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Abstract

Tissue development and disease progression are multi-stage processes controlled by an evolving 

set of key regulatory factors, and identifying these factors necessitates a dynamic analysis 

spanning relevant time scales. Current omics approaches depend on incomplete biological 

databases to identify critical cellular processes. Herein, we present TRACER (TRanscriptional 

Activity CEll aRrays), which was employed to quantify the dynamic activity of numerous 

transcription factor (TFs) simultaneously in 3D and networks for TRACER (NTRACER), a 

computational algorithm that allows for cellular rewiring to establish dynamic regulatory networks 

based on activity of TF reporter constructs. We identified major hubs at various stages of culture 

associated with normal and abnormal tissue growth (i.e., ELK-1 and E2F1, respectively) and the 

mechanism of action for a targeted therapeutic, lapatinib, through GATA-1, which were confirmed 

in human ErbB2 positive breast cancer patients and human ErbB2 positive breast cancer cell lines 

that were either sensitive or resistant to lapatinib.
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Introduction

Many biological processes are dynamic in nature, such as tissue regeneration or tumor 

progression. The active cellular processes that control those evolving phenotypes change 

with time. Time-series microarrays, RNA-seq and phosphoproteomics are common 

techniques to follow cellular dynamics, but they rely on incomplete biological databases to 

determine the most relevant active processes1,2. Meanwhile, transcription factors (TFs) are 

powerful regulators of cellular responses, as well as the liaison between signaling and gene 

expression. TF activity, which results from the integration of intracellular and extracellular 

signals within the signal transduction network, can lead to subsequent changes in gene 

expression. Here we present transcriptional activity cell arrays (TRACER), a technology that 

enables the monitoring of the dynamic activity of a multitude of TFs in 3D over tissue 

formation time scales in real time.

The complexity of intracellular signal transduction networks provides the robustness and 

versatility necessary for the regulation of normal cellular processes, yet this complexity also 

makes challenging the identification of critical signals driving dysregulated growth in cancer 

progression. In cancer research, biomarkers are being actively pursued to predict patient 

prognosis or to serve as novel therapeutic targets3, of which ErbB2 (HER2/Neu) is a leading 

example4. ErbB2 is overexpressed in 25–30% of breast cancers and is associated with 

aggressive cancer biology5. Several drugs have been developed to target ErbB2, such as 

trastuzumab (Herceptin; Genentech) or lapatinib (Tykerb; GlaxosmithKline), but not all 

ErbB2 overexpressing patients respond6, and resistance can develop in those that do7. The 

impact of constitutive ErbB2 signaling on dynamic activity within the intracellular signal 

transduction network on the time scales of tissue formation has not been well characterized. 

Moreover, an improved mechanistic understanding of currently available anti-ErbB2 agents 

could be employed to discriminate the agent or combination of agents that would be most 

efficacious based on the tumor biology, thereby further refining personalized therapeutic 

strategies.

Herein, TRACER8,9 is applied for the large-scale real-time quantification of dynamic TF 

activity associated with constitutive ErbB2 signaling during the development of mammary 

epithelial cells into pre-invasive structures. TF activity is obtained through parallel delivery 

of TF reporter (TFr) constructs in an array, with bioluminescence imaging employed for 

dynamic quantification. The array is also implemented to investigate the mechanism of 

action for a targeted ErbB2 therapeutic, lapatinib. We generated dynamic networks based on 

activity of the TFrs resulting from constitutive ErbB2 activity, which correlate with 

observed phenotypes, and provide insight into the mechanism of action of lapatinib, using 

TRACER data in combination with prior biological knowledge, inference methods and 

optimization techniques. The ability to define TF dynamics at a large-scale presents a 

strategy towards identifying key cellular processes associated with normal and dysregulated 

cell growth, as well as the mechanisms underlying the effects of therapeutic agents.
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Results

Constitutive ErbB2 activity leads to dysregulated growth

The cell line MCF10A/ErbB210, referred to as 10A/ErbB2, exhibits ErbB2 dimerization and 

constitutive activity in the presence of a dimerizing agent (DA). 10A/ErbB2 cells, 

expressing inducible ErbB2 homodimers, formed large highly disorganized structures within 

basement membrane extract (BME) over a period of 10 days in the presence of DA. 

Untreated control and cells treated with EGF resulted in the formation of spherical 

structures, with EGF stimulation producing larger spheres. The phenotypic differences in 

structures formed by DA treated and untreated cells became more pronounced as time 

progressed. β-catenin, a marker for epithelial cell-cell junctions, was strongly localized to 

the basal lamina for all structures with some lateral localization within cells on the structure 

perimeters, indicating that the cells have not lost their adhesiveness (Fig. 1A–B).

We subsequently investigated TFr activity for 10A/ErbB2 cells growing in BME using an 

improved viral technology based on previously established TRACER11 that enable longer 

experimental times. Cells were parallel transduced with 23 TF firefly luciferase (FLuc)-

based lentiviral reporter constructs (Supplementary Table 1) and a control construct with a 

TATA-box for basal FLuc expression (TA). 10A/ErbB2 cells expressing reporter constructs 

were seeded in BME in parallel, with bioluminescence imaging used to quantify TFr 

activities at multiple time points. Light measured in wells containing transduced cells was 

consistently above background levels observed in control wells with blank BME, persisted 

throughout the experimental time course, and normalized TFr activity was highly consistent 

between samples and experiments (Supplementary Fig. 1). Clear differences were observed 

in TFr activities between the treatments. Constitutive ErbB2 dimerization induced by DA 

increased the activity of more constructs relative to EGF treatment (Fig. 1C, Supplementary 

Table 2). Interestingly, constitutive ErbB2 signaling revealed activation of multiple TFrs at 

the later time points, such as E2F1, SP1, SRE, STAT and YY1 reporters. In contrast, EGF 

stimulation induced a more transient response that largely resolved after 3 days in culture.

