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Abstract

We developed a new representation of local amino acid environments in protein structures called 

the Side-chain Depth Environment (SDE). An SDE defines a local structural environment of a 

residue considering the coordinates and the depth of amino acids that locate in the vicinity of the 

side-chain centroid of the residue. SDEs are general enough that similar SDEs are found in protein 

structures with globally different folds. Using SDEs, we developed a procedure called PRESCO 

(Protein Residue Environment SCOre) for selecting native or near-native models from a pool of 

computational models. The procedure searches similar residue environments observed in a query 

model against a set of representative native protein structures to quantify how native-like SDEs in 

the model are. When benchmarked on commonly used computational model datasets, our 

PRESCO compared favorably with the other existing scoring functions in selecting native and 

near-native models.
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Introduction

Structural similarities and commonalities at various levels have been found in protein 

tertiary structures. At a global structural level, there are abundant folds that arise from 

proteins with different evolutionary histories (superfolds)1. At a smaller structural level, 

commonly occurring secondary structure arrangements have been found2, which are often 

called super-secondary structures3. Moreover, common fragment conformations were found 

in structures from proteins with different folds4-6. At the stereochemical structure level, 

interaction patterns of residues7 and bond angles in main-chains8 and side-chains9 have been 

extensively studied. Observed structural patterns are not only important for understanding 

physical nature of the protein structures but are also practically useful as a source of 

information for validating protein crystal structures10 as well as computationally predicted 

protein structure models.

*To whom correspondence should be addressed: dkihara@purdue.edu, Tel: 1-765-496-2284, Fax: 1-765-496-1189. 

NIH Public Access
Author Manuscript
Proteins. Author manuscript; available in PMC 2015 December 01.

Published in final edited form as:
Proteins. 2014 December ; 82(12): 3255–3272. doi:10.1002/prot.24658.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In protein structure prediction, commonly occurring structure units (e.g. fragments) can be 

used as building blocks of protein structure models11,12. Alternatively, observed structural 

patterns can be represented as scoring functions (e.g. knowledge-based statistical potentials) 

that guide modeling procedures11,13-15 and are also used for selecting the native structure or 

near-native structure models (often called decoys) from a pool of alternative models16,17. 

For example, pairwise residue contact potentials, which are derived from the statistics of 

physically contacting amino acid residues observed in representative protein structures, are 

one of the most frequently used scores for structure prediction7,18,19. In addition to atom/

residue contact potentials, various types of knowledge-based scores have been developed, 

which capture residues' or atoms' propensities of angles20,21, accessible surface area22, and 

number of contacts23, to name a few. Tasks of knowledge-based scores are, in principle, 

twofold: one is to build and select “protein-like” models, i.e. models that have geometrical 

features that agree with those in known structures. Another purpose is to construct sequence-

specific structures by capturing local and global sequence-structure corresponding patterns 

(the extreme is homology modeling). It is ideal if a scoring function performs well for these 

two purposes simultaneously, but it is not an easy task. There are instances that the lowest 

energy states led by physics-based potentials are not close to the native structures of 

proteins24.

In order to generate protein-like models that are also native structures, a scoring function 

must capture sequence-specific structural patterns while remaining sufficiently general to 

apply to multiple proteins. This can be achieved by describing structures at a level 

somewhere between the residue level and the whole protein level. Such structure 

representation should consider residues in their structural environment, which includes 

interactions with local and distant residues.

The concept of residue environment has been studied both computationally and 

experimentally over a decade. Manavalan and Ponnuswamy observed that surrounding 

residues for a certain residue have a biased distribution that reflects cooperativity of the 

residue pairs25,26. Karlin et al. investigated the atom density, which was defined as the count 

of atoms within a certain distance from each residue, and found that the densities differ 

depending on the residue at the center27. It was shown that the secondary structure 

prediction accuracy for residues with a high residue-wise contact order is worse than 

average, suggesting that distant contacts affect secondary structure formation28. 

Experiments have also demonstrated that the environment affects the secondary structure of 

the same amino acid sequences29,30. Following these observations, several groups developed 

scoring functions that describe residue environments or multi-residue interactions for protein 

structure predictions and structure-based function predictions. Along this line, knowledge-

based contact potentials that consider interactions between three or four residues were 

developed31-33. DeGrado and his colleagues developed an atom “microenvironment” 

potential, which consider the number of different types of atoms within a certain radius of a 

center atom34. The Levitt group developed a hydrophobicity score that considers 

hydrophobic residue interactions within a sphere of 10 Å35. Simons et al. defined a residue 

environment as the number of residues within a 10 Å sphere and used it as a part of 

definitions of the scoring function for their ab initio protein structure prediction method36. 
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Mooney et al. used a residue environment representation that captures atoms within 

concentric spheres around a Cβ atom of a residue to recognize functional sites of proteins37.

In this work, we developed a new representation of local amino acid environments in protein 

structures called the Side-chain Depth Environment (SDE). The SDE considers three 

important structural features of a residue environment: the side-chain centroids of a chain 

fragment centered on the target residue, the number of surrounding residues within a sphere 

around the target residue, and the depth of these surrounding residues. The residue depth 

quantifies location of a residue relative to the protein surface38. We chose the residue depth 

as one of the structural features because it was shown to be an effective scoring term in a 

fold recognition method22. First, we show that SDEs capture the characteristic environment 

of each amino acid. Subsequently, we show that SDEs are general enough that similar SDEs 

are found in protein structures with globally different folds. Because similar SDEs are found 

in native protein structures of different folds, they can be applied for detecting near-native 

models from a pool of decoys. Given a structure model to be evaluated, the more residues of 

the model in SDEs similar to those in known native structures, the more likely the model is 

close to the native structure.

