introduced [n (%)] X2(2) = 0.17, p = .92

#4 months 17 (22.1%) 6 (23.1%) 11 (21.6%)

526 months 38 (49.4%) 12 (46.2%) 26 (51.0%)

$7 months 22 (28.6%) 8 (30.8%) 14 (27.5%)

Meat frequency [n (%)] X2(2) = 2.24, p = .33

Less than once per day 25 (32.5%) 6 (23.1%) 19 (37.3%)

Once per day 27 (35.1%) 9 (34.6%) 18 (35.3%)

More than once per day 25 (32.5%) 11 (42.3%) 32 (27.5%)

Vegetable frequency [n (%)] X2(2) = 0.30, p = .86

Less than once per day 17 (22.1%) 5 (19.2%) 12 (23.5%)

Once per day 24 (31.2%) 9 (34.6%) 15 (29.4%)

More than once per day 36 (46.8%) 12 (46.2%) 24 (47.1%)

Antibiotic use in pregnancy [n (%)] X2(1) = 1.07, p = .30

No 64 (83.1%) 20 (76.9%) 44 (86.3%)

Yes 13 (16.9%) 6 (23.1%) 7 (13.7%)

Antibiotic use while breastfeeding [n (%)] X2(1) = .056, p = .81

No 69 (89.6%) 23 (88.5%) 46 (90.2%)

Yes 8 (10.4%) 3 (11.5%) 5 (9.8%)

Antibiotic exposure in child [n (%)] X2(2) = 2.30, p = .317

None 23 (29.9%) 5 (19.2%) 18 (35.3%)

One or two courses 29 (37.7%) 12 (46.2%) 17 (33.3%)

More than two courses 25 (32.4%) 9 (34.6%) 16 (31.4%)

#Never and ,3 months combined in analyses due to low occurrence.
‘5–6 months and $7 months combined in analyses due to low occurrence.
doi:10.1371/journal.pone.0113026.t002
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Maternal obesity and phylogenetic shifts in child gut
microbiome

We next examined phylogenetic shifts in the fecal microbiome

of the children, to determine if differences in abundances of given

genera were evident. An area graph of the phyla present in all

subjects indicated that considerable variability existed across

children in the abundances of the highly abundant phyla, wherein

a wide range of ratios between Firmicutes:Bacteroidetes was

observed (Fig. 5). Mann-Whitney U-tests revealed no significant

differences in the two largest bacterial phyla in the gut, Firmicutes
(p = 0.667) and Bacteroidetes (p = 0.914) when the relative abun-

dances found in children from obese versus non-obese mothers

were compared. When analyses were conducted separately among

higher versus lower income groups, no significant effects of

maternal obesity on the child gut microbiome at the phyla level

were observed that withstood multiple test correction.

Next, genera-level abundances were examined. The Mann-

Whitney U test was used due to the skewed distributions of the

population abundances. Benjamini-Hochberg tests for multiple

comparisons were used, with a q-value set at 0.10. In the overall

sample, there were limited significant differences between children

born to obese versus non-obese mothers after multiple test

correction (Table 3). However, examination of interactions

between SES and obesity status revealed multiple associations.

Among children of high-income mothers, abundances of the

genera Parabacteroides (p = 0.008, q,0.10), Eubacterium
(p = 0.021, q,0.10), Blautia (p = 0.025, q,0.10), and Oscillibacter
(p = 0.011, q,0.010), as well as an undefined genus in Bacteroi-
dales (p = 0.005, q,0.10) differed significantly based on maternal

obesity status (Table 4). In contrast, after correction for multiple

tests, there were no significant differences between children born

to obese versus non-obese mothers in the low-income group

(Table 5).