TFr activity was analyzed for consistency with available transcriptomic data from MCF10A 

cells grown in BME that were untreated or treated with EGF at 1.5, 3, 5, 7, 9 days12. We 

computationally determined the most likely active TFs that regulated the differentially 

expressed genes (fold change FC ≥3 and p-value ≤ 0.001) by predicting TF binding sites in 

the promoter regions of those genes using available position weighted matrices (PWM) from 

TRANSFAC13. TFr activities measured by TRACER and those predicted by transcriptomics 

show that TRACER had a medium high sensitivity, 0.75, indicating that TRACER correctly 

identified activated TFs predicted from the gene expression profiles in the microarray data. 

The specificity of TRACER was similar, 0.72(Supplementary Fig. 2). Specifically, 

predictions of TF activity from the microarray data for MCF10A cells treated with EGF 

confirmed the activity of ELK1, IRF1, NFAT, NFKB, STAT1 and STAT4 when 10A/ErbB2 

cells are treated with EGF. While TRACER was highly consistent with microarray data, 

some results differed, which is not unexpected for large-scale data. The microarray data did 

not predict activation of CRE, HIF or SP1 in EGF stimulated MCF10A cells 

(Supplementary Fig. 2). The activity of those non-predicted reporters may reflect binding of 
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alternative TFs with currently unavailable PWMs or just being the result of the false 

negative predictions of the computational method employed.

A dynamic TFr regulatory network was subsequently developed in order to identify 

potential causal relationships between the TFr that were activated or deactivated upon 

treatment of 10A/ErbB2 cells with EGF or DA. Network topology was determined using 

NTRACER, by applying multiple inference methods (partial least square regression (PLSR), 

mutual information and Bayesian networks) to the TFr activity data obtained from the 3D 

TRACER, combined with literature curated protein-protein, protein-DNA and indirect 

interactions between the different stimuli and the TFs obtained from TRANSFAC14, IPA 

(Ingenuity® Systems, www.ingenuity.com) and GeneGO (MetaCore from Thomson 

Reuters). The resulting network contained 675 TFs and more than 1000 connections. An 

initial network topology was obtained by combining the inferred network with the simplified 

prior knowledge network (PKN), whose nodes represent treatments given to the cells (i.e., 

DA or EGF) and the significant TFrs. The inferred network and PKN overlapped for 13% of 

the total number of the interactions, indicating that TRACER identified novel interactions 

that have not been captured by other experimental techniques. Of note, the interactions 

determined by the ensemble of inference methods (53% of the total number of connections) 

may not be direct, but indirect TF-TF interactions, such as phosphorylation or 

dephosphorylation of proteins responsible to the activation or deactivation of TFs, which are 

not included in the PKN. Finally, the network topology allowed for inhibitory mechanisms 

(InhM) that are not easily described by TF-TF interactions alone, such as receptor 

endocytosis or degradation, apoptosis or standard dephosphorylation of the activation site 

for the TF that led to a decline in TF activity.

The active edges between nodes at various time points were identified using a modification 

of CellNOptR15, which minimizes the difference between the experimental data and the 

output of the logic model using a genetic algorithm. Data were modeled as a three-level 

Boolean paradigm, where TFrs and treatments are the nodes and the edges or gates indicate 

the relationship between them, (i.e., activating or inhibiting). Consensus networks yielded 

distinct dynamic patterns of activity within the TFr network upon treatment of 10A/ErbB2 

cells with either DA or EGF (Fig. 2) and revealed two types of key reporters. First, reporters 

that are directly affected by the external stimuli, in the case of DA and EGF included the 

nodes AP1 (Fig. 2A) and ELK-1 (Fig. 2G) for instance. These nodes represent the initial 

connections between the external stimulus and the intracellular activity. The second type of 

reporter included those that serve as hubs, which have large numbers of connections to other 

nodes in the network, and thus disseminate the signal throughout the network. These hubs 

may differ between time points, and thus they are dynamic. For stimulation with DA, AP1 is 

a hub between 5 to 7 days of culture indicated by 7 out-going connections (Fig. 2D). 

Between days 7 and 10, AP1 has 2 out-going connections, similar to SRF (Fig 2E). Taken 

together, the hubs identified during ErbB2 dimerization and after EGF treatment were 

distinct, and the timing at which these TFrs served as hubs similarly varied.

Construction of the dynamic networks made it easy to visualize that ErbB2 dimerization 

yielded maximal levels of TFr activities towards the end of the culture, while EGF primarily 

produced transient TFr activity between days 1 and 5. Cells activated through ErbB2 
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dimerization responded with a slow activation of TFr up to 5 days in culture. Between days 

5 to 7, numerous TFrs became activated through E2F1, YY1 and STAT3 reporters, with the 

AP1 reporter being the hub with the most outgoing connections between those time points. 

A majority of the TFr constructs had increased activities toward the end of culture, while the 

P53 reporter was down-regulated through PTTG and AP1 reporters. In contrast, EGF 

stimulation induced ELK1 reporter activity by day 2, which served to control the activation 

of numerous other TFrs. ELK1 reporter also functioned as a hub, along with NFkB and SP1. 