Using the SDEs, we developed a scoring procedure for selecting native or near-native 

models from a pool of decoys (decoy selection) named PRESCO (Protein Residue 

Environment SCOre). The protocol searches similar SDEs and a main-chain environment 

named the Main-chain Residue Environment (MRE) observed in a query model against a set 

of representative native protein structures. We benchmarked the ability of native and near-

native model selection by PRESCO on decoy datasets that are commonly used for 

examining scoring functions for protein models. We show that our procedure compared 

favorably with the other existing scoring functions by significant margins.

Materials and Methods

Database of reference protein structures

We used a non-redundant protein dataset for investigating local structure similarity of 

proteins. The dataset was also used as a reference database for assessing protein structure 

models (decoys) using the residue environment scores. 4803 non-redundant protein 

structures with a resolution better than 2.0 Å and a pair-wise sequence identity of less than 

30% between each other were downloaded from the PISCES server (Oct. 17, 2008 

version)39. This set was further reduced to 2536 proteins by removing chains with missing 

residues or missing backbone atoms.

Decoy sets for native/near-native structure recognition tests

To test how well the new residue environment scores perform in discriminating native or 

near-native models from other models with poorer quality, we used four decoy sets, the 

Decoy ‘R’ Us set40, the Moulder decoy set41, the I-TASSER decoy set42, and the Rosetta 

decoy set43. In addition, we also tested the residue environmental scores on the Fiser's CASP 

model set44. Each set consists of subsets with a native protein structure associated with 

decoy structures. The Decoy ‘R’ Us set include eight sets, 4state_reduced, Fisa, Fisa_casp3, 
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Lmds, Lattice_ssfit, hg_structal, ig_structal, ig_structal_hires that consists of 144 subsets in 

total, each of which contains the native structure of a protein and on average 271.19 decoys 

of the protein. The Moulder set has 20 subsets, each of which contains 319.3 decoys on 

average. The I-TASSER set consists of 56 subsets, which contain on average 438.2 decoys. 

The Rosetta sets has 58 subsets with 100 decoys. The Fiser set consists of 143 proteins used 

as prediction targets in the CASP5 to CASP8 and their prediction models. On average there 

are 18.3 models per target.

Removal of homologous proteins from the representative structure database

When the environment score was computed for a structure model, all database proteins that 

have more than 25 % sequence identity with the target protein are excluded from the 

database. Clustal Omega45 was used for computing the sequence identity.

Local structural environment of residues, SDE

Characteristic physicochemical properties of each amino acid should reflect the structural 

environments of amino acids in native protein structures. To describe the environment of a 

residue, we wanted to consider the main-chain conformation around the residue of interest, 

the number of surrounding residues and their relative positions, and the depth of the 

surrounding residues from the protein surface. These features altogether capture multi-body 

interactions of residues in a comprehensive manner.

The residue depth is defined as the distance between a given residue and the nearest water 

molecule located close to the solvent-accessible surface38. We used the side-chain to 

represent a residue position because the residue specificity originates from side-chains and 

the side-chain packing is a dominant factor of protein folding15,46.

For a given residue in a protein structure, residues with a similar structural environment, 

SDE, in different proteins were identified by the following procedure:

1. Side-chain centroids of the target residue and structures in a reference database are 

computed. The side-chain centroid of a residue is the average positions of all heavy 

atoms in the side-chain. Atoms in the backbone are not included.

2. To ensure that residues locate in similar main-chain conformations, side-chains 

along local fragments are compared. Nine consecutive side-chain centroids along 

the protein backbone (four residues before and after the query residue) were 

compared with structures in the database and the 500 most similar fragments 

having the lowest root mean square deviation (RMSD) with the query fragments 

are kept for the subsequent steps. The rotation matrix and the translation vector 

used for aligning the two fragments are stored.

3. Next, neighboring residues within a sphere of an 8.0 Å radius centering on the side-

chain centroid of the query residue are compared with those for the 500 fragments 

stored in Step 2. Fragments are discarded if the numbers of neighboring side-chain 

centroids in the two spheres are different. 8.0 Å was chosen because an early work 

showed a residue's cooperativity is effective up to 8.0 Å26.
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4. For each of the remaining fragments, one-to-one correspondence of neighboring 

side-chain centroids in the sphere to those in the query residue is computed. This is 

done by superimposing the neighboring centroids using the stored rotation matrix 

in Step 2 and pairing side-chain centroids of the two spheres by their distances.

5. Finally, the root mean square distance of the residue depth (residue-depth RMSD) 

of corresponding neighboring side-chain centroids is computed.

Thus, similarity in residue environment indicates that the residues share similar main-chain 

conformation and the same number of neighboring residues that are located at similar depth 

in the protein structures (Figure 1).

Results

Characterization of SDEs in representative native protein structures

To begin with, we examined SDEs of amino acid residues in representative native protein 

structures. Figure 2 shows the distribution of the number of side-chain centroids within the 

sphere of 8.0 Å for each amino acid residues. Consistent with previous works47, the number 

of neighboring residues clearly reflects hydrophobicity of amino acids. Isoleucine and 

valine, the two most hydrophobic amino acids according to the Kyte-Doolittle 

hydrophobicity scale48, show the highest median, followed by leucine, phenylalanine, and 

alanine, which are also highly hydrophobic amino acids (Figure 2A). In contrast, hydrophilic 

amino acids have the least number of neighboring residues; these include arginine, lysine, 

asparagine, aspartic acid, glutamine, and glutamic acid. The average number of neighboring 

residues of each amino acid has a significant Pearson's correlation coefficient of 0.793 to the 

Kyte-Doolittle hydrophobicity scale.

In Figure 2B, we examined residues that have similar SDEs for each residue type. The color 

scale indicates enrichment of the amino acid type among residues with similar SDEs. 