Other behavioral and environmental influences upon the
microbiota

In addition to influence by exposure to maternal bacteria,

mothers could affect the toddler microbiome via control of the

toddler diet, as diet is a primary factor in determining population

abundances of the GI microbiota. In chi-square analyses, we

found no significant differences in dietary patterns in children of

obese versus non-obese women (Table 2). Specifically, children did

not differ significantly in duration of breastfeeding, age at which

grains/cereals or other foods were introduced, or the frequency of

consuming meat or vegetables (p’s$0.15). Children of obese versus

non-obese mothers also did not differ in the extent to which they

had been exposed to antibiotic medications (during pregnancy,

breastfeeding, or directly during childhood) or probiotics in food

or supplement form (p’s$ .34).

Because significant results in this study were found predomi-

nately in high-income dyads, we further examined potential

dietary differences in children born to obese versus non-obese

mothers in the high income group. Results also showed no

Figure 1. In the overall sample, datapoints did not cluster on a
principle coordinate analysis (PCoA) scatter-plot as a function
of maternal obesity. The beta-diversity non-parametric statistic
adonis showed that children born to obese (n = 26) versus non-obese
mothers (n = 51) had unique microbial profiles (p = 0.044). However, this
was due to greater homogeneity among the obese group as measured
with permdisp (p = 0.035).
doi:10.1371/journal.pone.0113026.g001

Figure 2. Interactive effects of maternal obesity and socioeconomic status were observed; effects of maternal obesity on the child
microbiome were primarily seen among the higher SES group. A) In the higher income group, children born to obese versus non-obese
mothers clustered (adonis, p = 0.041) and had higher homogeneity (permdisp, p = 0.003). B) These effects of maternal obesity were not seen in
children in the lower income group.
doi:10.1371/journal.pone.0113026.g002
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differences in breastfeeding duration, age at which grains/cereals

or other foods were introduced, or the frequency of consuming

meat or vegetables among children of obese versus non-obese

mothers in this group (p’s$0.13).

We also examined the potential role of three key environmental

factors that may covary with maternal obesity status and SES:

route of delivery (vaginal versus C-section), duration of breastfeed-

ing, and antibiotic exposure in mothers and children. Analyses

showed no significant associations between these factors and the

community structure of the child gut microbiome (Table S1), and

no clustering observed using PCoA (Fig. S2). Also, as described

earlier, these exposures did not differ based on maternal obesity

status (Table 2). Further analyses among the high-income group

also showed that route of delivery, maternal antibiotic use in

pregnancy/breastfeeding (combined due to low occurrence), and

antibiotic exposure in the child did not differ significantly based on

maternal obesity status (ps$ .12).

Predictive metagenome
The predictive metagenome program, PiCrust, was used to

examine if maternal obesity and other factors (duration of

breastfeeding, maternal use of antibiotics during breastfeeding or

pregnancy, child use of antibiotics, and birth route) were

associated with altered functioning of the microbial groups.

Abundances of Kyoto Encyclopedia of Genes and Genomes

(KEGG) Orthologies, or KOs, were highly similar across children

(Fig. S3). Deeper analysis of the KOs revealed that carbohydrate

metabolism was significantly lower in children born to obese

mothers. However, these differences in KO abundances did not

pass correction for multiple tests, due to low effect sizes (Table S2).

Likewise, when high and low-income participants were examined

separately, maternal obesity was not associated with any significant

differences in functional group abundance after multiple test

correction (Table S3), nor were differences detected in functional

groups based upon breastfeeding duration, antibiotic use by

mother or child, and birth route (Tables S4–S6).