Activated TFrs had their activities decline to basal levels (i.e., untreated 10A/ErbB2 cells) 

by day 5, with some TFrs having activity dropped below control by day 10. Taken together, 

EGF stimulation was translated as a transient activation of ELK1 reporter, whereas ErbB2 

dimerization and constitutive activity were translated through the network to increase 

activity of E2F1, YY1 and STAT3 reporters at later times of culture.

Next, we examined patient data to investigate the translational relevance of the dynamic TF 

network to two breast tumor subtypes: ErbB2 positive (ErbB2+) and triple negative (TN). 

Analysis of transcriptional data from The Cancer Genome Atlas (TCGA) identified 143 

genes that were differentially expressed between ErbB2+ and TN tumors (FC ≥1.2 and p-

value≤0.01). Analysis of the promoter regions of differentially expressed genes revealed that 

ErbB2+ tumors had significantly activated E2F4, STAT1 and STAT5A (Fig. 3) relative to 

TN tumors. Our dynamic TF network identified that the E2F1 reporter had increased activity 

at later times in culture, and E2F4 would be expected to bind the E2F1 reporter 

(Supplementary File 1). Furthermore, the activation of STAT1 and STAT5A in the ErbB2+ 

tumors is consistent with the increased activity through the STAT1 reporter (Supplementary 

File 1), which had increased activity in our dynamic TF network. The differential gene 

expression did not support increased activity for the other TFs (AP1, SRF and YY1) in the 

ErbB2+ tumors.

Mode of lapatinib drug action within induced 10A/ErbB2 cells

We subsequently investigated the mechanism of action for lapatinib. 10A/ErbB2 cells 

growing in BME were stimulated with DA and subsequently treated with lapatinib or no 

therapeutic. At 3 d of culture, lapatinib treatment reduced viability by approximately 80% 

compared with untreated cells, consistent with a similar study16. A 3D TRACER was 

subsequently applied to lapatinib treatment of DA-treated 10A/ErbB2 cells growing in 

BME. Lapatinib treatment resulted in activity of numerous TFrs at day 1 and day 2 of 

culture, with significant reductions in activity for all reporters (except P53) at day 3, which 

coincided with the significant decrease in cell viability (Fig. 4A). The TFrs with greatest 

activity change at day 1 were E2F1, ELK1, GATA, P53 and STAT4, which may suggest 

that the TFs that bind to those reporters are the downstream targets of lapatinib 

(Supplementary Table 3).

Lapatinib most directly increased activity of ELK1, GATA, P53, and RAR reporters (Fig. 

4B–D), with SP1 and STAT4 reporters being the initial dynamic hubs that modulated the 

activity of many of the remaining TFrs. After 2 days of culture, NTRACER infers that E2F1 

reporter activity was inhibited by factors associated with GATA, P53 and SP1 reporters. At 

3 days in culture, most TFrs had activity that decreased relative to day 2 and were similar or 
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had decreased activity relative to pre-lapatinib treatment. The P53 reporter was the sole 

exception, which had activity increased relative to day 0 that served to decrease activity of 

E2F1 and CMYC reporters. This decrease in TFr activity relative to day 2 may result from 

apoptosis of cells as the cell viability decreased (Supplementary Fig. 3). We subsequently 

investigated the hypothesis that GATA was a key factor modulating the biological effects of 

lapatinib. GATA was selected as its reporter construct had increased activity at the initial 

time point, yet the modeling predicted a down-regulation of E2F1 reporter by day 2. E2F1 

has multiple cellular functions such as cell proliferation and p53 dependent and independent 

apoptosis17. Multiple TFs can bind to GATA reporter (Supplementary File 1), and GATA1 

was investigated as literature reports connect GATA1 to E2F, specifically E2F418, and its 

role in regulating growth in other cell types19. To test our hypothesis, Western blotting for 

cells with and without lapatinib treatment revealed increased levels of phosphorylated 

GATA1 after 1 d of lapatinib treatment, consistent with its increased activity (Fig. 5A–B). 

Subsequently, we confirmed that the GATA reporter could identify changes in GATA1 

activity. Overexpression of GATA1, confirmed with Western blots (Supplementary Fig. 4), 

led to increased activity through the GATA reporter (Fig. 5C), and produced smaller and 

less disorganized 3D structures after ErbB2 dimerization with DA (Fig. 5D–E). Cell 

viability was decreased with overexpression of GATA1, with measurement of viability 

similar to levels measured for 10A/ErbB2 cells treated with lapatinib (Fig. 5F). However, 

lapatinib treatment of GATA1 overexpressing cells led to a further decrease in viability. 

These phenotypic results and protein analyses are consistent with lapatinib treatment acting, 

in part, through activation of GATA1.10A/ErbB2 only included the intracellular domain of 

ErbB2 and, hence, the therapeutic antibodies trastuzumab and pertuzumab did not stimulate 

the key TFrs found using lapatinib (Supplementary Table 3 and Supplementary Fig. 5). 

Notably, these studies were performed for 3D culture, which has been proposed as essential 

for investigating mechanisms of drug action 20, as drug mechanisms can differ between 2D 

and 3D culture.

Finally, the translational relevance of these dynamic TF networks was investigated using 

human ErbB2+ cell lines (i.e., BT474 and SKBR3). Analysis of transcriptomic data for 

lapatinib sensitive ErbB2+ cell lines21, 22 identified a total of 592 genes that were 

differentially expressed upon lapatinib treatment relative to control. For this differential 

gene expression, a significant increase was not observed for the ELK-1, P53 or RAR targets. 

However, a significant enrichment of GATA1 targets was observed (Fig. 6A). Conversely, 

in a BT474 lapatinib insensitive cell line, 680 differentially expressed genes were identified 

and the GATA1 target enrichment was not observed (Fig. 6B).