Concretely, the enrichment is computed as the fraction of each amino acid among the top 40 

most similar residues divided by the background fraction of the amino acid. In all the amino 

acids except for glutamine, the identical amino acids (shown in the diagonal positions in the 

heat map) have the largest enrichment. In the case of glutamine, glutamic acid came to the 

top with a ratio of 1.88 and the glutamine itself was the close second with 1.83. Amino acids 

that are different but have similar physicochemical properties to the query amino acid tend 

to have an enrichment ratio over 1.0. Such examples include arginine, which had lysine with 

the second largest enrichment (2.44) and isoleucine, which had valine with the second 

largest enrichment. The highest enrichment, 6.88, was observed for glycine with itself. 

Proline also showed a high enrichment of 5.01 with itself. To summarize, Figure 2A shows 

that the number of side-chains within a sphere of 8.0 Å radius, which is used as a filtering 

step for finding similar SDEs, mainly contains the hydrophobicity information of residues 

whereas the residue depth (Figure 2B) further encodes residue-specific environment 

features. These results suggested that the SDE can be used for designing a scoring function 

for quantifying native-likeness of computational protein structure models.

Similar SDEs are found in proteins with globally very different structures (Figure 3). Figure 

3A shows the distribution of the residue depth RMSD of surrounding side-chain centroids of 
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SDEs in comparison with the global RMSD of protein structures where the two SDEs were 

taken from. For a SDE, the depth RMSD and the global RMSD of protein structures for the 

top 5 most similar SDEs were plotted. Global RMSDs were computed by Bioshell49. It is 

shown that the proteins with similar SDEs have very different global structure (on average 

around 13 Å) and the depth RSMD and the global RMSD have virtually no correlation. The 

same conclusion was drawn when we compared the conventional RMSD of side-chain 

centroids in SDEs against the global RMSD of the protein structures (Figure 3B). Thus, not 

only the depth RMSD but also the constellation of side-chains in SDEs does not have 

correlation to the global RMSD of the protein structures.

In Figure 4 we show examples of similar SDEs found in proteins with different folds. In all 

cases the pairs have a small depth RMSD, ranging from 0.022 to 0.037 Å. In the first 

example (Figure 4A), SDEs taken from helices of two different fold class (left: 1iib, an αβ 

class protein; right: 1ykh, α class) are shown. They have seven side-chains in the SDEs and 

their depth RMSD is 0.022 Å. In the second example (Figure 4B), similar SDEs are taken 

from globally different folds. Six residues are included in the SDEs, which are located at an 

end of a helix. The next SDE pair (Figure 4C) includes 13 residues that are distant in 

sequences. The SDE in 1e6i consists of residues in three α-helices while the one from 

1bqcA have residues from two α-helices and one β-strand. In the last pair (Figure 4D), two 

SDEs are taken from different secondary structure combinations: on the left, side-chains are 

taken from β-sheets and two α helices in 1ew4, while the SDE on the right (2bj0A) consist 

of residues from two β-sheets.

Procedure of selecting native/near-native models

In this section, we describe the procedure to evaluate decoys and to select ones from a pool 

of decoys that are likely to be the native or close to the native structures. Briefly, in the 

scoring procedure named PRESCO (Protein Residue Environment SCOre) a count will be 

accumulated for a query model if residues in the model have similar environments to those 

of similar amino acid type in representative native structures. In addition to the SDE, we 

introduce another environment score, the Main-chain Residue Environment (MRE), which 

considers main-chain fragment conformation around the target residue. In the decoy 

selection procedure, similarity of both SDEs and MREs of target residues to representative 

proteins are considered. Before providing the steps of computing PRESCO, we explain the 

MRE.

The MRE compares the main-chain conformation of the fragment of five residues centered 

on the target residue against fragments in the database of representative proteins. The 

similarity of two fragments is quantified by the RMSD of four main-chain heavy atom 

positions (N, Cα, C, and O) and the Cβ position of all the residues in a fragment. This 

representation was shown to perform better than a Cα representation of fragments in 

identifying amino acid patterns that fold into the fragment conformation50. For glycine, a 

pseudo Cβ atom position is computed using the TINKER package51.

Figure 5 gives the overall PRESCO procedure. For each of the residues in a query model, 

MRE and two SDEs of different radii, 8.0 Å and 6.0 Å, are computed. They are then 

compared with those for residues in a structure database, as represented in the three branches 
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in the flowchart. The left most branch explains steps to compute a score that comes from 

comparison of MREs of the target model to those in the representative protein structure 

database. As described in the Method section, the database consists of 2536 non-redundant 

native protein structures. For a MRE computed for a residue in the query model, the 25 

closest (i.e. lowest RMSD) MREs in the database are retrieved and sorted by their RMSD. 

This process is done for all the fragments in the model (L-4 fragments, where L is the length 

of the model). Because fragments are taken by a sliding window that moves by one residue 

at a time, a residue in the middle of the protein will be covered by 25 × 5 = 125 fragments, 

while residues close to the terminus of the chain have fewer fragments. The MRE-based 

score given to an amino acid position in a model is the weighted average of the amino acid 

similarity score between the amino acid in the query fragment and each of retrieved 

fragments. Amino acid similarity score is defined by an amino acid similarity matrix chosen 

for MRE. A weight is assigned to each retrieved fragment, which reflects similarity of the 

fragment to the query fragment. The weights and an amino acid similarity matrix used were 

determined by a small benchmark study described in the next section. Taken together, a 

MRE-based score of a query model is computed as

(Eq. 1)

where L is the length of the model, K is the number of fragments that cover the residue i. 

K=125 if the position i is between 5 to L-4, while K reduces to 25*i if i < 5 (N-terminus) and 

25*(L-i+1) if i > L-4 (C-terminus). wj is the weight given to the j-th fragment and Mai-aj(i) is 

the amino acid similarity score taken from the matrix M for the amino acid at the position i 

in the query model and the amino acid in the fragment j that is aligned with amino acid i of 

the query.