Discussion

Children born to obese mothers are at greater risk for obesity in

adulthood compared to children of non-obese mothers, with odds

ratios ranging from 1.23 to 6.12 depending on sex and age

[3,37,38]. Factors including diet and genetics contribute to, but do

not fully explain this increased risk [39]. The gut microbiome may

play a clinically meaningful role; bacteria that affect metabolic

processes are transmitted from the mother to the infant during

birth and subsequently through physical contact and, in many

cases, breastfeeding [15–17]. Obese adults have different

Figure 3. In the overall sample, children born to obese versus non-obese mothers had significantly greater alpha diversity as
indicated by A) Shannon Diversity Index (SDI), a measure of overall alpha diversity; B) equitability, a measurement of evenness; C)
Chao1, an estimation of richness; and D) the total observed operational taxonomic units (OTUs) (ps ,.05; Means ±1 SE).
doi:10.1371/journal.pone.0113026.g003
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microbial community profiles in the gut [9–11], and studies show

that transplanting microbiota from obese mice into germ-free mice

can lead to increased body fat [14], illustrating that altered profiles

of microbiota can be both obesogenic and transmittable. However,

the extent to which the microbiome may contribute to the

intergenerational transmission of obesity in humans is not known.

This study provides novel evidence that maternal obesity is

related to measurable differences in the composition of the gut

microbiome in offspring, as reflected by measures of both alpha

(Shannon Diversity Index, equitability, unique OTUs) and beta

diversity (per adonis). Despite the lack of group clustering on a

PCoA, differences in beta diversity were explained using permdisp,

which indicated increased homogeneity among the microbiomes

of the obese-group and increased dispersion among the non-obese

group. Our results suggest that the relationship between maternal

obesity and the composition of the child gut microbiome remain

after accounting for paternal BMI and indicators of child body

composition, supporting an exposure rather than purely genetic

pathway. This is consistent with epidemiological studies showing

that maternal BMI is more strongly associated with obesity in

offspring than is paternal BMI [4,5]. In addition, in metagenome

function analyses using PiCRUST, lower abundances of commu-

nities related to carbohydrate metabolism were observed in

children born to obese versus non-obese mothers, although this

result did not remain significant after statistical correction for

multiple comparisons.

Importantly, effects of maternal obesity on the composition of

the gut microbiome in offspring were stronger and more consistent

among those born to mothers of higher socioeconomic status (SES)

as defined by income and/or education. Specifically, when higher

and lower income groups were examined separately, differences in

beta diversity in relation to maternal obesity (per adonis/permdisp

and PCoA) were evident only in the higher income group, as were

multiple measures of alpha diversity. Less dispersion of profiles

among children born to obese compared to non-obese mothers,

particularly among those of high SES, indicates that these children

are developing microbial profiles typified by greater homogeneity

of community structures. Additional studies are needed to

determine if similar effects are present in older children,

adolescents, and adults.

Also demonstrating effects of socioeconomic status, among the

high-income group only, children born to obese versus non-obese

mothers had greater abundances of Parabacteroides spp., Oscilli-
bacter spp., and an unclassified genus of the order Bacteroidales as

well as lower Blautia spp., and Eubacterium spp. Of note,

differences in Eubacteriaceae, Oscillibacter and Blautia have been

found in prior studies of diet and obesity [40–42], but the clinical

relevance of these bacterial types in affecting obesity risk is not

fully understood. Also, when PiCRUST was used to examine

metagemone function based on obesity status in the higher income

group only, no significant differences were found.

The mechanisms underlying the interaction between maternal

obesity and SES in predicting the composition of the child gut

microbiome are not known. Obesity is a health condition with

multifactorial origins, both genetic and behavioral (i.e., diet,

physical activity). Research on the true interaction between social-

environmental and genetic factors (i.e., moderating effects) is

sparse. However, among obese adults, the relative contribution of

Figure 4. As with measures of beta diversity, differences in alpha diversity in relation to maternal obesity were seen predominately
in the higher SES group. In the higher-income group, children born to obese versus non-obese mothers had significantly higher A) Shannon
Diversity Index, B) equitability, C) Chao1 estimation, and D) observed operational taxonomic units (OTUs) (ps#0.05). In contrast, in the lower-income
group, no significant effects of maternal obesity on alpha diversity indicators were observed (E–H).
doi:10.1371/journal.pone.0113026.g004
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genetic versus behavioral factors may differ in those from higher

versus lower socioeconomic backgrounds [43]. Relatedly, the

extent to which maternal obesity confers measureable changes to

the gut microbiome of offspring may differ based on the etiology of

maternal obesity.