Discussion

We have applied 3D TRACER arrays to analyze dynamic TF activity in a model of cancer 

progression and in response to a targeted therapeutic. These arrays monitor intracellular 

signaling on a large scale with parallel delivery of TFrs8, 9. Herein, TRACER employed 23 

TFrs, which has the potential to be expanded (approximately 1400 TFs in humans23). More 

traditional approaches for dynamic analysis of cell signaling include microscopic 

techniques, which can analyze few pathways24, time series transcriptomics25 and 

proteomics2. The latter omics methods have greater coverage than TRACER as they 
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quantify the abundance of >10,000 cellular components (i.e., mRNA, proteins), with 

pathway activity inferred indirectly from expression level26. Phosphoproteomics can be a 

more direct measure of pathway activity, but there are constraints on the extent to which 

post-translational modifications can be characterized27. The activity measurements from 

TRACER offer the potential to identify key TFrs associated with cellular processes. The 

promoter region of each TF reporter construct may bind multiple TFs, and identifying the 

specific TFs that are active at the promoter region can be accomplished through validation 

with omics data (e.g., microarrays) or biological techniques such as overexpression, 

knockdown, or Western blotting. Interestingly, and unlike other methods, quantification is 

compatible with 3D culture of cells in hydrogels and over time scales that support formation 

of multicellular structures over multiple weeks that resemble the range of pathologies of 

native tissues28. Relative to growth on 2D polystyrene, cells growing in 3D matrices can 

exhibit differential responsiveness to chemotherapeutics that more faithfully represent 

patient responses29. Importantly, TFr activity is quantified through non-invasive 

bioluminescence imaging, and the cells were repeatedly imaged, thus the cost of the array 

does not scale with the number of measured time points, as cells are not lysed.

TRACER provides data with two unique aspects: firstly, the experimental determination of 

TF activity, and secondly, TF activity is monitored dynamically over several days. These 

unique aspects motivated the development of the computational approaches (Supplementary 

Fig. 6). Analysing dynamic TFr activity data involved generating dynamic networks from a 

limited amount of temporal data and employing a combination of prior knowledge and an 

ensemble of inference methods. Approaches have been developed to handle inference in 

dynamic data1; however, few focus on a limited number of available time points in the range 

of days and weeks30 and most assume a static network31. The connections in TF regulatory 

networks are not necessarily present in all cells or at all times32,33; thus, we proposed to 

model our system as dynamic networks in order to capture cellular re-wiring.

Currently, no single inference method can determine all network motifs present in a 

biological network. Combining multiple inference methods takes advantage of the method 

preference for certain types of motifs34. Additionally, due to the nature of the experimental 

data, TF activity, the TF regulatory networks have encompassed multiple processes (e.g., 

transcription, translation, and possibly phosphorylation) that are represented by the edges 

between nodes. Each process can be non-linear and thus their combination is likely to be 

non-linear as well. Therefore inference methods that can handle non-linear interactions are 

included for identifying edges in non-linear processes, such as mutual information or 

Bayesian network inference methods, as well as linear inference methods such as PLSR.

Moreover, prior knowledge is commonly used in reverse engineering of networks1, 35, 

although biological databases, from which prior knowledge is acquired, are incomplete36 

and their information is not cell specific37. However, connections between nodes of the 

transcription factor (TF) regulatory network are indirect interactions of the two TFs (i.e., TF 

A binds to the promoter region of the gene that encodes TF B, or TF A binds to the promoter 

region of a gene whose production modulates the activity of TF B). The experimental 

system measures the activity of the two TFs, yet cannot distinguish between the different 

indirect pathways of interaction. The available prior knowledge is in the form of direct 
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protein-DNA interactions, and does not account for all possible indirect connections. Thus, 

inferred connections only overlap with prior knowledge connections in the case that one TF 

directly regulates the transcription of a second TF, which based on our results, occurs at 

relatively low levels (13%). Therefore, combining prior knowledge with inference methods 

incorporates connections that are established in the literature, yet allows for new cell-

specific interactions that are determined through inference.

NTRACER equally weighted both sources of information to accommodate novel 

interactions or indirect TF-TF interactions, which provided an initial network topology that 

contained multiple false positive edges originating from the union of diverse inference 

methods as well as the previously established connections obtained from the literature, as 

the connections were established from a variety of cell types. We employed a structure 

optimization methodology to identify the most likely connections present at each time point 

while penalizing network complexity, based on a modification of CellNOptR15 to 

accommodate TF-TF interactions and dynamic data, to remove false positive edges coming 

from prior knowledge as well as inference methods.

Dynamic networks identified TFrs associated with phenotypes that developed over 10 days 

resulting from ErbB stimulation. ErbB family signaling pathways have been extensively 

studied due to their implication in cancer38, with most signaling studies performed on short 

time scales (i.e., hours). We established that the E2F family was active in ErbB2+ tumors, 

specifically E2F4. Previous work in human breast cancer tumors has shown E2F4 nuclear 

expression to be associated with markers of poor prognosis39. Furthermore, increased E2F4 

expression correlated to both decreased distant metastasis and overall survival from breast 

cancer39. Additionally, our findings that STAT1 and STAT5A were highly activated in 

ErbB2+ tumors relative to TN tumors confirmed prior observations40, 41.

The combination of TFr activity data and computational analysis identified novel 

mechanisms for lapatinib action. Lapatinib was found to exert its effects through activation 

of GATA1 in the 10A/ErbB2 cells, and also two more clinically relevant breast cancer cell 

lines (BT474 and SKBR3), which were derived from ErbB2+ breast cancer patients. 

