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Abstract

We developed a new representation of local amino acid environments in protein structures called
the Side-chain Depth Environment (SDE). An SDE defines a local structural environment of a
residue considering the coordinates and the depth of amino acids that locate in the vicinity of the
side-chain centroid of the residue. SDEs are general enough that similar SDEs are found in protein
structures with globally different folds. Using SDEs, we developed a procedure called PRESCO
(Protein Residue Environment SCOre) for selecting native or near-native models from a pool of
computational models. The procedure searches similar residue environments observed in a query
model against a set of representative native protein structures to quantify how native-like SDEs in
the model are. When benchmarked on commonly used computational model datasets, our
PRESCO compared favorably with the other existing scoring functions in selecting native and
near-native models.
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Introduction

Structural similarities and commonalities at various levels have been found in protein
tertiary structures. At a global structural level, there are abundant folds that arise from
proteins with different evolutionary histories (superfolds)l. At a smaller structural level,
commonly occurring secondary structure arrangements have been found?, which are often
called super-secondary structures3. Moreover, common fragment conformations were found
in structures from proteins with different folds#. At the stereochemical structure level,
interaction patterns of residues’ and bond angles in main-chains® and side-chains® have been
extensively studied. Observed structural patterns are not only important for understanding
physical nature of the protein structures but are also practically useful as a source of
information for validating protein crystal structures!? as well as computationally predicted
protein structure models.

"To whom correspondence should be addressed: dkihara@purdue.edu, Tel: 1-765-496-2284, Fax: 1-765-496-1189.
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In protein structure prediction, commonly occurring structure units (e.g. fragments) can be
used as building blocks of protein structure models!112, Alternatively, observed structural
patterns can be represented as scoring functions (e.g. knowledge-based statistical potentials)
that guide modeling procedures1:13-15 and are also used for selecting the native structure or
near-native structure models (often called decoys) from a pool of alternative models16.17.
For example, pairwise residue contact potentials, which are derived from the statistics of
physically contacting amino acid residues observed in representative protein structures, are
one of the most frequently used scores for structure prediction’18:19, In addition to atom/
residue contact potentials, various types of knowledge-based scores have been developed,
which capture residues' or atoms' propensities of angles?%:21, accessible surface area??, and
number of contacts23, to name a few. Tasks of knowledge-based scores are, in principle,
twofold: one is to build and select “protein-like” models, i.e. models that have geometrical
features that agree with those in known structures. Another purpose is to construct sequence-
specific structures by capturing local and global sequence-structure corresponding patterns
(the extreme is homology modeling). It is ideal if a scoring function performs well for these
two purposes simultaneously, but it is not an easy task. There are instances that the lowest
energy states led by physics-based potentials are not close to the native structures of
proteins?4,

In order to generate protein-like models that are also native structures, a scoring function
must capture sequence-specific structural patterns while remaining sufficiently general to
apply to multiple proteins. This can be achieved by describing structures at a level
somewhere between the residue level and the whole protein level. Such structure
representation should consider residues in their structural environment, which includes
interactions with local and distant residues.

The concept of residue environment has been studied both computationally and
experimentally over a decade. Manavalan and Ponnuswamy observed that surrounding
residues for a certain residue have a biased distribution that reflects cooperativity of the
residue pairs2>-26. Karlin et al. investigated the atom density, which was defined as the count
of atoms within a certain distance from each residue, and found that the densities differ
depending on the residue at the center?’. It was shown that the secondary structure
prediction accuracy for residues with a high residue-wise contact order is worse than
average, suggesting that distant contacts affect secondary structure formation28,

Experiments have also demonstrated that the environment affects the secondary structure of
the same amino acid sequences?®:30, Following these observations, several groups developed
scoring functions that describe residue environments or multi-residue interactions for protein
structure predictions and structure-based function predictions. Along this line, knowledge-
based contact potentials that consider interactions between three or four residues were
developed31-33, DeGrado and his colleagues developed an atom “microenvironment”
potential, which consider the number of different types of atoms within a certain radius of a
center atom34. The Levitt group developed a hydrophobicity score that considers
hydrophobic residue interactions within a sphere of 10 A35. Simons et al. defined a residue
environment as the number of residues within a 10 A sphere and used it as a part of
definitions of the scoring function for their ab initio protein structure prediction method3.
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Mooney et al. used a residue environment representation that captures atoms within
concentric spheres around a Cf atom of a residue to recognize functional sites of proteins3’.

In this work, we developed a new representation of local amino acid environments in protein
structures called the Side-chain Depth Environment (SDE). The SDE considers three
important structural features of a residue environment: the side-chain centroids of a chain
fragment centered on the target residue, the number of surrounding residues within a sphere
around the target residue, and the depth of these surrounding residues. The residue depth
quantifies location of a residue relative to the protein surface38. We chose the residue depth
as one of the structural features because it was shown to be an effective scoring termin a
fold recognition method22. First, we show that SDEs capture the characteristic environment
of each amino acid. Subsequently, we show that SDEs are general enough that similar SDEs
are found in protein structures with globally different folds. Because similar SDEs are found
in native protein structures of different folds, they can be applied for detecting near-native
models from a pool of decoys. Given a structure model to be evaluated, the more residues of
the model in SDEs similar to those in known native structures, the more likely the model is
close to the native structure.

Using the SDEs, we developed a scoring procedure for selecting native or near-native
models from a pool of decoys (decoy selection) named PRESCO (Protein Residue
Environment SCOre). The protocol searches similar SDEs and a main-chain environment
named the Main-chain Residue Environment (MRE) observed in a query model against a set
of representative native protein structures. We benchmarked the ability of native and near-
native model selection by PRESCO on decoy datasets that are commonly used for
examining scoring functions for protein models. We show that our procedure compared
favorably with the other existing scoring functions by significant margins.

Materials and Methods

Database of reference protein structures

We used a non-redundant protein dataset for investigating local structure similarity of
proteins. The dataset was also used as a reference database for assessing protein structure
models (decoys) using the residue environment scores. 4803 non-redundant protein
structures with a resolution better than 2.0 A and a pair-wise sequence identity of less than
30% between each other were downloaded from the PISCES server (Oct. 17, 2008
version)39. This set was further reduced to 2536 proteins by removing chains with missing
residues or missing backbone atoms.

Decoy sets for native/near-native structure recognition tests

To test how well the new residue environment scores perform in discriminating native or
near-native models from other models with poorer quality, we used four decoy sets, the
Decoy ‘R’ Us set#0, the Moulder decoy set*1, the I-TASSER decoy set*2, and the Rosetta
decoy set43. In addition, we also tested the residue environmental scores on the Fiser's CASP
model set*. Each set consists of subsets with a native protein structure associated with
decoy structures. The Decoy ‘R’ Us set include eight sets, 4state_reduced, Fisa, Fisa_casp3,
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Lmds, Lattice_ssfit, hg_structal, ig_structal, ig_structal _hires that consists of 144 subsets in
total, each of which contains the native structure of a protein and on average 271.19 decoys
of the protein. The Moulder set has 20 subsets, each of which contains 319.3 decoys on
average. The I-TASSER set consists of 56 subsets, which contain on average 438.2 decoys.
The Rosetta sets has 58 subsets with 100 decoys. The Fiser set consists of 143 proteins used
as prediction targets in the CASP5 to CASP8 and their prediction models. On average there
are 18.3 models per target.

