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Abstract

Small RNAs (sRNAs) are loaded into ARGONAUTE (AGO) proteins to induce gene silencing. In 

plants, the 5′-terminal nucleotide is important for sRNA sorting into different AGOs. Here, we 

show that miRNA duplex structure also contributes to miRNA sorting. Base-pairing at the 15th 

nucleotide of a miRNA duplex is important for miRNA sorting in both Arabidopsis AGO1 and 

AGO2. AGO2 favors miRNA duplexes with no middle mismatches, whereas AGO1 tolerates, or 

prefers, duplexes with central mismatches. AGO structure modeling and mutational analyses 

reveal that the QF-V motif within the conserved PIWI domain contributes to recognition of base-

pairing at the 15th nucleotide of a duplex, while the DDDE catalytic core of AtAGO2 is important 

for recognition of the central nucleotides. Finally, we rescued the adaxialized phenotype of 

ago1-12, which is largely due to miR165 loss-of-function, by changing miR165 duplex structure 

which we predict redirects it to AGO2.
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Introduction

RNA silencing is a conserved regulatory mechanism mediated by small RNAs (sRNAs) in 

most eukaryotic organisms 1-2. sRNAs are generated by Dicer (DCR) or Dicer-like (DCL) 

proteins and then sorted into distinct AGOs, the core components of the RNA induced 

silencing complex (RISC), to induce silencing of target RNAs or DNAs with 

complementary sequences. sRNA-based silencing can occur through transcriptional gene 

silencing by guiding DNA methylation or histone modification, or through post-

transcriptional gene silencing by direct cleavage (slicing), destabilization, or translational 

inhibition of target transcripts2-3.

A typical AGO protein consists of four functional domains—N, PAZ, MID, and PIWI 4-5—

which form a groove structure with the PAZ domain on the top and a crescent structure 

formed by the MID, PIWI, and N domains at the bottom 6-8. The MID-PIWI interface 

houses a binding pocket for the 5′-end of the functional guide strand of the sRNA duplex 9. 

The PAZ domain contains a binding pocket for the 3′ end of the guide strand, and the PIWI 

domain harbors a conserved Asp-Asp-His (DDH)/Asp-Asp-Asp (DDD) catalytic core that 

cleaves the passenger strand of the duplex between nucleotides 10 and 11 of the sRNAs4,10. 

The crystal structure of budding yeast Kluyveromyces polysporus AGO shows that an 

invariant glutamic acid (E) residue is inserted into the catalytic pocket to form the conserved 

DDHE/DDDE catalytic tetrad for slicing11. Studies on AGO structures have focused mainly 

on yeasts, animals, or humans7-8,12-13; so far, the structures of plant AGO proteins are still 

enigmatic.

sRNA sorting into the appropriate AGO is a key step that determines the function of a 

sRNA. AGOs from different organisms exhibit distinct, yet overlapping, sorting 

mechanisms. In animals, sRNA sorting is determined by the thermodynamic stability of the 

duplex termini, the specific protein-protein interactions between the AGO and the DCR 

complexes, the structure of the sRNA duplex, the sRNA 5′-terminal nucleotide, and the 

complementarity of the sRNA to its target 14-18. The strand with less stability at its 5′-

terminus is incorporated as the guide strand, while the other strand (called the passenger or 

star strand) is degraded 14-15. In Drosophila melanogaster, miRNA guide strand/miRNA 

star strand duplexes (miRNA/miRNA*) are generated by the DCR1/Loquacious complex 

and are subsequently sorted into AGO1 (DmAGO1), whereas siRNA duplexes are processed 

by the DCR2/R2D2 complex and are sorted into AGO2 (DmAGO2) 16,19. miRNA/miRNA* 

duplexes often contain central mismatches at nucleotide positions 8-12, whereas siRNA 

duplexes have perfect or near-perfect complementary sequences. In general, DmAGO1 

shows a bias for a 5′-terminal (5′) U, whereas DmAGO2 favors a 5′C 20-22. Sequence 

complementarity between targets and sRNAs also affect sRNA stability and sorting 18,23-24. 