Collectively, these findings support the capacity of our systems biology network assessment 

to identify hubs of TF activity that may translate into drug targets and also inform 

mechanisms of drug action and resistance. Notably, these studies were performed for 3D 

culture, which has been proposed as essential for investigating mechanisms of drug action20.

Materials and methods

Cell line and maintenance

10A/ErbBB2 cells10, generously provided by Dr. S. K. Muthuswamy, Cold Spring Harbor 

Laboratory, Cold Spring Harbor, NY, were cultured using DFCI-1 media described 

previously42

3D cell culture

10A/ErbB2 cells were cultured in BME (Trevigen, Gaithersburg, MD) using the cell overlay 

technique43 on 16-well chamber slides (Nalgene Nunc International, Rochester, NY). Cold 
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BME solution was diluted to 12 mg/ml and 40 μl was added to wells and incubated at 37°C 

for 45 min to solidify. 10A/ErbB2 cells in DFCI media containing 5 ng/ml EGF and 2% 

(v/v) BME were subsequently seeded on top of BME underlay (2250 cells/well). After 3 d 

of culture, media was removed and replaced with DFCI containing 2% BME and i) no EGF 

and EtOH vehicle, ii) 5 ng/ml EGF and EtOH vehicle, or iii) no EGF and 500 nM 

dimerizing agent (DA) (AP1510, ARIAD pharmaceuticals, Cambridge, MA; or B/B 

homodimerizer, Clontech). Media was changed every 3 d thereafter. A Leica microscope 

was used to capture phase images of structures every 3 d. ImageJ was used to quantify the 

areas occupied by cells in images taken with a 5x objective (at least three fields of view 

sampled from triplicate conditions, each experiment was performed with at least two 

replicates).

Immunostaining and confocal microscopy

Following 10 days of culture, cells were fixed and immunostained as described by 

Muthuswamy et al.10 with some modifications. Cells were fixed for 30 min with 4% 

paraformaldehyde, washed with phosphate buffered saline (PBS) containing 100 mM 

glycine, permeabilized with 0.5% Triton-X in PBS for 5 min, washed with 

immunofluorescence buffer (IF)10, blocked with 2% bovine serum albumin for 1 h, stained 

with mouse anti-β-catenin (1:100 dilution; Millipore, Billerica, MA) overnight, washed with 

IF, stained with anti-mouse-AlexaFluor 488 (1:500 dilution, Invitrogen, Carlsbad, CO) for 1 

h, washed with IF, counterstained with TOPRO-3 (5 μM, Invitrogen) for 10 min, and 

washed with PBS. A Leica confocal microscope fitted with a 40x immersion lens was used 

to image structures. A student’s t-test with false discovery rate adjustment was used to 

assess cell growth data.

Treatments and assessment of viability

10A/ErbB2 cells (2250 cells seeded/well) were cultured in 96-well plates (Becton Dickinson 

and Company, Franklin Lakes, NJ) using the cell overlay culturing technique. After 3 days 

of culture, 5 ng/ml EGF in media was replaced with 500 nM DA, then after another 3 d the 

following treatments were added in combination with DA: i) no additional treatment, or ii) 

1.5 μM lapatinib (Santa Cruz Biotechnology, Santa Cruz, CA). We also used two other 

ErbB2 therapeutics as negative controls, i) 20 μg/ml trastuzumab (generously provided by 

Genentech/Roche, South San Francisco, CA), and ii) 25 μg/ml pertuzumab (Genentech/

Roche), as 10A/ErbB2 cells do not contain the ErbB2 extracellular domain that is binding by 

these antibodies, trastuzumab and pertuzumab. After 3 d of treatment, alamarBlue reagent 

(Invitrogen) was used to assess viability using the manufacturer recommendation with a 

BioTek Synergy 4 plate reader. A student’s t-test with false discovery rate adjustment was 

used to assess viability.

Transfer vector constructs

An HIV-based transfer vector encoding CMV-GFP44 was modified to encode TA-FLuc 

(plenti-TA-FLuc) by exchanging the CMV-GFP cassette with TA-FLuc from the Panomics 

translucent control vector (Panomics, Madison, WI) using NheI and XbaI restriction 

enzymes. This construct was further modified to create a library of lentivirus-producing 
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transfer vector constructs with TF-responsive binding elements. Sequences derived from 

Panomics constructs were digested out of the constructs also using NheI and XbaI and 

ligated into the plenti-TA-FLuc backbone. For non-Panomics constructs, such as TCF/

LEF45, CMYC14, NOTCH146, and PTTG47, custom oligonucleotides were synthesized 

(Sigma Aldrich), annealed, and inserted into the plenti-TA-FLuc backbone using NheI and 

BglII. A vector encoding Gaussia luciferase (GLuc), TA-GLuc, was also constructed by 

transferring the GLuc gene from pCMV-GLuc (New England Biolabs, Ipswich, MA) into 

the Panomics vector using HindIII and XbaI, and subsequently following the same 

procedure as the other Panomics-derived constructs.

Lentivirus production

Lentivirus for each TFr was produced by co-transfecting HEK-293T cells with one of the 

transfer vector constructs and three packaging plasmids (pMDL-GagPol, pRSV-Rev, and 

pIVS-VSV-G)48 using techniques described previously49. Number of physical particles (PP) 

for each virus batch was determined using an HIV-1 p24 Antigen ELISA kit (ZeptoMetrix, 

Buffalo, NY). GATA1 and GFP expression lentiviral packaging plasmid pRRL-GATA1-

GFP (graciously provided by JD Crispino, Northwestern University) was used to produce 

lentiviral particles in an identical fashion as TFr transfer vector constructs.