Removal of homologous proteins from the representative structure database

When the environment score was computed for a structure model, all database proteins that
have more than 25 % sequence identity with the target protein are excluded from the
database. Clustal Omega®® was used for computing the sequence identity.

Local structural environment of residues, SDE

Characteristic physicochemical properties of each amino acid should reflect the structural
environments of amino acids in native protein structures. To describe the environment of a
residue, we wanted to consider the main-chain conformation around the residue of interest,
the number of surrounding residues and their relative positions, and the depth of the
surrounding residues from the protein surface. These features altogether capture multi-body
interactions of residues in a comprehensive manner.

The residue depth is defined as the distance between a given residue and the nearest water
molecule located close to the solvent-accessible surface38. We used the side-chain to
represent a residue position because the residue specificity originates from side-chains and
the side-chain packing is a dominant factor of protein folding®:46.

For a given residue in a protein structure, residues with a similar structural environment,
SDE, in different proteins were identified by the following procedure:

1. Side-chain centroids of the target residue and structures in a reference database are
computed. The side-chain centroid of a residue is the average positions of all heavy
atoms in the side-chain. Atoms in the backbone are not included.

2. To ensure that residues locate in similar main-chain conformations, side-chains
along local fragments are compared. Nine consecutive side-chain centroids along
the protein backbone (four residues before and after the query residue) were
compared with structures in the database and the 500 most similar fragments
having the lowest root mean square deviation (RMSD) with the query fragments
are kept for the subsequent steps. The rotation matrix and the translation vector
used for aligning the two fragments are stored.

3. Next, neighboring residues within a sphere of an 8.0 A radius centering on the side-
chain centroid of the query residue are compared with those for the 500 fragments
stored in Step 2. Fragments are discarded if the numbers of neighboring side-chain
centroids in the two spheres are different. 8.0 A was chosen because an early work
showed a residue's cooperativity is effective up to 8.0 A6,
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4. For each of the remaining fragments, one-to-one correspondence of neighboring
side-chain centroids in the sphere to those in the query residue is computed. This is
done by superimposing the neighboring centroids using the stored rotation matrix
in Step 2 and pairing side-chain centroids of the two spheres by their distances.

5. Finally, the root mean square distance of the residue depth (residue-depth RMSD)
of corresponding neighboring side-chain centroids is computed.

Thus, similarity in residue environment indicates that the residues share similar main-chain
conformation and the same number of neighboring residues that are located at similar depth
in the protein structures (Figure 1).

Characterization of SDEs in representative native protein structures

To begin with, we examined SDEs of amino acid residues in representative native protein
structures. Figure 2 shows the distribution of the number of side-chain centroids within the
sphere of 8.0 A for each amino acid residues. Consistent with previous works*’, the number
of neighboring residues clearly reflects hydrophobicity of amino acids. Isoleucine and
valine, the two most hydrophobic amino acids according to the Kyte-Doolittle
hydrophobicity scale*8, show the highest median, followed by leucine, phenylalanine, and
alanine, which are also highly hydrophobic amino acids (Figure 2A). In contrast, hydrophilic
amino acids have the least number of neighboring residues; these include arginine, lysing,
asparagine, aspartic acid, glutamine, and glutamic acid. The average number of neighboring
residues of each amino acid has a significant Pearson's correlation coefficient of 0.793 to the
Kyte-Doolittle hydrophobicity scale.

In Figure 2B, we examined residues that have similar SDEs for each residue type. The color
scale indicates enrichment of the amino acid type among residues with similar SDEs.
Concretely, the enrichment is computed as the fraction of each amino acid among the top 40
most similar residues divided by the background fraction of the amino acid. In all the amino
acids except for glutamine, the identical amino acids (shown in the diagonal positions in the
heat map) have the largest enrichment. In the case of glutamine, glutamic acid came to the
top with a ratio of 1.88 and the glutamine itself was the close second with 1.83. Amino acids
that are different but have similar physicochemical properties to the query amino acid tend
to have an enrichment ratio over 1.0. Such examples include arginine, which had lysine with
the second largest enrichment (2.44) and isoleucine, which had valine with the second
largest enrichment. The highest enrichment, 6.88, was observed for glycine with itself.
Proline also showed a high enrichment of 5.01 with itself. To summarize, Figure 2A shows
that the number of side-chains within a sphere of 8.0 A radius, which is used as a filtering
step for finding similar SDEs, mainly contains the hydrophobicity information of residues
whereas the residue depth (Figure 2B) further encodes residue-specific environment
features. These results suggested that the SDE can be used for designing a scoring function
for quantifying native-likeness of computational protein structure models.

Similar SDEs are found in proteins with globally very different structures (Figure 3). Figure
3A shows the distribution of the residue depth RMSD of surrounding side-chain centroids of
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SDEs in comparison with the global RMSD of protein structures where the two SDEs were
taken from. For a SDE, the depth RMSD and the global RMSD of protein structures for the
top 5 most similar SDEs were plotted. Global RMSDs were computed by Bioshell4®. It is
shown that the proteins with similar SDEs have very different global structure (on average
around 13 A) and the depth RSMD and the global RMSD have virtually no correlation. The
same conclusion was drawn when we compared the conventional RMSD of side-chain
centroids in SDEs against the global RMSD of the protein structures (Figure 3B). Thus, not
only the depth RMSD but also the constellation of side-chains in SDEs does not have
correlation to the global RMSD of the protein structures.

In Figure 4 we show examples of similar SDEs found in proteins with different folds. In all
cases the pairs have a small depth RMSD, ranging from 0.022 to 0.037 A. In the first
example (Figure 4A), SDEs taken from helices of two different fold class (left: liib, an afp
class protein; right: 1ykh, a class) are shown. They have seven side-chains in the SDEs and
their depth RMSD is 0.022 A. In the second example (Figure 4B), similar SDEs are taken
from globally different folds. Six residues are included in the SDEs, which are located at an
end of a helix. The next SDE pair (Figure 4C) includes 13 residues that are distant in
sequences. The SDE in 1e6i consists of residues in three a-helices while the one from
1bgcA have residues from two a-helices and one B-strand. In the last pair (Figure 4D), two
SDEs are taken from different secondary structure combinations: on the left, side-chains are
taken from [-sheets and two a helices in 1ew4, while the SDE on the right (2bjOA) consist
of residues from two p-sheets.

Procedure of selecting native/near-native models

In this section, we describe the procedure to evaluate decoys and to select ones from a pool
of decoys that are likely to be the native or close to the native structures. Briefly, in the
scoring procedure named PRESCO (Protein Residue Environment SCOre) a count will be
accumulated for a query model if residues in the model have similar environments to those
of similar amino acid type in representative native structures. In addition to the SDE, we
introduce another environment score, the Main-chain Residue Environment (MRE), which
considers main-chain fragment conformation around the target residue. In the decoy
selection procedure, similarity of both SDEs and MREs of target residues to representative
proteins are considered. Before providing the steps of computing PRESCO, we explain the
MRE.

The MRE compares the main-chain conformation of the fragment of five residues centered
on the target residue against fragments in the database of representative proteins. The
similarity of two fragments is quantified by the RMSD of four main-chain heavy atom
positions (N, Ca, C, and O) and the Cp position of all the residues in a fragment. This
representation was shown to perform better than a Ca representation of fragments in
identifying amino acid patterns that fold into the fragment conformation®C. For glycine, a
pseudo CP atom position is computed using the TINKER package®?.