Although sRNA sorting is not well understood in Caenorhabditis elegans, miRNA duplexes 

with central mismatches are preferentially sorted into two AGO proteins, Argonaute Like 

Gene-1 (CeALG-1) and CeALG-2, while siRNA duplexes with perfect base-pairing are 

mainly sorted into another AGO protein, RNAi-Defective 1 (RDE-1) 25. Human AGO2 

(HsAGO2) contains a rigid loop in the MID domain that preferentially recognizes 5′U’s or 

A’s, which reduces the binding efficiency of sRNAs with a 5′C or G 26. Interestingly, this 

nucleotide specificity loop is conserved in all four human AGOs (HsAGOs). They also have 
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similar sorting preferences for duplexes with central mismatches, which suggests that animal 

AGOs may not have a strict sorting systems or their sorting mechanism is still not fully 

understood 27-28.

In plants, the 5′-terminal nucleotide of sRNAs is more critical for sRNA sorting into the 

appropriate AGO than in animals 29-30. Arabidopsis AGO1 (AtAGO1) prefers 21-nucleotide 

(nt) sRNAs with a 5′U, AtAGO2 favors 21-nt sRNAs with a 5′A, AtAGO5 has a bias 

toward sRNAs with a 5′C but without an obvious size preference, and AtAGO4 

preferentially loads 24-nt sRNAs with a 5′A 31-32. However, the 5′-terminal nucleotide-

directed sorting model is not the only mechanism for sRNA sorting in plants. For example, 

some sRNAs sorted into AtAGO2 do not have a 5′A, such as miR396*, miR165*, miR398*, 

miR166*, and miR156*, while some sRNAs containing a 5′A are sorted into AGOs other 

than AtAGO2 and AtAGO4, such as miR172 and miR783 (sorted into AtAGO1), or miR390 

(sorted into AtAGO7). Some sRNAs containing a 5′C, such as miR169 and miR395, are 

sorted into AtAGO1. Additional mechanisms for sRNA sorting in plants are still largely 

unknown, although the importance of sRNA duplex structures has recently been recognized. 

For example, the specific sorting of miR166 and miR390 into Arabidopsis AtAGO10 and 

AtAGO7, respectively, is determined by the secondary structure of the miRNA/miRNA* 

duplex and by the identity of the 5′-terminal nucleotide of the miRNA 33-34. Moreover, 

miR408 that possesses a 5′A is sorted into both AtAGO1 and AtAGO2 to co-regulate the 

expression of Plantacyanin 35.

Our previous study has shown that AtAGO2 plays an important role in antibacterial defense 

through its association with miR393* 36. MiR393* and miR393 originate from the same 

miRNA duplex and are selectively sorted into AtAGO2 and AtAGO1, respectively. 

Although the differential sorting of miRNA and miRNA* of the same duplex into different 

AGOs has been observed in multiple plant and animal species, little is known about the 

specific features of the miRNAs and/or the AGOs that dictate miRNA strand selection and 

sorting into the appropriate AGO 21-22,30,37. In this study, we unveil the important roles of 

both the secondary structure of miRNA duplexes and the AGO PIWI domain in miRNA 

sorting in Arabidopsis. We have found that base-pairing at the 15th position (#15) of the 

miRNA duplex is essential for effective sorting into both AtAGO1 and AtAGO2. AtAGO2 

favors miRNA duplexes without a mismatch at #11, whereas whereas AtAGO1 tolerates or 

prefers miRNA duplexes with central mismatches. Structure modeling and mutational 

analyses of AGO proteins identify the conserved Gln-Phe--Val (QF-V) motif and the 

catalytic tetrad within the PIWI domain, which contribute to the recognition of nucleotides 

at #15 and #11 of the miRNA duplex, respectively. Finally, the stable expression of an 

AtAGO2-favored artificial miR165 duplex with no mismatch at #15 and #11 suppresses the 

adaxialized phenotype of the ago1-12 mutant that largely resembles the miR165 loss-of-

function phenotype.

RESULTS

Base-pairing at #15 and #11 is essential for AtAGO2 sorting

To investigate the impact of the sRNA duplex structure in sRNA sorting into Arabidopsis 

AGOs, we examined the sorting of miRNA/miRNA*s derived from several duplexes 
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containing mismatches at different positions. These artificial duplexes were modified by 

altering only the sequence of the passenger strand not containing the miRNA or miRNA* 

whose sorting was analyzed. Our primary focus was to study miRNA/miRNA*s that are 

sorted into AtAGO2. We first chose to analyze miR396*, because its duplex has the fewest 

number of mismatches compared with other duplexes that originate miRNAs associating 

with AGO2 (Fig. 1a) and also generates one of the most abundant sRNAs sorted into 