Formation of 3D transduced cell arrays

GLuc expression was used to normalize for cell number. 10A/ErbB2 cells were transduced 

with lentivirus encoding TA-GLuc (25,000 PP/cell) by centrifugation (800 g, 32°C, 45 min) 

and cultured continually to create a stable TA-GLuc encoding cell line, which was used in 

all array experiments. To form an array, cells were transduced with lentivirus encoding TA-

FLuc or one of the TFr genes (10,000 PP/cell) by centrifugation, resuspended in media 

containing 5 ng/ml EGF and 2% BME, and seeded into wells of a black 384-well plate 

(Greiner BioSciences, Monroe, NC) previously containing BME (1000 cells seeded/well). 

Stimulations and treatments were added at times and concentrations described above.

Measuring reporter gene activities

Bioluminescence imaging was utilized to assess FLuc activity. D-luciferin (1 mM, Caliper, 

Hopkinton, MA) was added to wells and plates were incubated at 37°C for 30 min, followed 

by imaging with an IVIS 200 system (Perkin Elmer, Waltham, MA). For assessing GLuc 

activity, a GLuc activity kit (New England Biolabs) was used. Media (10 μl/well) was 

sampled and placed in a black 384-well plate. Substrate solution (20 μl/well) was added and 

luminescence was measured with a 1 s integration time using a Synergy 4 plate reader 

(BioTek, Winooski, VT). After each time point, media in wells was partially replaced with 

the addition of appropriate stimulants and treatments.

Normalization and statistical significance

Data were analyzed using R50. The initial methodology to normalize and determine 

statistical significance11 was slightly modified. Data from the array was log2 transformed 

and filtered to eliminate all intensities below background (p<0.05). Background was defined 

as the measured intensity in non-infected cells subject to the same treatment at the same time 
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and plate. Each TFrFluc intensity data point was subsequently normalized by Gluc at the 

initial experimental time, t=0 days, and multiplied by the ratio of initial measured activity to 

the average of all initial measured activities for a given TFr, such that the initial normalized 

value was the same across all conditions for the same TFr. Finally, data for each TFr were 

normalized by the control reporter, TA, and outliers were removed (p<0.01). Quality 

assessment also included at least a Pearson correlation of 0.75 intra- and inter-arrays. The R 

package limma51 was employed to determine differentially activated TFr versus initial time 

and experimental control (no treatment). False discovery rate (fdr) was used to correct for 

multiple comparisons.

Western blotting

Cells were washed with PBS and lysed with ice cold IP Lysis/Wash Buffer (Pierce) 

containing protease inhibitor cocktail (Sigma) and Halt phosphatase inhibitor (Pierce), 

followed by centrifugation and storage at −80°C. A BCA Assay (Pierce) was performed to 

quantify protein concentrations. Proteins were reduced with 20 mM DTT, resolved on a 

NuPage 4–12% Tris-Bis gel (Invitrogen), transferred to a PVDF membrane, and blocked 

overnight in TBS-T containing 5% BSA. Membranes were subsequently blotted on a 

SnapID system (Millipore) using antibodies against p-GATA1 (Assay biotech), GATA1, or 

β-actin (Santa Cruz Biotechnology) (all diluted 3:1000), and species appropriate HRP-

conjugated secondary antibodies (3:1000). HRP was detected with ECL-Plus (GE 

Healthcare) using a Typhoon imaging system. Blotting was quantified with densitometry 

using ImageJ. Sample bands were normalized to the corresponding β-actin band and then 

normalized to the average appropriate control samples. A student’s t-test with fdr adjustment 

was used to assess Western blot data.

Determination of TFr specificity

P-match13 from Explain 3.0 was selected to identify TFs that might bind to the DNA 

sequence of a given reporter. High specific PWMs from vertebrates that minimized the sum 

of false positives and negatives were selected to explore the most likely TFs that bind to a 

given DNA sequence. PWMs that predict binding to a given sequence with a core score ≥0.9 

and a matrix score ≥0.9 were deemed as significant (Supplementary File 1).

Living cell array consensus with publically available microarray data in MCF10A cell line

GSE18938 microarrays12 were downloaded from the Array Express library52. Briefly, 

MCF10A were treated with EGF or left untreated over a period of 9 days. Time-series 

HuGene 1.0st v1 arrays were background corrected using robust multi-array average 

(rma)53, quantile normalized54 and probe set summarized with the oligo package55. 

Inadequate experiments were previously removed (see supplemental methods). 

Differentially expressed probes versus the untreated MCF10A cells were identified using 

limma package and were deemed significant at a fold change, FC ≥3 and p-value ≤0.00151. 

P-match13 was exploited to identify the most likely TFs that might regulate the expression of 

such genes, using no significant genes (FC ≤ 1.001 and p-value ≥ 0.5) as a background set. 

Search was performed between −1000 to 500 base pairs with respect to the transcription 

starting site (TSS). The most significant PWMs associated with the most likely TFs were 

contrasted against the PWMs associated with each TFr (Supplementary File 1) to establish 
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whether the activity of any TFr could be altered by any of the active TF. Sensitivity and 

specificity of TRACER were calculated assuming the computational results from the 

transcriptomic measurements as reference. Results are presented in Supplementary Figure 2 

as well as the receiving operating characteristic (ROC) and precision-recall curves.