Figure 5 gives the overall PRESCO procedure. For each of the residues in a query model,
MRE and two SDEs of different radii, 8.0 A and 6.0 A, are computed. They are then
compared with those for residues in a structure database, as represented in the three branches
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in the flowchart. The left most branch explains steps to compute a score that comes from
comparison of MREs of the target model to those in the representative protein structure
database. As described in the Method section, the database consists of 2536 non-redundant
native protein structures. For a MRE computed for a residue in the query model, the 25
closest (i.e. lowest RMSD) MREs in the database are retrieved and sorted by their RMSD.
This process is done for all the fragments in the model (L-4 fragments, where L is the length
of the model). Because fragments are taken by a sliding window that moves by one residue
at a time, a residue in the middle of the protein will be covered by 25 x 5 = 125 fragments,
while residues close to the terminus of the chain have fewer fragments. The MRE-based
score given to an amino acid position in a model is the weighted average of the amino acid
similarity score between the amino acid in the query fragment and each of retrieved
fragments. Amino acid similarity score is defined by an amino acid similarity matrix chosen
for MRE. A weight is assigned to each retrieved fragment, which reflects similarity of the
fragment to the query fragment. The weights and an amino acid similarity matrix used were
determined by a small benchmark study described in the next section. Taken together, a
MRE-based score of a query model is computed as

L K
MRE_based_Score:Zij]\Lli,a],(i), (Eq. 1)
i=1j=1

where L is the length of the model, K is the number of fragments that cover the residue i.
K=125 if the position i is between 5 to L-4, while K reduces to 25*i if i <5 (N-terminus) and
25*(L-i+1) if i > L-4 (C-terminus). w; is the weight given to the j-th fragment and Mg;_gj(j) is
the amino acid similarity score taken from the matrix M for the amino acid at the position i
in the query model and the amino acid in the fragment j that is aligned with amino acid i of
the query.

The second and the third branches represent computation of scores by comparing SDES in
the query models to the representative structure database. For each residue in the query
model, two SDESs are constructed with radii of 6.0 A and 8.0 A. It was found that the score
with the 8.0 A radius gave more correct native structure selections than 6.0 A but 6.0 A
worked better for a certain smaller fraction of the cases (data not shown). Then, following
the procedure to find similar SDEs as described above, for each residue the 40 most similar
(i.e. smallest depth RMSD) SDEs to the query SDE are selected. Then, similar to the branch
for MRE, a score is computed for the query residue, which is the weighted sum of the amino
acid similarity values between the query residue and residues retrieved in the database
search. The score for a query model is the sum of the residue-based score:

L N
SDE.based-ScorezZZUIj Sai—a;s  (EQ.2)

i=1j=1

where N=40, the number of SDEs retrieved from the database and S;4; is the amino acid
similarity score taken from a matrix Sfor residue i in the query and residue j retrieved from
the database. The SDE-based scores for a query model is computed with the 6.0 A (the
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middle branch in Figure 5) and the 8.0 A (the right branch) radii separately, which are
subsequently compared and a larger one is chosen. Finally, the MRE- and the SDE-based
scores will be linearly combined to yield the final score of the query model. The weighting
scheme for the linear combination is discussed in the next section. The two scores based on
MRE and SDE complement each other. The MRE assesses how native the structure is in
terms of local main-chain fragment similarity, while the SDE evaluates the structure from
the view point of side-chain packing.

Weighting schemes and amino acid similarity matrices

The combinations of weights and amino acid similarity matrices used in the PRESCO model
evaluation procedure (Figure 5) were determined based on the native structure selection test
performed on 30 decoy target sets, which were randomly chosen from the Rosetta decoy
set*3. A decoy target set in the Rosetta set consists of one native structure and 100 decoy
structures with varied RMSDs to the native structure of a protein. Using different weighting
schemes and amino acid similarity matrices in Egns. 1 and 2, we examined how many times
the native structure was selected with the highest score among the 30 decoy sets.

Three weighting schemes were tested:

1. RMSD-based weights: the weight w; to a retrieved i-th MRE or SDE is computed
based on the RMSD value of the main-chain fragment to the query environment for
MRE and side-chain centroids in the sphere for SDE. It is inversely proportional to
the power o of the RMSD.

wi=1/(RMSD)®  (gq.3)

Thus, retrieved MRE/SDE with a small RMSD has a larger weight. 11 values,
0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 0.7, 0.8, 0.9, 1.0, and 2.0, were tested for a.

2. Rank-based weights: MRES/SDEs retrieved from the database are ranked by their
RMSD (MREs) or the depth RMSD (SDEs) to the query. Then, each MRE/SDE is
weighted according to its rank:

W= sy, €09

where nj is the rank of the MRE/SDE. For MRE, n; will range between 1 to 25
while it ranges between 1 to 40 for SDE. |-] is the floor function which takes the
largest integer that does not exceed the inside value, and § is a parameter. Four
values, 1, 2, 5, 10, and 15 were tested for 3.

3. Exponential weights: The weight decays as the rank of MRE/SDE decreases:

wi=exp(—y * (n; — 1)/(N = 1)), (Eq.5)
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where yis the parameter to be optimized, n; is the rank of MRE/SDE, N is the total
number of retrieved environments for a query, i.e. 25 for MRE and 40 for SDE. Six
values between 0.5 and 2.5 were tested for v: 0.5, 0.7, 0.8, 0.9, 1, 1.5, and 2.5.

Seven amino acid similarity matrices were tested. These matrices are labeled as
BLOSUM30°2, QU_C1 (QU_C930101)%3, QU_C2 (QU_C930102)°3 QUIB
(QUIB020101)°4, KOLA (KOLA920101)%%, CCPC5®, and CC80%6. Shown in parentheses
are the 1D in the AAIndex database®’ if the matrix is indexed. Except for BLOSUM?30,
which is a standard matrix for sequence alignment, the other six matrices were chosen
because they performed well in computing aligning distantly related protein sequences®.
These matrices capture amino acids' preference of structural contexts in protein tertiary
structures. QU_C1 and QU_C2 capture amino acid residue contact propensities. KOLA is
based on the similarity of the dihedral angles of amino acids. QUIB was numerically
optimized to minimize the average RMSD of aligned proteins in benchmark databases.
CCPC is based on the correlation coefficients of an amino acid residue contact potential,
while CC80 is a linear combination of CCPC and KOLA.

Selecting weight and matrix combinations on the 30 decoy sets

First, we benchmarked the combinations of the weights and matrices on the 30 Rosetta
decoy sets in terms of their native structure recognition ability. Figure 6A and 6B show the
results of using the MRE and the SDE, respectively. BLOSUM30 showed higher success
rates for the MRE than for the SDE with many weight combinations. CCPC is another
matrix that performed better for the MRE than the SDE particularly with the exponential
weights (Eg. 5). On the other hand, QU_C1, QU_C2, and KOLA performed better for the
SDE than the MRE. Among the weights tested, RMSD-based weights (a) of 0.5 or larger
consistently performed poorly while large exponential weights (y) of 1.0 or larger gave a
high native recognition rate for several matrices for both MRE and SDE. The highest
number of successful native recognition was 17, which was achieved by CCPC when
applied to the MRE as well as QU_C2 and QUIB applied to the SDE.

From these results, we have chosen all the weight and matrix combinations that gives over
15 native recognitions from both MRE (Fig. 6A) and SDE (Fig. 6B), and further tested
linear combinations of the MRE and the SDE in the native recognition:

Combined_Score=MRE;+w * SDE;, (Eq.6)

where MRE; and SDE; are one of the selected weight-matrix combinations from MRE and
SDE. w is a weight value that ranged from 0.05 to 10.0 with an interval of 0.05.