AtAGO2. We generated a series of miR396/miR396* duplexes with a mismatch from 

nucleotides #1-#19 of miR396* by only changing the miR396 nucleotides (Fig. 1a). In all 

cases, the original wobble mismatch at #18 was retained, and the 5′G was replaced by an A 

to meet the 5′A preference of AtAGO2. Each of these miRNA duplexes was separately co-

expressed in N. benthamiana leaves together with an AtAGO2 protein tagged at its N-

terminal region with three tandem repeats of the hemaglutinin (HA) epitope. MiR396* 

association with AtAGO2 was assessed by co-immunoprecipitation (CoIP) with HA 

antibody followed by sRNA Northern blot analysis. As shown in Fig. 1b, a mismatch at #1, 

#11, or #15 of the miR396/miR396* duplex had the strongest effect on reducing miR396* 

sorting efficiency into AtAGO2. A mismatch at nucleotides #10 or #19 also reduced 

miR396* sorting, although to a lesser extent. As nucleotides #1 and #19 are terminal 

nucleotides of the miRNA duplex, their mismatches would likely interrupt terminal binding 

in the AGO binding pockets. Thus, we mainly focused on nucleotides #15 and #11 of the 

miRNA duplex for further characterization.

We next examined the importance of base-pairing at nucleotides #15 and #11 for AtAGO2 

sorting of two additional AtAGO2-associated miRNA/miRNA*s, miR393* and miR390. 

The wild-type miR393*/miR393 duplex has a wobble mismatch at #12 and a gap between 

#3 and #4 30,36. We generated several miR393/miR393* duplexes that retained the wobble 

mismatch, but lacked the gap, and included a mismatch at #11 or #15 (Fig. 2a). As shown in 

Fig. 2b, a mismatch at #15 or #11 also largely decreased the sorting efficiency of miR393* 

into AtAGO2. MiR390 is mainly sorted into AtAGO7 29-30. It has a 5′A, and associates with 

AtAGO2 as well. MiR390/miR390* wild-type duplex has a mismatch at #11 (Fig. 2c). 

When we altered the miR390* sequence to remove this mismatch, we observed a noticeable 

increase in miR390 sorting into AtAGO2 (Fig. 2d, right panel). When a mismatch at #15 

was added by introducing a point mutation in miR390*, miR390 sorting efficiency 

significantly decreased (Fig. 2d, left panel).

We also investigated the contribution of miRNA duplex structure on AtAGO2 sorting for 

miRNAs with a 5′U. First, as shown in Supplementary Fig. 1, the sorting efficiency of both 

miR165-5′U and miR165-5′A originated from duplexes containing mismatches at #15 is 

lower than that of the corresponding miRNAs originated from duplexes without #15 

mismatches. And second, a mismatch at #11 of the miRNA duplex reduced the sorting into 

AtAGO2 of both 5′U and 5′A versions of miR396* and miR165 (Supplementary Fig. 2). 

Therefore, in addition to confirming that a 5′A facilitates miRNA sorting into AtAGO2, 

these results show that mismatches at #11 and #15 of the miRNA duplex also reduce the 

sorting of miRNA or miRNA*s with a 5′U into AtAGO2.
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Taken together, these results indicate that, in addition to the known 5′-terminal nucleotide 

identity sorting rule, base-pairing at #15 and #11 of the miRNA duplex is also critical for 

effective miRNA sorting into AtAGO2.

A #15- but not #11-mismatch interferes with AtAGO1 sorting

We then tested whether the base-pairing requirements at #15 and #11 of the miRNA duplex 

for AtAGO2 sorting was also valid for AtAGO1, the major miRNA-binding AGO in 

Arabidopsis. The miR165/miR165* duplex was studied because miR165 is one of the most 

abundant miRNAs associated with AtAGO1. The miR165 duplex has a rather complex 

structure with four mismatches (at #5, #12, #13, and #17) and two wobble mismatches (at #4 

and #10). An extra mismatch at #15 was introduced by mutating the miR165* sequence 

(Fig. 3a), which largely reduced miR165 sorting into AtAGO1 (Fig. 3b, left panel). To test 

the effect of the mismatch at #11 in AtAGO1 sorting, we first removed mismatches at #12 

and #13 and the wobble at #10 to make the central region clear of mismatches. Then, we 

introduced a mismatch at #9, #10, or #11 (Fig. 3a). We found that AtAGO1 tolerated or 

even favored central mismatches (Fig. 3b, right panel). Similar results were observed when 

testing AtAGO1 binding of miR162, another AtAGO1-associated miRNA with fewer 

mismatches in its duplex. Adding a mismatch at #15 also largely reduced miR162 sorting 

into AtAGO1 (Fig. 3 c, d left panel), suggesting that basepairing at #15 is important for 

miRNA sorting into both AtAGO1 and AtAGO2. The wild-type miR162 duplex contains a 

mismatch at #11. MiRNA sorting into AtAGO1 was almost the same when the mismatch at 

#11 was removed from the miR162/miR162* duplex (Fig. 3c, d right panel), supporting the 

conclusion that, unlike AtAGO2, AtAGO1 tolerates a central mismatch in the miRNA 

duplex.