Our finding of higher SDI among children of obese versus non-

obese mothers contrasts prior research linking obesity with lower

alpha diversity [9,44]. However, previous studies have focused on

adults or used mouse models with experimentally-induced obesity.

This is one of the first studies to ascertain SDI among toddlers as a

function of maternal obesity. Higher SDI in children born to obese

mothers may reflect interactions between their unique beta-

diversity community profile and age-related effects, possibly down-

regulated immune surveillance or reduced GI motility, which

could result in greater growth and diversification of microbial

groups. Due to the novelty of the study, further investigation is

required.

In early life, parents largely control the diet of the child, and

tend to offer solid foods that reflect their own adult diets [45]. Diet

can substantially affect the composition of the gut microbiome

[40,46,47]. In our sample, we found no differences in the children

from obese and non-obese mothers in terms of breastfeeding

behavior, age at which solid foods were introduced, or the current

frequency of consumption of meat, vegetables, and cereals/grains

regardless of maternal SES. This suggests that diet did not explain

the observed differences in the children’s gut microbiome related

to maternal obesity and SES. However, this study did not include

detailed food diaries that would capture the volume and quality of

foods (e.g., high versus low fat meats) consumed. Thus, the

possibility remains that differences in feeding behaviors contribute

to the observed association with maternal obesity and/or the

interaction between maternal obesity and SES.

In addition, other key factors that can affect the gut microbiome

including antibiotic exposure, breastfeeding, and route of delivery

were examined, but did not account for the observed effects of

maternal obesity, or the interaction between maternal obesity and

SES. After correction for multiple comparisons, there were not

significant differences in individual KOs based upon these factors.

Moreover, as described, these factors did not differ significantly

based on obesity status, regardless of maternal SES. However, the

role of such factors requires further attention.

If continued research supports the notion that obese mothers

may pass obesogenic microbiota to their infants, interventions

could target manipulation of maternal vaginal and gut micro-

biome. Prior research has shown that administration of antibiotics

during the delivery process reduces vaginal Lactobacillus spp.

levels in the mother and corresponds to lower levels of lactobacilli

in oral samples from newborns [48]. In this case, these effects are

potentially detrimental, as early colonization with Lactobacillus
spp. may have a preventative role in the development of allergic

diseases. However, such studies demonstrate that interventions

that affect population abundances in the mother can have

downstream effects in the neonate’s own microbial structure.

A strength of this study is a focus on children between 18 and 27

months of age. Prior studies have shown that infants of obese

mothers have differences in the gut microbiota, specifically the

numbers of Bacteroides spp. and Staphylococcus spp. in the stool

[18]. However, the microbiota are characterized by a lack of

consistency and high volatility during the first year of life [19].

These profiles generally stabilize and increase in diversity, more

Figure 5. Across individuals, there was considerable variance in the Firmicutes:Bacteroidetes ratio, as shown. However, there were no
differences between the children born to obese versus non-obese mothers in abundances of the major phyla, Firmicutes (p = 0.667) and Bacteroidetes
(p = 0.914).
doi:10.1371/journal.pone.0113026.g005
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Table 3. Top 20 Most Abundant Genera.