Among the linear combinations tested, combinations of BLOSUM30 (exponential weight, y
= 1.5) for the MRE and QU_C2 (y = 1.0) for the SDE with weight values between 1.15 to
1.45 or 1.7 to 2.05 gave the largest number of native recognition of 24. We found that all the
Combined Scores that recognized native structures 22 or more consisted of a limited variety
of matrices. BLOSUMS30 (ranked-based weight with = 10 or exponential weight with y =
1.5), CC80 (RMSD-based weight with a=0.01), and QUIB (exponential weight with y = 1.5)
were selected for the MREs, while the following eight were selected for the SDEs: CC80
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(RMSD-based weight with a=0.01), CCPC (RMSD-based weight with a=0.01), QU_C1
(ranked-based weight with p = 10), QU_C2 (RMSD-based weight with a=0.01; ranked-
based weight with 3 = 1.0 or 2.0; and exponential weight with y = 1.0 or 1.5). Therefore, we
only used these matrix and weight combinations for MREs and SDEs in the subsequent
analyses.

Native structure recognition test

Using the selected MREs and SDEs, we tested the native recognition ability of the scores on
a larger dataset. The dataset consists of five previously published decoy sets (see Materials
and Methods). This is a standard dataset for testing potentials and scoring functions, which
has been used by several recent papers3342:58.59 \We tested our scores in two ways. First, we
concentrated on the ability to select native structures from decoys as done in a previous
work42. Then we examined RMSD and TM-score®? of selected decoys when native
structures are not included in the dataset, as this is more close to realistic scenarios in protein
structure prediction. As described in Materials and Methods, for each query protein, all
similar protein structures were removed from the database if they have more than 25%
sequence identity to the query. The performance of the native/decoy selection by our scores
was compared with seven other knowledge-based statistical potentials, DFIRES!, dDFIRES2,
DOPE®3, RW, RWplus*2, OPUS-PSP38, and GOAP®. For our residue environment scores,
the best performing MRE and SDE in terms of the total number of native structure
recognition, CC80 and QUIB, respectively, as well as the three best linear combinations of
MRE and SDE are shown. The results are summarized in Table I.

The performance of our residue environment-based scores, particularly the combinations of
MRE & SDE, was better than the other potentials in terms of the total number of correctly
recognized native structures. Among the 278 decoy targets in total, the Combined Scores
successfully recognized native structure for 255 cases. The MRE (CC80) performed better
than the SDE and the three Combined Scores gave further improvement, which is consistent
with what we observed for the 30 Rosetta decoy set. Noticeable improvement relative to the
other scores was made in the native selection for the datasets of Lmds, Moulder, I-TASSER,
ig_structal, and ig_structal_hires. For these five sets, our residue-environment scores
recognized native structures perfectly; all 10 natives in the Lmds, 20 natives in the Moulder,
56 natives in I-TASSER, 61 natives in ig_structal and 20 natives in ig_structal_hires decoy
sets. MRE also successfully identified 28 natives in hg_structal decoy set. Two of our
Combined Scores performed also well for the ROSETTA set, recognizing 41 out of 58,
second to GOAP.

The performance by MRE on the hg_structal, ig_structal and ig_structal_hires sets (109
native recognitions) are noticeable, which is more than 25% increase from that of the
previous best performing potential, GOAP (87 native recognitions). These three decoy sets
are products of high accurate homology modeling®C. The average RMSD of the decoy
models to its native are 2.38 A (ig_structal), 2.55 A (ig_structal_hires), and 4.10 A
(hg_structal). In Table I, it was observed that the accurate native recognition mainly come
from MRE. By a close investigation, interestingly, MRE's performance was found to be
nearly independent of the choice of substitution matrix and weighting schemes. (CCPC(
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=10): 107, blosum30(y =1.5): 110, CC80(a. =0.01): 109, QU_C1(p =2.0): 109, QU_C2(y
=1.5): 109, QUIB(y =0.9): 110 natives were successfully recognized by MRE).

It is also worthwhile to note that our residue-environment scores recognized native
structures with high Z-scores compared to the others. For the Lmds set, the second Combind
Score showed the highest Z-score of 9.04, while the MRE score achieved 13.58 for the
Moulder set. The MRE score also showed significantly high Z-score of 13.60 for the
4state_reduced set and 9.61 for the I-TASSER set. The Z-scores by MRE for the

4 state_reduced set is three times higher than OPUS-PSP, which recognized the same
number of natives. In the case of the I-TASSER set, the Z-score of 9.61 by MRE is almost
twice higher than RWplus that recognized the same number of natives (56). This noticeable
Z-score difference is equally observed in the hg_structal, ig_structal, and ig_structal_hires
decoy sets. Our MRE results showed the highest Z-scores, 5.14 (hg_structal), 7.69
(ig_structal) and 4.35 (ig_structal_hires), which is on average more than two times better
results than those of the second best one, GOAP. The three combinations of MRE and SDE
also presented similar results.

Average global RMSD and TM-score of decoys

Next, we calculated the quality of top scored decoy structures (excluding the native
structures) by our residue environment scores (Table 11). The Rosetta decoy set, which was
the most difficult in the native structure recognition in Table I, as well as the I-TASSER set
were used. For the Rosetta set, the SDE with QUIB showed the smallest RMSD for all
Top-1, Top-5, and Top-10. It also showed the best (largest) TM-score for Top-1 and Top-5,
and the second best TM-score (0.553) for Top-10. The combined score of CC80 and QU_C1
(rightmost column) performed second best to the SDE in terms of RMSD for all Top-1,
Top-5, and Top-10. The MRE with CC80, which performed better than the SDE for the
native structure recognition (Table 1) did not perform well for the decoy selection.

For the I-TASSER decoy set, the combined score with CC80 and QU_C1 showed the
smallest RMSD for Top-1 rank. In the case of Top-5 and Top-10, DOPE®3 was the best in
the RMSD, and the SDE was a close second. SDE also was the best in terms of TM-score
for Top-5 and Top-10. Overall, we can conclude that the SDE performed the best for
selecting low RMSD and large TM-score decoys.

Correlation coefficient of energy scores with TM-score of models

This test was done to examine near-native model selection performance of the scoring
functions. Therefore, native structures were not included in the decoy set. Pearson's
correlation coefficient (CC) of the scores with TM-scores of models as well as the average
TM-score of the top-scoring models of each decoy sets were reported in Table I11.

The best results in CC among our scores came from SDE results, 0.598. SDE using the
QUIB matrix showed the largest CC among all scores in the fisa_casp3, Lattice_ssfit,
ig_structal_hires, and Mourlder sets. However, GOAP and the other three potentials showed
slightly larger average CC values. In terms of the average TM-score of the top-scoring
model, SDE showed the largest value of 0.697, which is a tie with GOAP. This result
indicates that SDE is good at selecting near-native decoys on average, which was consistent
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for SDE with the results in Table Il and Table I1l. Combinations of MRE and SDE gave
similar results with the SDE.

Examples of correlations of the residue environment score and the RMSD of decoys are
shown in Figure 7. In these three decoy sets, native structures were recognized with
significantly higher MRE, SDE, and Combined Scores compared to the decoys. The MRE
score (left panels) had weak correlation to RMSD of decoys; however, the score gap
between native structures and decoy structures was larger than the SDE. The SDE had larger
correlation to RMSD than the MRE, and the combined scores had comparable correlation
coefficients to the SDE.