Generation of GATA1 overexpressing cells

10A/ErbB2 cells were seeded in a 6-well plate at 1.5e5 cell/cm2 and subsequently GATA1/

GFP-expressing lentivirus and Polybrene (4 μg/ml; Sigma) were added. Following 3 d in 

culture, transduction efficiency was assessed by imaging GFP expression.

Dynamic network generation

Initial network topology was originated from an equally weighted ensemble of prior 

knowledge sources and inference methods. Prior knowledge information includes directed 

human protein-DNA interactions, either proximal or distal regulation with respect to their 

TSS and external stimuli and TFs, obtained from TRANSFAC14, IPA (Ingenuity® Systems, 

www.ingenuity.com) and GeneGO (MetaCore, Thomson Reuters). An ensemble of 

inference methods was employed to determine novel connections that have not been 

explored before experimentally: PLSR56, mutual information (MI)57–60 and Bayesian 

networks (BN)61. MI methods were only considered to determine the interactions between 

the external stimuli and TFrs at the initial time point only. Inference networks from PLSR, 

MI and BN were combined with equal weights and finally merged with the prior knowledge 

network. Measurements for the cell array were taken on the time scale of days while 

signaling networks have activity that occurs on much shorter time scales62. We thus assume 

that experimental data were under a pseudo-steady state. Data were discretized in three 

levels, 1, 0 and −1, and modeled in a Boolean paradigm. Present edges at each pseudo-

steady state were identified using structure optimization, by minimizing the difference 

between the experimental data and the fit of the model. Complex structures were penalized 

to avoid over fitting. A total of 500 runs were performed and reported dynamic consensus 

networks were obtained by generating an ensemble of the top 1% networks (see 

Supplementary Methods for more details). The raw data and source code are available at 

http://www.bme.umich.edu/labs/shea/publications.php.

Testing for edge significance in the final dynamic consensus networks

The significance of edges present in the consensus networks was identified using a total of 

1000 bootstrapping samples, which were randomly generated to determine the probability of 

an edge to be present. Finally, the probability that an edge was present was compared with 

the probabilities generated by a random model using 1000 samples. An edge was deemed 

significant if it was at least three times more probable to be observed compared with the 

random model for a given time and treatment (Supplementary Figs. 7 and 8). Edges that 

were determined to not be statistically significant were removed from the consensus graphs. 

P-values for each edge were calculated based on the area under the permutation curve for the 

same probability as the given edge according to the bootstrapping runs and are summarized 

in Supplementary File 2 as well as the probability of each edge (see Supplementary Methods 

for more details).
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Dynamic network target validation in human breast cancer tumors and lapatinib treated 
BT474 and SKBR3 cell line

22 ErbB2 positive and 58 triple negative Agilent microarrays were downloaded from TCGA 

(http://cancergenome.nih.gov/). Possible TFs that could regulate those genes and are direct 

targets of ErbB2 overexpression based on the dynamic network (AP-1, STAT, SRF, E2F 

and YY families) were explored. Two additional experiments of lapatinib treated BT474, 

BT474-J4 and SKBR3 cell lines were employed in the validation studies (E-GEOD-16179 

and E-MEXP-440). The entire set of raw microarrays are not available for E-MEXP-440, so 

the significant genes obtained by O’Neil et al.63 were used in that case (see the reference for 

details on the analysis). Possible TFs that could regulate those significant genes and are 

direct targets of lapatinib overexpression based on the dynamic network (ELK-1, RAR, 

GATA and P53 families) were explored.

TF gene targets were identified in two manners. First, from experimentally validated targets 

obtained from GeneGO (MetaCore, Thomson Reuters), a list of more than 7000 interaction 

was compiled for the above TF families. Secondly, computationally predicted targets were 

extracted by exploring the promoter regions of the entire human genome, NCBI36/hg18, 

(from the Regulatory Sequence Analysis Tools, http://rsat.ulb.ac.be/) and the consensus 

mammalian promoter regions64 between −2000 to 2000 from TSS. Mammalian consensus 

and human promoter regions were investigated using MATCH65 and FIMO66 at 0.999 

matrix scores and 10−6 uncorrected p-value (Supplementary Files 3 and 4).

The most likely active TFs were calculated using a hypergeometric test for both, 

experimentally and computationally obtained targets, and a z-score test for the 

computationally acquired targets26. Results from the three different methods were 

consolidated using a meta-analysis approach for the same type of experiment (i.e, E-

MEXP-440 results and BT474 from E-GEOD-16179 were combined using the meta-

analysis method). Median chi-square values were reported due to the skew of the 

bootstrapping results.

Conclusions

We have applied 3D TRACERs to monitor long-term dynamics of intracellular signaling 

that can be connected to cellular phenotype and response to therapeutics. NTRACER 

enabled determination of key dynamic hubs, and the temporal relationship between them, 

that contribute to cellular phenotype. These findings were validated in human breast cancer 

cell lines and tumor tissue. This identification of key signaling hubs may facilitate the 

development of treatment strategies or drug combinations that will further improve 

outcomes for patients with aggressive breast cancer subtypes, including patients with ErbB2 

overexpression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Insight box

We present a new combination of experimental and computational technologies to 

quantify the dynamic activity of numerous TFs through differentiation in 3D culture, as 