The second and the third branches represent computation of scores by comparing SDEs in 

the query models to the representative structure database. For each residue in the query 

model, two SDEs are constructed with radii of 6.0 Å and 8.0 Å. It was found that the score 

with the 8.0 Å radius gave more correct native structure selections than 6.0 Å but 6.0 Å 

worked better for a certain smaller fraction of the cases (data not shown). Then, following 

the procedure to find similar SDEs as described above, for each residue the 40 most similar 

(i.e. smallest depth RMSD) SDEs to the query SDE are selected. Then, similar to the branch 

for MRE, a score is computed for the query residue, which is the weighted sum of the amino 

acid similarity values between the query residue and residues retrieved in the database 

search. The score for a query model is the sum of the residue-based score:

(Eq. 2)

where N=40, the number of SDEs retrieved from the database and Sai-aj is the amino acid 

similarity score taken from a matrix S for residue i in the query and residue j retrieved from 

the database. The SDE-based scores for a query model is computed with the 6.0 Å (the 
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middle branch in Figure 5) and the 8.0 Å (the right branch) radii separately, which are 

subsequently compared and a larger one is chosen. Finally, the MRE- and the SDE-based 

scores will be linearly combined to yield the final score of the query model. The weighting 

scheme for the linear combination is discussed in the next section. The two scores based on 

MRE and SDE complement each other. The MRE assesses how native the structure is in 

terms of local main-chain fragment similarity, while the SDE evaluates the structure from 

the view point of side-chain packing.

Weighting schemes and amino acid similarity matrices

The combinations of weights and amino acid similarity matrices used in the PRESCO model 

evaluation procedure (Figure 5) were determined based on the native structure selection test 

performed on 30 decoy target sets, which were randomly chosen from the Rosetta decoy 

set43. A decoy target set in the Rosetta set consists of one native structure and 100 decoy 

structures with varied RMSDs to the native structure of a protein. Using different weighting 

schemes and amino acid similarity matrices in Eqns. 1 and 2, we examined how many times 

the native structure was selected with the highest score among the 30 decoy sets.

Three weighting schemes were tested:

1. RMSD-based weights: the weight wi to a retrieved i-th MRE or SDE is computed 

based on the RMSD value of the main-chain fragment to the query environment for 

MRE and side-chain centroids in the sphere for SDE. It is inversely proportional to 

the power α of the RMSD.

(Eq. 3)

Thus, retrieved MRE/SDE with a small RMSD has a larger weight. 11 values, 

0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 0.7, 0.8, 0.9, 1.0, and 2.0, were tested for α.

2. Rank-based weights: MREs/SDEs retrieved from the database are ranked by their 

RMSD (MREs) or the depth RMSD (SDEs) to the query. Then, each MRE/SDE is 

weighted according to its rank:

(Eq. 4)

where ni is the rank of the MRE/SDE. For MRE, ni will range between 1 to 25 

while it ranges between 1 to 40 for SDE. ⌊·⌋ is the floor function which takes the 

largest integer that does not exceed the inside value, and β is a parameter. Four 

values, 1, 2, 5, 10, and 15 were tested for β.

3. Exponential weights: The weight decays as the rank of MRE/SDE decreases:

(Eq. 5)
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where γ is the parameter to be optimized, ni is the rank of MRE/SDE, N is the total 

number of retrieved environments for a query, i.e. 25 for MRE and 40 for SDE. Six 

values between 0.5 and 2.5 were tested for γ: 0.5, 0.7, 0.8, 0.9, 1, 1.5, and 2.5.

Seven amino acid similarity matrices were tested. These matrices are labeled as 

BLOSUM3052, QU_C1 (QU_C930101)53, QU_C2 (QU_C930102)53, QUIB 

(QUIB020101)54, KOLA (KOLA920101)55, CCPC56, and CC8056. Shown in parentheses 

are the ID in the AAIndex database57 if the matrix is indexed. Except for BLOSUM30, 

which is a standard matrix for sequence alignment, the other six matrices were chosen 

because they performed well in computing aligning distantly related protein sequences56. 

These matrices capture amino acids' preference of structural contexts in protein tertiary 

structures. QU_C1 and QU_C2 capture amino acid residue contact propensities. KOLA is 

based on the similarity of the dihedral angles of amino acids. QUIB was numerically 

optimized to minimize the average RMSD of aligned proteins in benchmark databases. 

CCPC is based on the correlation coefficients of an amino acid residue contact potential, 

while CC80 is a linear combination of CCPC and KOLA.

Selecting weight and matrix combinations on the 30 decoy sets

First, we benchmarked the combinations of the weights and matrices on the 30 Rosetta 

decoy sets in terms of their native structure recognition ability. Figure 6A and 6B show the 

results of using the MRE and the SDE, respectively. BLOSUM30 showed higher success 

rates for the MRE than for the SDE with many weight combinations. CCPC is another 

matrix that performed better for the MRE than the SDE particularly with the exponential 

weights (Eq. 5). On the other hand, QU_C1, QU_C2, and KOLA performed better for the 

SDE than the MRE. Among the weights tested, RMSD-based weights (a) of 0.5 or larger 

consistently performed poorly while large exponential weights (γ) of 1.0 or larger gave a 

high native recognition rate for several matrices for both MRE and SDE. The highest 

number of successful native recognition was 17, which was achieved by CCPC when 

applied to the MRE as well as QU_C2 and QUIB applied to the SDE.

From these results, we have chosen all the weight and matrix combinations that gives over 

15 native recognitions from both MRE (Fig. 6A) and SDE (Fig. 6B), and further tested 

linear combinations of the MRE and the SDE in the native recognition:

(Eq. 6)

where MREi and SDEj are one of the selected weight-matrix combinations from MRE and 

SDE. w is a weight value that ranged from 0.05 to 10.0 with an interval of 0.05.