We also studied the contribution of miRNA duplex structure on AtAGO1 sorting for 

miRNAs with a 5′A terminal nucleotide. First, a mismatch at #15 of the miRNA duplex 

reduced the sorting of both miR165-5′A and miR165-5′U into AtAGO1 (Supplementary 

Fig. 3). And second, AtAGO1 tolerated or even preferred a mismatch at #11 of miR165-5′U, 

miR165-5′A, miR396*-5′U, and miR396*-5′A (Supplementary Fig. 4). Therefore, both the 

5′-terminal nucleotide and the secondary structure of the miRNA/miRNA* clearly 

contribute to the sorting of miRNA/miRNA*s into AtAGO1.

Finally, to further validate the contribution of the miRNA duplex structure on the sorting of 

miRNAs into AtAGOs, we analyzed published high throughput sequencing datasets from 

untreated Arabidopsis, including AtAGO1-and AtAGO2-associated sRNAs 24. Out of the 15 

miRNAs or miRNA*s that are at least two-fold enriched in AtAGO2 IP fraction compared 

to the input sample (total RNA), only one (6.6%) was derived from miRNA duplexes 

containing a mismatch at #15 (Supplementary data 1a). Similarly, in AtAGO1 IP fraction, 

only one out of the 35 (2.9%) enriched miRNAs or miRNA*s was derived from duplexes 

containing a mismatch at #15 (Supplementary data 1b). On the other hand, 12 out of the 15 

(80.0%) miRNAs or miRNA*s enriched in AtAGO2 IP fraction were derived from duplexes 

with no central mismatches (#9-#12) (Supplementary data 1a), whereas 23 out of the 35 

(65.7%) miRNAs or miRNA*s enriched in AtAGO1 IP fraction originated from duplexes 

with central mismatches (Supplementary data 1b). These data support our experimental 
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results that i) base-pairing at #15 is essential for sRNA sorting into both AtAGO1 and 

AtAGO2, and ii) AtAGO2 favors sRNA duplexes with no central mismatches, whereas 

AtAGO1 can tolerate central mismatches.

The QF-V motif contributes to the recognition of #15 pairing

We hypothesized that recognition of the miRNA duplex structure is determined by certain 

motifs in AGO proteins. The identification of the specific amino acid residues that recognize 

these miRNA duplex structures could help us better understand the sorting mechanisms of 

miRNAs into specific plant AGOs. Although the crystal structure of a plant AGO has yet to 

be resolved, the crystal structure of HsAGO was recently described 7-8,12-13. The AtAGO2 

structure was modeled with a miR396* duplex (Fig. 4a) based on the HsAGO structure, 

from which the function of some residues and motifs have been revealed.

Our AtAGO2 model shows that the nucleotide at #15 of the miRNA duplex resides close to 

Q825/F826 and V829 within the PIWI domain of AtAGO2 (Fig. 4a). The Q residue is 

conserved in all plant and animal AGOs we examined, and the F residue is also conserved in 

all plant and animal AGOs except for HsAGO1, which has a similar hydrophobic leucine 

(L) residue instead. The V residue is conserved in all plant AGOs and most animal AGOs 

except for HsAGO1 and DmAGO2, in which the V is replaced by a similar isoleucine (I) 

residue (Supplementary Fig. 5). The highly conserved nature of QF-V motif across different 

kingdoms suggests their critical role in the function of AGOs. Because molecular modeling 

is a prediction and may substantially differ from its real structure, further validation by 

mutational analysis and future AtAGO2 crystallization analysis is necessary.To test whether 

these residues are important for recognition of nucleotide base-pairing at #15, two constructs 

were made, AtAGO2-Q825A/F826A and AtAGO2-V829A, in which residues Q825/F826 

and V829 were mutated to an alanine (A). Importantly, these mutations did not affect the 

stability of the AtAGO2 protein variants (Supplementary Fig. 6a). As shown in Fig. 4b and 

c, a single mutation of V829A or a double mutation of Q825A/F826A reduced the sorting of 

miR396* and miR393*, which were derived from duplexes lacking a mismatch at #15, into 