TF activity is the integration of intracellular and extracellular signals that powerfully 

regulate cell fate. TRACER allows quantification of key signalling pathway activity over 

time scales of days to weeks that corresponds to complex cell fate decisions, while the 

computational approach is aimed at identifying the critical pathways that modulate cell 

fate. The potential of this experimental/computational combination was demonstrated 

through identifying TF hubs associated with normal and abnormal 3D tissue formation 

that correlated with clinical breast cancer samples, or critical TFs stimulated following 

drug treatment that identified novel mechanisms of action.
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Figure 1. Culture of 10A/ErbB2 cells in BME with different stimuli
10A/ErbB2 cells grown in BME for a period of 10 d following no stimulation or stimulation 

with EGF or DA form multicellular structures with different morphologies over time. Cells 

were imaged repeatedly with phase contrast microscopy (A) and confocal microscopy at day 

10 (B). (Scale bars represent 50 μm; red – nuclei, green – β-catenin) (C) Transduced cell 

arrays measured activities of TFrs in 10A/ErbB2 cells growing in BME following 

stimulation with no stimulant (blue), EGF (green), or DA (red). Normalized transcription 

factor reporter intensities for TFrs above the background are represented (TCF/LEF, SMAD 

and NC are excluded). Shaded areas around the average lines represent ± standard error. 

Significance TFrs under DA stimulation are highlighted with a red rectangle; under EGF 

stimulation under a green rectangle; purple rectangles indicate that the TF reporter is 

significant under both stimulations (p-value ≤0.15).

Weiss et al. Page 18

Integr Biol (Camb). Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Dynamic transcription factor activity networks upon DA or EGF treatment of 
10A.ErbB2 cells
Dynamic transcriptional consensus networks upon DA activation between 0 to day 1 in 

culture (A), day 1 to day 3 (B), day 3 to day 5 (C), day 5 to day 7(D) and day 7 to day 10 

(E). Panels F to J represent the corresponding dynamic transcriptional networks upon EGF 

activation. Treatments, TFrs and inhibitory mechanism are represented as nodes, while the 

connections between them are represented by directed edges. Active treatments are 

symbolized by green circles; inhibitory mechanism, by a red circle. TFrs that are activated 

with respect to the beginning of the culture based on their median experimental discretize 

value are purple; deactivated TFrs are orange and no change in activity is denoted by 

yellow. TFrs that are not modulated by the treatment at any of the explored experimental 

time points are represented in white. Active or present edges at a given culture time interval 

are colored in black. Activating edges end in an arrow, deactivating edges end in a T. Edges 

obtained from prior knowledge are indicated by continuous lines; identified by inferences 

methods are denoted by discontinuous lines. Those identified by both methods are marked 

by two parallel lines.
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Figure 3. Transcription factor targets overexpression in breast cancer human tumors
Chi-square in log10 scale for AP1, SRF, STATs, E2Fs and YYs families during ErbB2 

activation according to the dynamic network (Fig. 2) in ErbB2 positive human breast cancer 

tumors in comparison with triple negative human breast cancer tumors. Horizontal lines 

indicate level of significance (p-value≤0.01). Blue bars represent the overexpression of a 

given TF when considering consensus mammal promoters; red bars represent the 

overexpression of a given TF when considering just human promoters.
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Figure 4. Treatment of cells with ErbB2-targeting therapeutic and dynamic transcription factor 
activity networks upon lapatinib treatment of DA activated 10A.ErbB2 cells
A)Transduced cell arrays measured activities of TFrs in DA activated 10A/ErbB2 cells 

growing in BME following no treatment (blue), or lapatinib treatment (red). Normalized 

transcription factor reporter intensities for TFrs above the background are represented (TCF/

LEF, SMAD and NC are excluded). Shaded areas around the average lines represent ± 

standard error. Significance TFrs under lapatinib treatment are highlighted with a red 

rectangle (fdr corrected p-value ≤ 0.05). B) Dynamic transcriptional consensus networks 

upon lapatinib treatment between 0 to day 1 in culture (B), day 1 to day 2 (C), and day 2 to 

day 3 (D). See Figure 2 legend for more details.
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Figure 5. Overexpression of GATA1 decreased structure disorganization and cell viability
10A/ErbB2 cells were stimulated with DA and treated with lapatinib for 1 d and lysates 

were probed on Western blots. A) Sample bands detected for phosphorylated GATA1 (p-

GATA1), total GATA1 (GATA1), and β-actin. B) Quantification of relative p-GATA1 and 

GATA1 expression normalized to β-actin, represented by mean ± s.d. from five distinct 

samples (*** p<0.001). C) 10A/ErbB2 and 10A/ErbB2/GATA1 cells were transduced with 

GATA reporter gene and imaged with bioluminescence imaging to confirm increased 

activity. D) Sample images of 10A/ErbB2 and 10A/ErbB2/GATA1 cells growing in BME 

without and with DA stimulation for 10 d (scale bars represent 200 μm), with a 

quantification of cell coverage area (E) (solid bars – 10A/ErbB2; spotted bars – 10A/ErbB2/

GATA1). F) Relative viability of cells stimulated with DA and subsequently treated with 

lapatinib for 3 d, with significant differences indicated by letters (a, b, c, d; α=0.05). For C, 

E, and F, bars represent mean ±s.d. from at least three replicates and three distinct 

experiments (***p<0.001).
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Figure 6. Transcription factor targets overexpression after lapatinib treatment in two breast 
cancer cell lines
Chi-square in log10 scale for ELK-1, GATA, P53 and RAR families during lapatinib 

treatment according to the dynamic network (Fig. 4) in (A) BT474 and SKBR3 cell lines in 

comparison with no lapatinib treatment and in (B) a resistant BT474 cell line in comparison 

with no lapatinib treatment. Horizontal lines indicate level of significance (p-value≤0.01). 

Blue bars represent the overexpression of a given TF when considering consensus mammal 

promoters; red bars represent the overexpression of a given TF when considering just human 

promoters.
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