Among the linear combinations tested, combinations of BLOSUM30 (exponential weight, γ 

= 1.5) for the MRE and QU_C2 (γ = 1.0) for the SDE with weight values between 1.15 to 

1.45 or 1.7 to 2.05 gave the largest number of native recognition of 24. We found that all the 

Combined Scores that recognized native structures 22 or more consisted of a limited variety 

of matrices. BLOSUM30 (ranked-based weight with β = 10 or exponential weight with γ = 

1.5), CC80 (RMSD-based weight with α=0.01), and QUIB (exponential weight with γ = 1.5) 

were selected for the MREs, while the following eight were selected for the SDEs: CC80 
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(RMSD-based weight with α=0.01), CCPC (RMSD-based weight with α=0.01), QU_C1 

(ranked-based weight with β = 10), QU_C2 (RMSD-based weight with α=0.01; ranked-

based weight with β = 1.0 or 2.0; and exponential weight with γ = 1.0 or 1.5). Therefore, we 

only used these matrix and weight combinations for MREs and SDEs in the subsequent 

analyses.

Native structure recognition test

Using the selected MREs and SDEs, we tested the native recognition ability of the scores on 

a larger dataset. The dataset consists of five previously published decoy sets (see Materials 

and Methods). This is a standard dataset for testing potentials and scoring functions, which 

has been used by several recent papers33,42,58,59. We tested our scores in two ways. First, we 

concentrated on the ability to select native structures from decoys as done in a previous 

work42. Then we examined RMSD and TM-score60 of selected decoys when native 

structures are not included in the dataset, as this is more close to realistic scenarios in protein 

structure prediction. As described in Materials and Methods, for each query protein, all 

similar protein structures were removed from the database if they have more than 25% 

sequence identity to the query. The performance of the native/decoy selection by our scores 

was compared with seven other knowledge-based statistical potentials, DFIRE61, dDFIRE62, 

DOPE63, RW, RWplus42, OPUS-PSP58, and GOAP59. For our residue environment scores, 

the best performing MRE and SDE in terms of the total number of native structure 

recognition, CC80 and QUIB, respectively, as well as the three best linear combinations of 

MRE and SDE are shown. The results are summarized in Table I.

The performance of our residue environment-based scores, particularly the combinations of 

MRE & SDE, was better than the other potentials in terms of the total number of correctly 

recognized native structures. Among the 278 decoy targets in total, the Combined Scores 

successfully recognized native structure for 255 cases. The MRE (CC80) performed better 

than the SDE and the three Combined Scores gave further improvement, which is consistent 

with what we observed for the 30 Rosetta decoy set. Noticeable improvement relative to the 

other scores was made in the native selection for the datasets of Lmds, Moulder, I-TASSER, 

ig_structal, and ig_structal_hires. For these five sets, our residue-environment scores 

recognized native structures perfectly; all 10 natives in the Lmds, 20 natives in the Moulder, 

56 natives in I-TASSER, 61 natives in ig_structal and 20 natives in ig_structal_hires decoy 

sets. MRE also successfully identified 28 natives in hg_structal decoy set. Two of our 

Combined Scores performed also well for the ROSETTA set, recognizing 41 out of 58, 

second to GOAP.

The performance by MRE on the hg_structal, ig_structal and ig_structal_hires sets (109 

native recognitions) are noticeable, which is more than 25% increase from that of the 

previous best performing potential, GOAP (87 native recognitions). These three decoy sets 

are products of high accurate homology modeling40. The average RMSD of the decoy 

models to its native are 2.38 Å (ig_structal), 2.55 Å (ig_structal_hires), and 4.10 Å 

(hg_structal). In Table I, it was observed that the accurate native recognition mainly come 

from MRE. By a close investigation, interestingly, MRE's performance was found to be 

nearly independent of the choice of substitution matrix and weighting schemes. (CCPC(β 
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=10): 107, blosum30(γ =1.5): 110, CC80(α =0.01): 109, QU_C1(β =2.0): 109, QU_C2(γ 

=1.5): 109, QUIB(γ =0.9): 110 natives were successfully recognized by MRE).

It is also worthwhile to note that our residue-environment scores recognized native 

structures with high Z-scores compared to the others. For the Lmds set, the second Combind 

Score showed the highest Z-score of 9.04, while the MRE score achieved 13.58 for the 

Moulder set. The MRE score also showed significantly high Z-score of 13.60 for the 

4state_reduced set and 9.61 for the I-TASSER set. The Z-scores by MRE for the 

4_state_reduced set is three times higher than OPUS-PSP, which recognized the same 

number of natives. In the case of the I-TASSER set, the Z-score of 9.61 by MRE is almost 

twice higher than RWplus that recognized the same number of natives (56). This noticeable 

Z-score difference is equally observed in the hg_structal, ig_structal, and ig_structal_hires 

decoy sets. Our MRE results showed the highest Z-scores, 5.14 (hg_structal), 7.69 

(ig_structal) and 4.35 (ig_structal_hires), which is on average more than two times better 

results than those of the second best one, GOAP. The three combinations of MRE and SDE 

also presented similar results.

Average global RMSD and TM-score of decoys

Next, we calculated the quality of top scored decoy structures (excluding the native 

structures) by our residue environment scores (Table II). The Rosetta decoy set, which was 

the most difficult in the native structure recognition in Table I, as well as the I-TASSER set 

were used. For the Rosetta set, the SDE with QUIB showed the smallest RMSD for all 

Top-1, Top-5, and Top-10. It also showed the best (largest) TM-score for Top-1 and Top-5, 

and the second best TM-score (0.553) for Top-10. The combined score of CC80 and QU_C1 

(rightmost column) performed second best to the SDE in terms of RMSD for all Top-1, 

Top-5, and Top-10. The MRE with CC80, which performed better than the SDE for the 

native structure recognition (Table I) did not perform well for the decoy selection.