Normal Weight Obese

Bacteroides spp. 36.2463.76 27.3564.33

Lachnospiraceae; Other 19.3162.89 13.3762.44

Dialister spp. 5.5161.67 7.7162.05

Faecalibacterium spp. 5.6061.46 6.9662.24*

Prevotella spp. 2.8561.44 9.4663.94

Unclassified Clostridiales 5.2260.60 4.4460.73

Roseburia spp. 2.9760.41 4.5261.21

Veillonella spp. 3.3160.93 2.2561.62

Ruminococcaceae; Other 2.0060.61 2.4260.91

Parabacteroides spp. 1.7860.61 2.0460.57

Escherichia/Shigella spp. 1.5460.79 1.0960.46

Alistepes spp. 1.1160.34 1.8860.92

Ruminococcus spp. 1.7060.86 0.6160.30

Unclassified Bacteria 1.0960.09 1.4460.17

Akkermansia spp. 0.6060.27 1.8861.54

Klebsiella spp. 0.0360.02 2.8162.65

Unclassified Bacteroidales 0.6760.09 0.8260.11

Eubacterium spp. 0.8060.26 0.3460.13**

Oscillibacter spp. 0.4360.09 1.0060.35

Coprobacillus spp. 0.2860.13 1.0060.81

Data are the mean relative abundance 6 standard error.
**p,.05 vs. Non-Obese, passed correction for multiple comparisions.
*p,.05 vs. Non-Obese.
doi:10.1371/journal.pone.0113026.t003

Table 4. Top 20 Most Abundant Genera Among High-Income Subjects.

Normal Weight Obese

Bacteroides spp. 30.6564.59 31.2465.86

Lachnospiraceae; Other 20.9463.99 11.1362.71

Dialister spp. 6.8562.50 5.6162.66

Faecalibacterium spp. 5.8361.86 5.9261.64

Prevotella spp. 3.0661.90 11.7966.71

Unclassified Clostridiales 5.8560.86 3.8760.66

Roseburia spp. 3.6860.57 6.0962.12

Veillonella spp. 4.5561.36 3.4163.00

Parabacteroides spp. 1.6660.91 3.0360.94**

Ruminococcaceae spp. 1.2860.25 3.1061.67

Escherichia/Shigella spp. 2.2461.21 0.6660.34

Alistepes spp. 0.9360.45 2.1461.52

Ruminococcus spp. 1.4061.02 0.9660.55

Unclassified Bacteria 1.0760.12 1.3660.19

Eubacterium spp. 0.9260.38 0.4160.23**

Unclassified Bacteroidales 0.5360.08 1.0160.14**

Akkermansia spp. 0.7060.41 0.4560.26

Oscillibacter spp. 0.2860.08 1.1860.60**

Blautia spp. 0.5360.23 0.3260.25**

Unclassified Peptostreptococcaceae 0.5360.30 0.3260.22

Data are the mean relative abundance 6 standard error.
**p,.05 vs. Non-Obese, passed correction for multiple comparisions.
doi:10.1371/journal.pone.0113026.t004
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closely resembling adult profiles, when the range of dietary

exposures for the child expands [20,49]. Thus, the current data

extend prior findings and support the hypothesis that early life

exposures may have lasting effects on the gut microbiota.

However, considerable variability of the major phyla is still a

hallmark of the 18–27 month old child microbiota. In future

studies, long-term and longitudinal examination through early

childhood and adolescence would be highly valuable in explicating

the extent to which observed effects persist and ultimately

influence weight.

This study utilized deep pyrosequencing technology which adds

upon prior studies by allowing for whole bacterial community

profiling of the toddler microbiome. Utilization of this technology

allowed increased sensitivity in detecting differences in the

gastrointestinal microbiota community structure between children

born to obese and non-obese mothers. PiCRUST was used for

prediction of metagenome function based upon 16 s rRNA

abundances. As reviewed, some effects in relation to maternal

obesity were suggested, but these did not remain significant after

correction for multiple tests. Unique microbial profiles would be

expected to result in differences in microbiome function. True

metagenomic shotgun sequencing will likely provide greater power

to examine effects of factors such as maternal obesity on the

function of the microbiota in children.

In this study, parental BMI as well as children’s body

composition indicators (height and weight percentile) were

collected via maternal report rather than direct measurement.

Current maternal BMI was not the focus because 1) maternal BMI

may have changed considerably since the target pregnancy (e.g.,

due to weight retention after the target pregnancy or subsequent

weight gain) and 2) women were of childbearing age, thus a

meaningful proportion were pregnant with another child at the

time of data collection. Prior studies suggest that among women of

reproductive age, BMI classified by self-reported height and

weight is generally accurate, resulting in correct categorization of

84%–87% and an underestimate in BMI of 0.8 kg/m2 [50,51].