Performance on the Rykunov & Fiser's CASP model sets

We further tested the residue environment scores on prediction models submitted to the
Critical Assessment of Techniques for Protein Structure Prediction (CASP) 5 to 8, which
were compiled by Rykunov & Fiser#* (Table 1V). We show results of the same MRE and
SDE and three combined scores shown in Table | and I1. In addition, results of two extra
combined scores that exhibited good performance are shown. The first one is a combination
of MRE with BLOSUM30 and SDE with QU_C1 and the second one is a linear combination
of two SDEs with CC80 and BLOSUM30. We wanted to try a combination of two SDEs
because the SDE score performed well in model recognition in the absence of native
structures (Table 11, Table 11, Figure 7).

When the native structures are included (the right half of the table), the combination of
BLOSUM30 and QU_C1 showed the smallest average rank (1.18) and the largest number of
successful recognition of native structures (139). MRE performed better than SDE. When
native structures were excluded (the left half of the table), different scoring functions
showed up as top performing. The two SDE score combinations, CC80 and BLOSUM30,
had the best average rank of 2.82 followed by SDE alone. Thus, SDE consistently performed
well in the model recognition in the absence of native structures as observed in Table II,
Table 111, and Table IV.

Examples of different performance of PRESCO and pairwise potentials

Here we show examples from the native selection test (Table I) that illustrate the
characteristic PRESCO's performance in comparison with the existing statistical potentials.
In Table V, we show native selection results of four decoy sets, for which PRESCO showed
significantly better performance than the other potentials. For the Lmds decoy sets of 1bba
and 1fc2, both MRE and SDE selected the native at the top rank among 501 decoys in the
dataset while the native was ranked almost at the bottom by the other four potentials. Indeed,
1bba and 1fc2 are small proteins and known as difficult decoy sets as several existing
potentials®®8:61.64-66 fajled to recognize the native structures among the decoys. The two
decoys sets, 1fbi and 3hfm, in the Ig_structal set present the same story: MRE recognized
the native at the top and SDE identified the native at the 4™ and 14 for 1fbi and 3hfm,
respectively, while the other potentials ranked the native almost at the bottom of the rank.

In Figure 8, we closely investigated the difference between SDE and two potentials, GOAP
and DFIRE, which are well-known and widely used potentials. For the 1fc2 decoy sets,
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GOAP selected a decoy with an RMSD of 4.42 A (1fc2.60276.pdb) with the lowest (i.e.
best) energy, -5445.20 (-126.6 per residue), while the native structure has a GOAP energy of
-4072.89 (-94.7 per residue). Figure 8A shows the breakdown of the energy difference of
individual residues in the decoy and the native by SDE, MRE, GOAP, and DFIRE. Residues
with the negative energy difference (y-axis) have a lower (thus preferred) energy for the
native over the decoy. It is shown that GOAP has only 13 residues among 43 residues that
have a lower energy in the native than in the decoy, while SDE preferred the native over the
decoy for 25 residues. We further focused our attention to Residue 12, isoleucine (ILE12)
because the evaluation of this residue's conformation by SDE and GOAP were very
different: SDE strongly preferred the native structure for this residue over the decoy with the
residue-wise energy of -618.3 (native) and 155.3 (decoy), while GOAP gave a preferable,
negative residue-wise energy (-197.2) for the decoy. The side-chain centroid position of
ILE12 in the decoy is 7.37 A away from its correct position when the decoy is superimposed
with the native, and consequently, ILE12 is in a very different environment in the decoy in
comparison with the native: It is exposed outside in the decoy (Fig. 8B, residues in red)
while it is buried in the core in the native (Figure 8C). Although an exposed hydrophobic
residue is in general not preferred, ILE12 in the decoy has negative energies by GOAP
(Figure 8D) partly because of interactions with neighboring hydrophobic residues, PHE26,
LEU30, and LEU41, all of which deviated from their correct positions by 3.41, 1.55, and
3.82 A, respectively (Figure 8E). On the other hand, SDE correctly considered the native,
buried environment is more preferable than the exposed environment in the decoy for
ILE12. In Table VI, top 5 most similar residue environments for ILE12 in the native and the
decoy structure that were identified by SDE are summarized. In the case of ILE12 in the
native, all the five identified environments are centered on hydrophobic amino acids,
isoleucine or leucine, which locate at packing interfaces of helices and loops in protein
structures that are globally different from 1fc2. In contrast, similar environments of ILE12 in
the decoy are all exposed, including those which are centered on glutamic acid residues.
Thus, SDE clearly distinguished very different environments of ILE12 in the native and in
the decoy structures.

In the panels F-H in Figure 8, performance of SDE is compared with DFIRE. A decoy with
an RMSD of 6.07 A (1bba.1697.pdb) is selected as the lowest energy by DFIRE. Figure 8F
shows that DFIRE (red) considered that the majority of the residues (33 out of 36 residues)
have a lower energy in the decoy than in the native. In contrast, SDE energy is lower in the
native, often substantially lower, than in the decoy for many residues (21 out of 36 residues).
For 1bba, we further investigate energies for LEU24, because SDE and MRE evaluated
energy of this residue very differently from DFIRE and GOAP (Figure 8F): DFIRE and
GOARP strongly preferred the decoy over the native while SDE and MRE considered the
native is more preferable structure for this residue. From the structure imposition of the
native and the decoy (Figure 8G), difference of environment of LEU24 in the native and
decoy is not very obvious, although two helices in the native are packed slightly tighter than
those in decoys. A close examination of the pairwise DFIRE energy between LEU24 and
each residue (Figure 8H) shows that the energy profile for the native and the decoy are
almost the same with some difference observed for residue 25 to 27, which have lower
energy in the decoy than in the native. On the other hand, SDE preferred the native for
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LEU24 to the decoy, which is also evident in the top five most similar environments for
LEU24 detected by SDE (Table 5). The four most similar environments to LEU24 in the
native are those from hydrophobic amino acids that locate inside of proteins, while similar
environments for LEU24 in the decoy included exposed residues.

The purpose of showing the examples is to illustrate the performance of PRESCO in
comparison with pairwise potentials. Of course PRESCO's performance was not always
better than the two potentials in the entire benchmark test; nevertheless the examples show
the advantage that the residue environment-based score can achieve.

Discussion

We have developed two residue environment sores, the Main-chain Residue Environment
(MRE) and the Side-chain Depth Environment (SDE). The Protein Residue Environment
Score (PRESCO), which uses MRE and SDE, compared favorably against existing
knowledge-based statistical potentials in recognizing native and close-to-native decoys.
Notably, MRE and SDE have complementary strength: MRE performs well in identifying
native structures (Table I, Table V) while the SDE score has better correlation to the RMSD
of decoys and thus works better in recognizing near-native decoys when native structure is
not included (Table 11, Table 111, Table IV).

As scoring decoys is a central problem in protein structure prediction, various potentials
have been developed for the native structure/near-native decoy selection. In contrast to most
of the knowledge-based statistical potentials that capture preference of pairwise interactions
between atom or atom groups including the potentials compared with PRESCO in the
current work, PRESCO was designed to capture multi-body interactions of residue side-
chains. It was shown that such residue environments captured by PRESCO exist in proteins
of different folds. PRESCO does not need the reference state, which is often problematic in
designing statistical potentials. Through this work we have shown that considering residue
environments for capturing multi-body interactions may be a promising alternative direction
to the conventional two-body statistical potentials for protein structure prediction and
modeling. Similar ideas of residue environment scores will be also effectively applied for
validating crystal structures of proteins and for protein design.