For the I-TASSER decoy set, the combined score with CC80 and QU_C1 showed the 

smallest RMSD for Top-1 rank. In the case of Top-5 and Top-10, DOPE63 was the best in 

the RMSD, and the SDE was a close second. SDE also was the best in terms of TM-score 

for Top-5 and Top-10. Overall, we can conclude that the SDE performed the best for 

selecting low RMSD and large TM-score decoys.

Correlation coefficient of energy scores with TM-score of models

This test was done to examine near-native model selection performance of the scoring 

functions. Therefore, native structures were not included in the decoy set. Pearson's 

correlation coefficient (CC) of the scores with TM-scores of models as well as the average 

TM-score of the top-scoring models of each decoy sets were reported in Table III.

The best results in CC among our scores came from SDE results, 0.598. SDE using the 

QUIB matrix showed the largest CC among all scores in the fisa_casp3, Lattice_ssfit, 

ig_structal_hires, and Mourlder sets. However, GOAP and the other three potentials showed 

slightly larger average CC values. In terms of the average TM-score of the top-scoring 

model, SDE showed the largest value of 0.697, which is a tie with GOAP. This result 

indicates that SDE is good at selecting near-native decoys on average, which was consistent 
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for SDE with the results in Table II and Table III. Combinations of MRE and SDE gave 

similar results with the SDE.

Examples of correlations of the residue environment score and the RMSD of decoys are 

shown in Figure 7. In these three decoy sets, native structures were recognized with 

significantly higher MRE, SDE, and Combined Scores compared to the decoys. The MRE 

score (left panels) had weak correlation to RMSD of decoys; however, the score gap 

between native structures and decoy structures was larger than the SDE. The SDE had larger 

correlation to RMSD than the MRE, and the combined scores had comparable correlation 

coefficients to the SDE.

Performance on the Rykunov & Fiser's CASP model sets

We further tested the residue environment scores on prediction models submitted to the 

Critical Assessment of Techniques for Protein Structure Prediction (CASP) 5 to 8, which 

were compiled by Rykunov & Fiser44 (Table IV). We show results of the same MRE and 

SDE and three combined scores shown in Table I and II. In addition, results of two extra 

combined scores that exhibited good performance are shown. The first one is a combination 

of MRE with BLOSUM30 and SDE with QU_C1 and the second one is a linear combination 

of two SDEs with CC80 and BLOSUM30. We wanted to try a combination of two SDEs 

because the SDE score performed well in model recognition in the absence of native 

structures (Table II, Table III, Figure 7).

When the native structures are included (the right half of the table), the combination of 

BLOSUM30 and QU_C1 showed the smallest average rank (1.18) and the largest number of 

successful recognition of native structures (139). MRE performed better than SDE. When 

native structures were excluded (the left half of the table), different scoring functions 

showed up as top performing. The two SDE score combinations, CC80 and BLOSUM30, 

had the best average rank of 2.82 followed by SDE alone. Thus, SDE consistently performed 

well in the model recognition in the absence of native structures as observed in Table II, 

Table III, and Table IV.

Examples of different performance of PRESCO and pairwise potentials

Here we show examples from the native selection test (Table I) that illustrate the 

characteristic PRESCO's performance in comparison with the existing statistical potentials. 

In Table V, we show native selection results of four decoy sets, for which PRESCO showed 

significantly better performance than the other potentials. For the Lmds decoy sets of 1bba 

and 1fc2, both MRE and SDE selected the native at the top rank among 501 decoys in the 

dataset while the native was ranked almost at the bottom by the other four potentials. Indeed, 

1bba and 1fc2 are small proteins and known as difficult decoy sets as several existing 

potentials58,61,64-66 failed to recognize the native structures among the decoys. The two 

decoys sets, 1fbi and 3hfm, in the Ig_structal set present the same story: MRE recognized 

the native at the top and SDE identified the native at the 4th and 14th for 1fbi and 3hfm, 

respectively, while the other potentials ranked the native almost at the bottom of the rank.

In Figure 8, we closely investigated the difference between SDE and two potentials, GOAP 

and DFIRE, which are well-known and widely used potentials. For the 1fc2 decoy sets, 
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GOAP selected a decoy with an RMSD of 4.42 Å (1fc2.60276.pdb) with the lowest (i.e. 

best) energy, -5445.20 (-126.6 per residue), while the native structure has a GOAP energy of 

-4072.89 (-94.7 per residue). Figure 8A shows the breakdown of the energy difference of 

individual residues in the decoy and the native by SDE, MRE, GOAP, and DFIRE. Residues 

with the negative energy difference (y-axis) have a lower (thus preferred) energy for the 

native over the decoy. It is shown that GOAP has only 13 residues among 43 residues that 

have a lower energy in the native than in the decoy, while SDE preferred the native over the 

decoy for 25 residues. We further focused our attention to Residue 12, isoleucine (ILE12) 

because the evaluation of this residue's conformation by SDE and GOAP were very 

different: SDE strongly preferred the native structure for this residue over the decoy with the 

residue-wise energy of -618.3 (native) and 155.3 (decoy), while GOAP gave a preferable, 

negative residue-wise energy (-197.2) for the decoy. The side-chain centroid position of 

ILE12 in the decoy is 7.37 Å away from its correct position when the decoy is superimposed 

with the native, and consequently, ILE12 is in a very different environment in the decoy in 

comparison with the native: It is exposed outside in the decoy (Fig. 8B, residues in red) 

while it is buried in the core in the native (Figure 8C). Although an exposed hydrophobic 

residue is in general not preferred, ILE12 in the decoy has negative energies by GOAP 

(Figure 8D) partly because of interactions with neighboring hydrophobic residues, PHE26, 

LEU30, and LEU41, all of which deviated from their correct positions by 3.41, 1.55, and 

3.82 Å, respectively (Figure 8E). On the other hand, SDE correctly considered the native, 

buried environment is more preferable than the exposed environment in the decoy for 

ILE12. In Table VI, top 5 most similar residue environments for ILE12 in the native and the 

decoy structure that were identified by SDE are summarized. In the case of ILE12 in the 

native, all the five identified environments are centered on hydrophobic amino acids, 

isoleucine or leucine, which locate at packing interfaces of helices and loops in protein 

structures that are globally different from 1fc2. In contrast, similar environments of ILE12 in 

the decoy are all exposed, including those which are centered on glutamic acid residues. 