Because BMI by self-report tends to be slightly lower than true

BMI, effects of maternal obesity on outcomes of interest may be

underestimated in the current study. In addition, this study did not

include collection of maternal specimens, such as vaginal or fecal

samples, which would permit profiling of maternal microbial

communities. This is clearly a critical next step in establishing a

direct link from maternal to child microbial profiles.

In conclusion, obesity is a worldwide public health issue.

Identification of modifiable early life antecedents is key to

addressing this disease process. A rapidly growing body of

literature indicates that the gut microbiome plays a critical role

in the development of obesity. Adding to this literature, the current

study provides novel evidence that maternal obesity is associated

with different microbial profiles in offspring 18–27 months of age.

The potential role of the gut microbiome in this intergenerational

transmission of obesity risk warrants further attention. In

particular, the stability of such effects into later childhood and

adolescence, the clinical relevance of abundances of specific

bacteria in conferring risk for obesity, and the ultimate impact of

early life microbial profiles on long-term weight trajectory remains

to be explicated.

Supporting Information

Figure S1 Indicators of socioeconomic status (SES),
maternal education (A) and income (B) did not predict

Table 5. Top 20 Most Abundant Genera Among Low-Income Subjects.

Normal Weight Obese

Bacteroides spp. 46.4965.97 22.8166.47*

Lachnospiraceae; Other 16.3363.74 15.9964.25

Faecalibacterium spp. 5.1962.42 8.1964.58

Dialister spp. 3.0561.06 10.1663.14

Unclassified Clostridiales 4.0660.57 5.1261.39

Prevotella spp. 2.4662.19 6.7664.79

Ruminococcaceae; Other 3.3461.64 1.6460.45

Klebsiella spp. 0.0160.00 5.7665.75

Roseburia spp. 1.6560.35 2.6960.63

Akkermansia spp. 0.4260.18 3.5563.33

Parabacteroides spp. 1.9960.49 0.8760.34

Alistepes spp. 1.4260.52 1.5861.00

Ruminococcus spp. 2.2361.61 0.2060.08

Unclassified Bacteria 1.1360.13 1.5560.30

Veillonella spp. 1.0360.50 0.8960.41

Coprobacillus spp. 0.1160.05 1.8861.75

Escherichia/Shigella spp. 0.2760.14 1.6060.92

Unclassified Bacteroidales 0.9260.19 0.5960.15

Oscillibacter spp. 0.7260.18 0.7860.34

Megasphaera spp. 1.0660.85 0.0260.02

Data are the mean relative abundance 6 standard error.
*p,.05 vs. Non-Obese; did not pass correction for multiple comparisons.
doi:10.1371/journal.pone.0113026.t005
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differences in the offspring microbiota community
structure.
(TIF)

Figure S2 Other key factors which may impact the gut
microbiome were not associated with differences in
community structure, including (A) birth route (B)
antibiotic use by the mother while breastfeeding (C)
antibiotic use during pregnancy (D), child antibiotic use
or (E) duration of breastfeeding.
(TIF)

Figure S3 KEGG Orthologues (KOs) were highly similar
across individuals. PiCRUST was used to predict metage-

nomic function of the child microbiome. An area graph produced

by QIIME indicated that overall abundances of KOs were similar

across samples.

(TIF)

Table S1 Potential Impacts Upon the Offspring Micro-
biota.
(DOC)

Table S2 KEGG Orthologues.
(DOCX)

Table S3 KEGG Orthologues among High-Income Sub-
jects.

(DOCX)

Table S4 KEGG Orthologues.

(DOCX)

Table S5 KEGG Orthologues.

(DOCX)

Table S6 KEGG Orthologues.

(DOCX)
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