Acknowledgments

The authors thank Lenna X. Peterson for proofreading the manuscript. This work was partly supported by the
National Institute of General Medical Sciences of the National Institutes of Health (R01GM097528) and the
National Science Foundation (11S0915801, DBI11262189, 10S1127027), and National Research Foundation of
Korea Grant funded by the Korean Government (NRF-2011-220-C00004).

References

1. Orengo CA, Jones DT, Thornton JM. Protein superfamilies and domain superfolds. Nature. 1994;
372(6507):631-634. [PubMed: 7990952]

2. Harrison A, Pearl F, Mott R, Thornton J, Orengo C. Quantifying the similarities within fold space.
Journal of molecular biology. 2002; 323(5):909-926. [PubMed: 12417203]

3. Rossmann MG. Super-secondary structure: a historical perspective. Methods Mol Biol. 2013;
932:1-4. [PubMed: 22987343]

Proteins. Author manuscript; available in PMC 2015 December 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kim and Kihara

10

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

Page 15

. Fernandez-Fuentes N, Fiser A. Saturating representation of loop conformational fragments in

structure databanks. BMC structural biology. 2006; 6:15. [PubMed: 16820050]

. Fidelis K, Stern PS, Bacon D, Moult J. Comparison of systematic search and database methods for

constructing segments of protein structure. Protein engineering. 1994; 7(8):953-960. [PubMed:
7809034]

. Hvidsten TR, Kryshtafovych A, Fidelis K. Local descriptors of protein structure: a systematic

analysis of the sequence-structure relationship in proteins using short- and long-range interactions.
Proteins. 2009; 75(4):870-884. [PubMed: 19025980]

. Skolnick J, Jaroszewski L, Kolinski A, Godzik A. Derivation and testing of pair potentials for

protein folding. When is the quasichemical approximation correct? Protein science : a publication of
the Protein Society. 1997; 6(3):676. [PubMed: 9070450]

. Yang YD, Park C, Kihara D. Threading without optimizing weighting factors for scoring function.

Proteins. 2008; 73(3):581-596. [PubMed: 18473394]

. Mitchell JB, Thornton JM, Singh J, Price SL. Towards an understanding of the arginine-aspartate

interaction. Journal of molecular biology. 1992; 226(1):251-262. [PubMed: 1619654]

. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. Procheck - A Program to Check the
Stereochemical Quality of Protein Structures. Journal of Applied Crystallography. 1993; 26:283.
Bonneau R, Strauss C, Rohl C, Chivian D, Bradley P, Malmstrom L, Robertson T, Baker D. De
Novo Prediction of Three-dimensional Structures for Major Protein Families. Journal of molecular
biology. 2002; 322(1):65. [PubMed: 12215415]

Jones DT. Predicting novel protein folds by using FRAGFOLD. Proteins. 2001; (Suppl 5):127.
[PubMed: 11835489]

Zhou H, Skolnick J. Protein structure prediction by pro-Sp3-TASSER. Biophysical journal. 2009;
96(6):2119-2127. [PubMed: 19289038]

Zhang Y, Arakaki AK, Skolnick J. TASSER: an automated method for the prediction of protein
tertiary structures in CASP6. Proteins. 2005; 61(Suppl 7):91-98. [PubMed: 16187349]

Kihara D, Lu H, Kolinski A, Skolnick J. TOUCHSTONE: an ab initio protein structure prediction
method that uses threading-based tertiary restraints. Proceedings of the National Academy of
Sciences of the United States of America. 2001; 98(18):10125. [PubMed: 11504922]

Kihara D, Chen H, Yang YD. Quality assessment of protein structure models. Current protein &
peptide science. 2009; 10(3):216-228. [PubMed: 19519452]

Eramian D, Shen MY, Devos D, Melo F, Sali A, Marti-Renom MA. A composite score for
predicting errors in protein structure models. Protein Sci. 2006; 15(7):1653. [PubMed: 16751606]
Chen H, Kihara D. Effect of using suboptimal alignments in template-based protein structure
prediction. Proteins. 2011; 79(1):315-334. [PubMed: 21058297]

Sippl MJ. Knowledge-based potentials for proteins. CurrOpinStructBiol. 1995; 5(2):229.
Betancourt MR. Knowledge-based potential for the polypeptide backbone. The journal of physical
chemistry B. 2008; 112(16):5058-5069. [PubMed: 18373361]

Zhang W, Liu S, Zhou Y. SP5: improving protein fold recognition by using torsion angle profiles
and profile-based gap penalty model. PloS one. 2008; 3(6):62325. [PubMed: 18523556]

Liu S, Zhang C, Liang S, Zhou Y. Fold recognition by concurrent use of solvent accessibility and
residue depth. Proteins. 2007; 68(3):636—645. [PubMed: 17510969]

Zhou H, Zhou Y. Single-body residue-level knowledge-based energy score combined with
sequence-profile and secondary structure information for fold recognition. Proteins. 2004; 55(4):
1005. [PubMed: 15146497]

Wroblewska L, Skolnick J. Can a physics-based, all-atom potential find a protein's native structure
among misfolded structures? I. Large scale AMBER benchmarking. JComputChem. 2007
Manavalan P, Ponnuswamy PK. Hydrophobic character of amino acid residues in globular
proteins. Nature. 1978; 275(5681):673-674. [PubMed: 703834]

Manavalan P, Ponnuswamy PK. A study of the preferred environment of amino acid residues in
globular proteins. Archives of biochemistry and biophysics. 1977; 184(2):476-487. [PubMed:
596883]

Proteins. Author manuscript; available in PMC 2015 December 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kim and Kihara

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Page 16

Karlin S, Zhu ZY, Baud F. Atom density in protein structures. Proceedings of the National
Academy of Sciences of the United States of America. 1999; 96(22):12500-12505. [PubMed:
10535951]

Kihara D. The effect of long-range interactions on the secondary structure formation of proteins.
Protein Sci. 2005; 14(8):1955. [PubMed: 15987894]

Zhong L, Johnson WC Jr. Environment affects amino acid preference for secondary structure.
Proceedings of the National Academy of Sciences of the United States of America. 1992; 89(10):
4462-4465. [PubMed: 1584778]

Minor DL Jr, Kim PS. Context-dependent secondary structure formation of a designed protein
sequence. Nature. 1996; 380(6576):730-734. [PubMed: 8614471]

Feng Y, Kloczkowski A, Jernigan RL. Four-body contact potentials derived from two protein
datasets to discriminate native structures from decoys. Proteins. 2007; 68(1):57-66. [PubMed:
17393455]

Munson PJ, Singh RK. Statistical significance of hierarchical multi-body potentials based on
Delaunay tessellation and their application in sequence-structure alignment. Protein science : a
publication of the Protein Society. 1997; 6(7):1467-1481. [PubMed: 9232648]

Sanchez-Gonzalez G, Kim JK, Kim DS, Garduno-Juarez R. A beta-complex statistical four body
contact potential combined with a hydrogen bond statistical potential recognizes the correct native
structure from protein decoy sets. Proteins. 2013; 81(8):1420-1433. [PubMed: 23568277]

Summa CM, Levitt M, Degrado WF. An atomic environment potential for use in protein structure
prediction. Journal of molecular biology. 2005; 352(4):986-1001. [PubMed: 16126228]