AtAGO2. However, the sorting efficiency of sRNAs derived from duplexes with a mismatch 

at #15 did not change. This result suggests that AtAGO2 variants carrying mutations in the 

QF-V motif lost their preference for #15 base-pairing (Fig. 4b,c). Thus, the QF-V motif 

within the PIWI domain is involved in AtAGO2 preferential sorting of miRNA duplexes 

without a mismatch at #15.

To test whether this conserved QF-V motif is also important for AtAGO1 sorting, we 

introduced the same series of point mutations into AtAGO1. All mutated versions of 

AtAGO1 accumulated to a similar level as wild-type AtAGO1 (Supplementary Fig. 6b). 

Similarly, the sorting preference for miR165 derived from a duplex without a #15 mismatch 

was lost in AtAGO1-V858A and AtAGO1-Q854A/F855A mutants, whereas the sorting 

efficiency of a miR165 deriving from a duplex with a #15 mismatch was not affected 

(Supplementary Fig. 7). Taken together, these results suggest that the QF-V motif in both 

AtAGO1 and AtAGO2 contributes to the recognition of #15 base-pairing within sRNA 

duplexes.
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The catalytic tetrad contributes to the recognition of #11

AtAGO2 prefers miRNAs originating from duplexes without a mismatch at #11, whereas 

AtAGO1 tolerates or even prefers duplexes with central mismatches. The AtAGO2 model 

shows that the nucleotide at #11 is located near the DDDE catalytic tetrad of AtAGO2 (Fig. 

5a, left panel). AtAGO2 and AtAGO3 are the only AtAGOs that contain a DDDE motif, 

while AtAGO1 and other AtAGOs encode a conventional DDHE motif (Supplementary Fig. 

5). To determine the role of the catalytic domain on central mismatch selection bias, we 

tested the AtAGO2-DDD954H and AtAGO1-DDH988D forms in which the third D residue 

of the AtAGO2 DDD and the AtAGO1 DDH was swapped. These mutations did not 

interfere with AGO protein accumulation (Supplementary Fig. 6) as reported previously 38. 

The sorting bias of wild-type AtAGO2 and the AtAGO2-DDD954H mutant was examined 

by testing their association with miR396* derived from miRNA duplexes without (#A) or 

with (#L) a central mismatch (Fig. 5b). As predicted, the AtAGO2-D954H mutant was no 

longer able to discriminate against duplex #L that carries a mismatch at #11 (Fig. 5b left 

panel), suggesting that residue D954 contributes to the sorting preference of duplexes 

without central mismatches for AtAGO2. Similar results were observed when testing the 

sorting efficiency of miR393* derived from duplexes with or without a mismatch at #11 

(Fig. 5c left panel). Thus, the catalytic core residue D954 of AtAGO2 contributes to the 

sorting bias for miRNA duplexes without central mismatches. However, a single amino acid 

change from H to D in AtAGO1 did not reduce its association with miR165 derived from a 

duplex with a mismatch at #11 (Supplementary Fig. 8),. This result suggests that the 

catalytic core residue H988 of AtAGO1 has little impact on its miRNA sorting efficiency, 

and the conversion to a D residue did not confer AtAGO1 the ability to select against 

duplexes without central mismatches, which may also require other residues.

As shown in Fig. 5a (right panel), the E residue of the DDDE catalytic core forms a Lys-

Glu-Glu (KEE) motif and is also located near #11 of the miRNA duplex. The central E787 

of AtAGO2 is conserved in all AGOs, but the adjacent residues K786 and E788 are not 

(Supplementary Fig. 5). This adjacent E is only present in AtAGO2, AtAGO3, and 

DmAGO2, while AtAGO1 contains an adjacent L, and all the other AtAGOs encode a L or 

similar amino acids (I or methionine (M)) 11. The adjacent residue “I” was present in 

DmAGO1, CeALG-1, HsAGO1, HsAGO2, HsAGO3, and HsAGO4 (Supplementary Fig. 

5), all of which prefer duplexes with central mismatches, while AtAGO2 and DmAGO2 

with an adjacent E residue discriminate against duplexes with central mismatches. 