Thus, SDE clearly distinguished very different environments of ILE12 in the native and in 

the decoy structures.

In the panels F-H in Figure 8, performance of SDE is compared with DFIRE. A decoy with 

an RMSD of 6.07 Å (1bba.1697.pdb) is selected as the lowest energy by DFIRE. Figure 8F 

shows that DFIRE (red) considered that the majority of the residues (33 out of 36 residues) 

have a lower energy in the decoy than in the native. In contrast, SDE energy is lower in the 

native, often substantially lower, than in the decoy for many residues (21 out of 36 residues). 

For 1bba, we further investigate energies for LEU24, because SDE and MRE evaluated 

energy of this residue very differently from DFIRE and GOAP (Figure 8F): DFIRE and 

GOAP strongly preferred the decoy over the native while SDE and MRE considered the 

native is more preferable structure for this residue. From the structure imposition of the 

native and the decoy (Figure 8G), difference of environment of LEU24 in the native and 

decoy is not very obvious, although two helices in the native are packed slightly tighter than 

those in decoys. A close examination of the pairwise DFIRE energy between LEU24 and 

each residue (Figure 8H) shows that the energy profile for the native and the decoy are 

almost the same with some difference observed for residue 25 to 27, which have lower 

energy in the decoy than in the native. On the other hand, SDE preferred the native for 
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LEU24 to the decoy, which is also evident in the top five most similar environments for 

LEU24 detected by SDE (Table 5). The four most similar environments to LEU24 in the 

native are those from hydrophobic amino acids that locate inside of proteins, while similar 

environments for LEU24 in the decoy included exposed residues.

The purpose of showing the examples is to illustrate the performance of PRESCO in 

comparison with pairwise potentials. Of course PRESCO's performance was not always 

better than the two potentials in the entire benchmark test; nevertheless the examples show 

the advantage that the residue environment-based score can achieve.

Discussion

We have developed two residue environment sores, the Main-chain Residue Environment 

(MRE) and the Side-chain Depth Environment (SDE). The Protein Residue Environment 

Score (PRESCO), which uses MRE and SDE, compared favorably against existing 

knowledge-based statistical potentials in recognizing native and close-to-native decoys. 

Notably, MRE and SDE have complementary strength: MRE performs well in identifying 

native structures (Table I, Table V) while the SDE score has better correlation to the RMSD 

of decoys and thus works better in recognizing near-native decoys when native structure is 

not included (Table II, Table III, Table IV).

As scoring decoys is a central problem in protein structure prediction, various potentials 

have been developed for the native structure/near-native decoy selection. In contrast to most 

of the knowledge-based statistical potentials that capture preference of pairwise interactions 

between atom or atom groups including the potentials compared with PRESCO in the 

current work, PRESCO was designed to capture multi-body interactions of residue side-

chains. It was shown that such residue environments captured by PRESCO exist in proteins 

of different folds. PRESCO does not need the reference state, which is often problematic in 

designing statistical potentials. Through this work we have shown that considering residue 

environments for capturing multi-body interactions may be a promising alternative direction 

to the conventional two-body statistical potentials for protein structure prediction and 

modeling. Similar ideas of residue environment scores will be also effectively applied for 

validating crystal structures of proteins and for protein design.
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Figure 1. 
Side-chain depth environment (SDE). The SDE of an amino acid (black circle) is defined as 

the depth of the side-chain centroids within a sphere of 6.0 or 8.0 Å (gray and white circles) 

from the center amino acids. To find similar SDEs from a database, the RMSD of nine side-

chains (white circles) including the center one, the number of side-chain centroids in the 

sphere, and the residue depth of the side-chains are considered.
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Figure 2. 
Characteristics of SDEs. (A) The distribution of the number of side-chain centroids in the 

sphere of an 8.0 Å radius for each residue type shown in a box-and-whisker plot. The bar 

inside the box shows the median and the two ends of the box show the first and third 

quartiles. Outliers (shown as dots) are defined as more than 1.5 times the interquartile range 

(the third quartile minus the first quartile) outside the first or third quartiles. (B) Residues 

with similar SDEs identified by database searches for each residue type. For the SDE of 

each residue in each protein in the reference database, the top 40 most similar SDEs in terms 
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of the residue depth RMSD were retrieved. Then fraction of 20 different residues retrieved 

for each residue type was computed and normalized by the overall fraction of the residue in 

the reference database. The color scale shows the enrichment, the darker the higher ratio of 

the residue relative to the background fraction.
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Figure 3. 
Global structural similarity of proteins that have similar side-chain environments. (A) 