Huang ES, Subbiah S, Levitt M. Recognizing native folds by the arrangement of hydrophobic and
polar residues. Journal of molecular biology. 1995; 252(5):709-720. [PubMed: 7563083]

Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from
fragments with similar local sequences using simulated annealing and Bayesian scoring functions.
Journal of molecular biology. 1997; 268(1):209-225. [PubMed: 9149153]

Mooney SD, Liang MH, DeConde R, Altman RB. Structural characterization of proteins using
residue environments. Proteins. 2005; 61(4):741-747. [PubMed: 16245324]

Chakravarty S, Varadarajan R. Residue depth: a novel parameter for the analysis of protein
structure and stability. Structure. 1999; 7(7):723-732. [PubMed: 10425675]

Wang G, Dunbrack RL Jr. PISCES: recent improvements to a PDB sequence culling server.
Nucleic acids research. 2005; 33(Web Server issue):W94-98. [PubMed: 15980589]

Samudrala R, Levitt M. Decoys ‘R’ Us: a database of incorrect conformations to improve protein
structure prediction. Protein science : a publication of the Protein Society. 2000; 9(7):1399-1401.
[PubMed: 10933507]

John B, Sali A. Comparative protein structure modeling by iterative alignment, model building and
model assessment. Nucleic acids research. 2003; 31(14):3982-3992. [PubMed: 12853614]
Zhang J, Zhang Y. A novel side-chain orientation dependent potential derived from random-walk
reference state for protein fold selection and structure prediction. PloS one. 2010; 5(10):e15386.
[PubMed: 21060880]

Tsai J, Bonneau R, Morozov AV, Kuhlman B, Rohl CA, Baker D. An improved protein decoy set
for testing energy functions for protein structure prediction. Proteins. 2003; 53(1):76-87.
[PubMed: 12945051]

Rykunov D, Fiser A. New statistical potential for quality assessment of protein models and a
survey of energy functions. BMC bioinformatics. 2010; 11:128. [PubMed: 20226048]

Sievers F, Higgins DG. Clustal Omega, accurate alignment of very large numbers of sequences.
Methods Mol Biol. 2014; 1079:105-116. [PubMed: 24170397]

Kolinski A, Skolnick J. Assembly of protein structure from sparse experimental data: an efficient
Monte Carlo model. Proteins. 1998; 32(4):475. [PubMed: 9726417]

Nishikawa K, Ooi T. Prediction of the surface-interior diagram of globular proteins by an empirical
method. International journal of peptide and protein research. 1980; 16(1):19-32. [PubMed:
7440060]

Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein.
Journal of molecular biology. 1982; 157(1):105-132. [PubMed: 7108955]

Proteins. Author manuscript; available in PMC 2015 December 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kim and Kihara

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Page 17

Gront D, Kolinski A. BioShell--a package of tools for structural biology computations.
Bioinformatics. 2006; 22(5):621-622. [PubMed: 16407320]

Dai L, Yang Y, Kim HR, Zhou Y. Improving computational protein design by using structure-
derived sequence profile. Proteins. 2010; 78(10):2338-2348. [PubMed: 20544969]

Ponder JW, Richards FM. An Efficient Newton-Like Method for Molecular Mechanics Energy
Minimization of Large Molecules. Journal of computational chemistry. 1987; 8(7):1016-1024.
Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks.
ProcNatlAcadSciUSA. 1992; 89(22):10915.

Qu CX, Lai LH, Xu XJ, Tang YQ. Phyletic relationships of protein structures based on spatial
preference of residues. JMol Evol. 1993; 36(1):67. [PubMed: 8381879]

Qian B, Goldstein RA. Optimization of a new score function for the generation of accurate
alignments. Proteins. 2002; 48(4):605. [PubMed: 12211027]

Kolaskar AS, Kulkarni-Kale U. Sequence alignment approach to pick up conformationally similar
protein fragments. JMol Biol. 1992; 223(4):1053. [PubMed: 1538389]

Tan YH, Huang H, Kihara D. Statistical potential-based amino acid similarity matrices for aligning
distantly related protein sequences. Proteins. 2006; 64:587. [PubMed: 16799934]

Kawashima S, Kanehisa M. AAindex: amino acid index database. Nucleic Acids Res. 2000; 28(1):
374. [PubMed: 10592278]

Lu M, Dousis AD, Ma J. OPUS-PSP: an orientation-dependent statistical all-atom potential
derived from side-chain packing. Journal of molecular biology. 2008; 376(1):288-301. [PubMed:
18177896]

Zhou H, Skolnick J. GOAP: a generalized orientation-dependent, all-atom statistical potential for
protein structure prediction. Biophysical journal. 2011; 101(8):2043-2052. [PubMed: 22004759]
Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score.
Nucleic Acids Res. 2005; 33(7):2302. [PubMed: 15849316]

Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived
potentials of mean force for structure selection and stability prediction. Protein Sci. 2002; 11(11):
2714. [PubMed: 12381853]

Yang Y, Zhou Y. Specific interactions for ab initio folding of protein terminal regions with
secondary structures. Proteins. 2008; 72(2):793-803. [PubMed: 18260109]

Shen MY, Sali A. Statistical potential for assessment and prediction of protein structures. Protein
science : a publication of the Protein Society. 2006; 15(11):2507-2524. [PubMed: 17075131]

Lu H, Skolnick J. A distance-dependent atomic knowledge-based potential for improved protein
structure selection. Proteins. 2001; 44(3):223. [PubMed: 11455595]

Wang K, Fain B, Levitt M, Samudrala R. Improved protein structure selection using decoy-
dependent discriminatory functions. BMC structural biology. 2004; 4:8. [PubMed: 15207004]
Tobi D, Shafran G, Linial N, Elber R. On the design and analysis of protein folding potentials.
Proteins. 2000; 40(1):71-85. [PubMed: 10813832]

Proteins. Author manuscript; available in PMC 2015 December 01.



1duosnuely Joyny vd-HIN 1duosnuely Joyny vd-HIN

1duosnuely Joyny vd-HIN

Kim and Kihara Page 18

Main Chain

Residue Depth

Protein Surface

Figure 1.
Side-chain depth environment (SDE). The SDE of an amino acid (black circle) is defined as

the depth of the side-chain centroids within a sphere of 6.0 or 8.0 A (gray and white circles)
from the center amino acids. To find similar SDEs from a database, the RMSD of nine side-
chains (white circles) including the center one, the number of side-chain centroids in the
sphere, and the residue depth of the side-chains are considered.
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Number of Side Chain Centroids

. Arﬁina Acid Tyﬁe

o
BT

Retrieved Residue

Center Residue

Figure 2.
Characteristics of SDEs. (A) The distribution of the number of side-chain centroids in the

sphere of an 8.0 A radius for each residue type shown in a box-and-whisker plot. The bar
inside the box shows the median and the two ends of the box show the first and third
quartiles. Outliers (shown as dots) are defined as more than 1.5 times the interquartile range
(the third quartile minus the first quartile) outside the first or third quartiles. (B) Residues
with similar SDEs identified by database searches for each residue type. For the SDE of
each residue in each protein in the reference database, the top 40 most similar SDEs in terms
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of the residue depth RMSD were retrieved. Then fraction of 20 different residues retrieved

for each residue type was computed and normalized by the overall fraction of the residue in
the reference database. The color scale shows the enrichment, the darker the higher ratio of
the residue relative to the background fraction.
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Figure 3.

Global structural similarity of proteins that have similar side-chain environments. (A)

RMSD of Protein Structures (A)
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Global coordinate RMSD of protein structures whose residue has similar SDEs. For each
residue in the reference protein database, five most similar residues to the query residue in
terms of SDEs were selected. Their depth RMSD of the side-chains in a sphere of 8.0 A and

the global RMSD of the whole protein structures were computed. Global RMSD was

computed with BioShell, which computes RMSD of gapped structure alignment between
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two proteins. (B) For the same residue pairs shown in the plot A, the conventional RMSD of
the neighboring side-chain centroids were compared with the global RMSD of the proteins.
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Figure 4.
Examples of similar SDEs. Residues included in SDEs are shown in color. (A) SDE of

residue 64 (Glu) of 11Bcellobiose (PDB code: liib) (left) and residue 146 (Arg) of RNA
polymerase 1l mediator complex protein MED7 (1ykh, chain A) (right). The center side-
chain is shown in black spheres. 8.0 A was used for the sphere to define SDEs. Both SDEs
contain seven side-chain centroid points of neighboring residues (shown in the stick
representation). The residues are 60, 61, 63, 64, 65, 67, and 68 for Liib and 32, 33, 35, 36,
37, 39, and 40 from 1ykhA. The depth RMSD (dRMSD) of the two SDEs is 0.022 A. (B)
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Residue 40 (Ser) in fertilization protein (1lis) and residue 312 (Ser) of Anthrax lethal factor
(1yqyA). Six residues are included: residue 39, 40, 41, 42, 43, 44 for 1lis and 311, 312, 313,
314, 315, 316 from 1yqyA dRMSD: 0.023 A. (C) SDEs of residue 12 (Leu) in
bromodomain of GCN5 (PDB: 1e6i) and residue 71 (lle) of p-mannose (1bgcA). 13 residues
are in the SDEs, 8, 9, 11, 12, 13, 15, 16, 46, 49, 50, 53, 58, and 64 for 1e6i and 67, 68, 70,
71,72,74,75, 81, 83, 113, 114, 117, and 121 for 1bgcA The depth RMSD is 0.037 A. (D)
Residue 41 (lle) of map kinase 14 (1ew4) and residue 196 (lle) of tetracycline repressor
(2bjOA). 13 residues are included. lew4: 39, 40, 41, 42, 43, 17, 21, 30, 32, 49, 51, 91, 95;
and 2bjOA 194, 195, 196, 197, 198, 31, 33, 50, 137, 139, 161, 175, 177. dRMSD: 0.035 A.
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Figure 5.
Schematic diagram of the PRESCO scoring system for evaluating decoys. For each residue

in a decoy to be evaluated, two residue environments, MRE and SDE, are constructed and
compared against residues in the database of representative proteins. Two sphere sizes, 8.0
A and 6.0 A, are used for SDE. Similar MRE/SDEs found in the database are sorted
according to their similarity to that of the target residue. A score for a target residue is a
weighted sum of the amino acid similarity score, and the score of the decoy is the sum of the
score given to each residue. See text for more details.
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The number of successfully identified native structures in 30 Rosetta decoy sets. Seven
matrices were tested in combinations with 22 weights for native structure recognition. a is a
parameter for the RMSD-based weight (Eq. 3); B is a parameter for the rank-based weight
(Eq. 4); and y is a parameter for the exponential weight (Eq. 5).
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Figure 7.
Examples of correlation between the environment scores and RMSD. RMSD of decoys are

plotted relative to the residue environment scores for decoy sets of three proteins. Left, MRE
(CC80 with y=1.5); middle, SDE (QU_C2 with y=2.0); Combined Score with MRE (CC80
with y=1.5) and SDE (QU_C2 with y=2.0) with a weight value of 2.05 were used. (A) 2chf
from the Rosetta decoy set; Correlation coefficients (CC) are -0.31, -0.67, and -0.62,
respectively from left to right. (B) 1gnuA from the I-TASSER decoy set. CC are -0.31,
-0.74, and -0.77, respectively. (C) 1csp from the I-TASSER decoy set. CC are -0.50, -0.55,
and -0.63, respectively.

Proteins. Author manuscript; available in PMC 2015 December 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

wdudsnuel Joyny vd-HIN

Kim and Kihara

Page 28

A Ez, .
i i |'.
£
¢ 1" |I
3 3" |
i B \
H g ol Fe NRI | |
3 o] 1\ vl
I R S W |
2 ALY
] E— s P Lo L
Residue Position
200
~8— GOAP
s h S
g i |d'|I |I|.\.l. : I||I|I T Soe
: Lol e \ T ||0|
2 ¥ TS p
3 Rotdoll 92780, 0,31 of°
< ofi "wy.!' }Qﬂ': PRt
P AT AT
5 arg il Ry g
3 1 e sl Bl b
§ Y i il =
w 1 Iy I \ 1
1

-; t A
[\ g "ofl 2% o [ 21
Saallldalie 2avdF T 10T
£ 1LY \ £ s oy P \ [ o
L -|an L‘/y\ j“ I|/ u'll T T. = \.‘b \f % ||] I| | [ ||
f . | I R L![‘lll ||\
gl . ° |
§ 3°| || g -1 I} I |
3 | | 2 i 2| °
% -40] § -15 I{
& ol & ~a— natve
sol I I I P o Decay o 4 8
! Re:ndue Position ! “ ! Residua ::smnza ’
Figure 8.

Examples of residue-wise energies by SDE and other potentials. Two decoy sets included in
the Lmds set, 1fc2 and 1bba, were used. As shown in Table V, SDE and MRE successfully
identified the native structure among 501 decoys for these two decoy sets. A to E are
comparison between the SDE and GOAP energies at individual residues in the native
structure of 1fc2 and the lowest GOAP energy decoy, 1fc2.60276.pdb. F to H are
comparison between the SDE and DFIRE energies at each residue in the native of 1bba and
the lowest DFIRE energy decoy, 1bba.1697.pdb. (A) Energy difference at each residue
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between the native 1fc2 and the decoy 1fc2.60276.pdb by GOAP, DFIRE, MRE, and SDE.
The y-axis shows the residue-wise energy difference between the native and the decoy. A
negative value indicates that the residue has a lower energy in the native than the decoy.
SDE and MRE scores are negated so that they have the same sign as the other two
potentials. (B) The structure of the decoy 1fc2.60276.pdb. ILE12 is shown in red, and three
residues that have preferable GOAP energy between 1LE12, namely, PHE26, LEU30, and
LEU41 are shown in yellow, green, and cyan, respectively. (C) The native structure of 1fc2.
ILE12, PHE26, LEU30, and LEU41 are shown in the same colors as in the panel B. (D) The
pairwise GOAP energies between ILE12 and the other residues in the decoy
1fc2.60276.pdb. (E) The Euclidean distance of side-chain centroids of each residue in the
native and the decoy after the two structures are superimposed by the LGA program. A high
distance (y-axis) indicates that the residue position in the decoy is far off from its correct
position. (F) Energy difference at each residue between the native 1bba and the decoy 1bba.
1697.pdb by GOAP, DFIRE, MRE, and SDE. (G) Superimposition of the native structure
(pink) of 1bba and the decoy 1bba.1697.pdb (cyan). LEU24 are shown in the stick
representation in red and blue in the native and the decoy, respectively. (H) Pairwise DFIRE
energies between LEU24 and each residue in the native (filled circles) and in the decoy
1bba.1697.pdb (open circles).
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