Global coordinate RMSD of protein structures whose residue has similar SDEs. For each 

residue in the reference protein database, five most similar residues to the query residue in 

terms of SDEs were selected. Their depth RMSD of the side-chains in a sphere of 8.0 Å and 

the global RMSD of the whole protein structures were computed. Global RMSD was 

computed with BioShell, which computes RMSD of gapped structure alignment between 
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two proteins. (B) For the same residue pairs shown in the plot A, the conventional RMSD of 

the neighboring side-chain centroids were compared with the global RMSD of the proteins.
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Figure 4. 
Examples of similar SDEs. Residues included in SDEs are shown in color. (A) SDE of 

residue 64 (Glu) of IIBcellobiose (PDB code: 1iib) (left) and residue 146 (Arg) of RNA 

polymerase II mediator complex protein MED7 (1ykh, chain A) (right). The center side-

chain is shown in black spheres. 8.0 Å was used for the sphere to define SDEs. Both SDEs 

contain seven side-chain centroid points of neighboring residues (shown in the stick 

representation). The residues are 60, 61, 63, 64, 65, 67, and 68 for 1iib and 32, 33, 35, 36, 

37, 39, and 40 from 1ykhA. The depth RMSD (dRMSD) of the two SDEs is 0.022 Å. (B) 
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Residue 40 (Ser) in fertilization protein (1lis) and residue 312 (Ser) of Anthrax lethal factor 

(1yqyA). Six residues are included: residue 39, 40, 41, 42, 43, 44 for 1lis and 311, 312, 313, 

314, 315, 316 from 1yqyA dRMSD: 0.023 Å. (C) SDEs of residue 12 (Leu) in 

bromodomain of GCN5 (PDB: 1e6i) and residue 71 (Ile) of β-mannose (1bqcA). 13 residues 

are in the SDEs, 8, 9, 11, 12, 13, 15, 16, 46, 49, 50, 53, 58, and 64 for 1e6i and 67, 68, 70, 

71, 72, 74, 75, 81, 83, 113, 114, 117, and 121 for 1bqcA The depth RMSD is 0.037 Å. (D) 

Residue 41 (Ile) of map kinase 14 (1ew4) and residue 196 (Ile) of tetracycline repressor 

(2bj0A). 13 residues are included. 1ew4: 39, 40, 41, 42, 43, 17, 21, 30, 32, 49, 51, 91, 95; 

and 2bj0A 194, 195, 196, 197, 198, 31, 33, 50, 137, 139, 161, 175, 177. dRMSD: 0.035 Å.
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Figure 5. 
Schematic diagram of the PRESCO scoring system for evaluating decoys. For each residue 

in a decoy to be evaluated, two residue environments, MRE and SDE, are constructed and 

compared against residues in the database of representative proteins. Two sphere sizes, 8.0 

Å and 6.0 Å, are used for SDE. Similar MRE/SDEs found in the database are sorted 

according to their similarity to that of the target residue. A score for a target residue is a 

weighted sum of the amino acid similarity score, and the score of the decoy is the sum of the 

score given to each residue. See text for more details.
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Figure 6. 
The number of successfully identified native structures in 30 Rosetta decoy sets. Seven 

matrices were tested in combinations with 22 weights for native structure recognition. α is a 

parameter for the RMSD-based weight (Eq. 3); β is a parameter for the rank-based weight 

(Eq. 4); and y is a parameter for the exponential weight (Eq. 5).
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Figure 7. 
Examples of correlation between the environment scores and RMSD. RMSD of decoys are 

plotted relative to the residue environment scores for decoy sets of three proteins. Left, MRE 

(CC80 with γ=1.5); middle, SDE (QU_C2 with γ=2.0); Combined Score with MRE (CC80 

with γ=1.5) and SDE (QU_C2 with γ=2.0) with a weight value of 2.05 were used. (A) 2chf 

from the Rosetta decoy set; Correlation coefficients (CC) are -0.31, -0.67, and -0.62, 

respectively from left to right. (B) 1gnuA from the I-TASSER decoy set. CC are -0.31, 

-0.74, and -0.77, respectively. (C) 1csp from the I-TASSER decoy set. CC are -0.50, -0.55, 

and -0.63, respectively.
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Figure 8. 
Examples of residue-wise energies by SDE and other potentials. Two decoy sets included in 

the Lmds set, 1fc2 and 1bba, were used. As shown in Table V, SDE and MRE successfully 

identified the native structure among 501 decoys for these two decoy sets. A to E are 

comparison between the SDE and GOAP energies at individual residues in the native 

structure of 1fc2 and the lowest GOAP energy decoy, 1fc2.60276.pdb. F to H are 

comparison between the SDE and DFIRE energies at each residue in the native of 1bba and 

the lowest DFIRE energy decoy, 1bba.1697.pdb. (A) Energy difference at each residue 
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between the native 1fc2 and the decoy 1fc2.60276.pdb by GOAP, DFIRE, MRE, and SDE. 

The y-axis shows the residue-wise energy difference between the native and the decoy. A 

negative value indicates that the residue has a lower energy in the native than the decoy. 

SDE and MRE scores are negated so that they have the same sign as the other two 

potentials. (B) The structure of the decoy 1fc2.60276.pdb. ILE12 is shown in red, and three 

residues that have preferable GOAP energy between 1LE12, namely, PHE26, LEU30, and 

LEU41 are shown in yellow, green, and cyan, respectively. (C) The native structure of 1fc2. 

ILE12, PHE26, LEU30, and LEU41 are shown in the same colors as in the panel B. (D) The 

pairwise GOAP energies between ILE12 and the other residues in the decoy 

1fc2.60276.pdb. (E) The Euclidean distance of side-chain centroids of each residue in the 

native and the decoy after the two structures are superimposed by the LGA program. A high 

distance (y-axis) indicates that the residue position in the decoy is far off from its correct 

position. (F) Energy difference at each residue between the native 1bba and the decoy 1bba.

1697.pdb by GOAP, DFIRE, MRE, and SDE. (G) Superimposition of the native structure 

(pink) of 1bba and the decoy 1bba.1697.pdb (cyan). LEU24 are shown in the stick 

representation in red and blue in the native and the decoy, respectively. (H) Pairwise DFIRE 

energies between LEU24 and each residue in the native (filled circles) and in the decoy 

1bba.1697.pdb (open circles).
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