Therefore, we hypothesized that this motif might also contribute to the sorting bias of 

AtAGO2 and AtAGO1 for central mismatches. To test this hypothesis, we generated an 

AtAGO2 mutant by swapping its KEE motif with the AtAGO1 QEL motif. The AtAGO2-

K786Q-E-E788L mutant lost its ability to distinguish the difference between duplexes with 

or without central mismatches, and it showed a similar sorting efficiency for miR396* and 

miR393* derived from duplexes with or without a mismatch at #11 (Fig. 5b, c). This result 

suggests that the KEE motif is also important for AtAGO2 to recognize the central region of 

the miRNA duplex structure. However, AtAGO1-Q802K-E-L804E did not associate more 

efficiently with miR165 derived from duplexes without a central mismatch compared to 

AtAGO1-WT (Supplementary Fig. 8).
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Taken together, our results show that both D954 and the KEE motif within the PIWI domain 

of AtAGO2 are important, but not sufficient, for the selective sorting of miRNAs derived 

from duplexes without central mismatches.

Suppression of ago1-12 by altering miR165 duplex structure

Given that different AGOs preferentially load miRNAs from duplexes with different 

secondary structures, it may be possible to direct a miRNA into a specific AGO by 

redesigning the miRNA duplex secondary structure through modification of the passenger 

strand sequence. To test this possibility and to validate our findings demonstrated above, we 

designed a series of miR165-based duplexes to confirm the favored duplex structure for 

AtAGO2. Because AtAGO2 preferentially associates with miRNAs with a 5′A 29-30, we 

changed the 5′U of miR165 to an A in all of the constructs expressing the different miR165 

duplex configurations. As predicted, adding a mismatch in #15 (#G duplex) largely reduced 

miR165 sorting into AtAGO2 in a N. benthamiana transient assay (Fig. 6a, b). In order to 

test the effect of central mismatches in miRNA sorting, we first removed the mismatches in 

the central regions, including those at #12 and #13 as well as the wobble mismatch at #10. 

Mismatches at the central region (#10, #11, and #12) also clearly reduced sorting of miR165 

into AtAGO2 (Fig. 6a, b). Furthermore, duplex configuration “M”, in which all the 

mismatches between #4 and #17 were removed and only the mismatches at #4 and #17 were 

maintained, had the highest sorting efficiency into AtAGO2 (Fig. 6a, b). To test whether the 

miR165 generated from the duplex “M” is functional, miR165 target PHABULOSA (PHB) 

was co-expressed in N. benthamiana with the miR165 duplex “M” and AtAGO2. As shown 

in Fig. 6c, d, the accumulation of both PHB mRNA and protein was significantly reduced 

when co-expressed with the miR165 duplex “M” than with the miR165 duplex “J”, which 

contains a mismatch at #11. Thus, the miR165 generated from the duplex “M” configuration 

is functional in vivo.

The Arabidopsis ago1-12 mutant (Ler background) carries the H765L mutation in the PIWI 

domain that lies near the nucleotide at #11 of the miRNA duplex (Supplementary Fig. 5 and 

9). Similar to what was described for the H977 residue in an AGO of Kluyveromyces 

polysporus, the mutation of H765 to L or A did not disturb miRNA sorting into AtAGO1 but 

did abolish AtAGO1 mediated silencing of PHB (Supplementary Fig. 9) 5,11. The ago1-12 

mutant has adaxialized trumpet-shaped leaves that curl upwards (Fig. 6e) 39, which largely 

resemble the phenotype of gain-of-function mutant phb-1d or a miR165-resistant PHB over-

expression plant 40-42. This suggests that the phenotype of ago1-12 mutant is largely due to 

the loss-of-function of miR165, which leads to over-accumulation of its targets—PHB 

family proteins. If we could redirect sorting of miR165 into AtAGO2 by altering its 

passenger strand sequences, we would expect that it could suppress the adaxialized 

phenotype of ago1-12 caused by the loss-of-function of miR165.

To this purpose, we generated Arabidopsis transgenic plants over-expressing miR165 from 

the duplex “M” configuration (miR165M), previously shown to be functional in N. 

benthamiana (Fig. 6c, d), in the ago1-12 mutant as well as in wild-type Ler plants. MiR165 

accumulation in the miR165M over-expression (miR165M-OE) plants was analyzed in 

leaves by sRNA Northern blot to identify highly-expressed lines (Supplementary Fig. 10). 
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The miR165M-OE lines in the wild-type background displayed strong abaxialized 

phenotypes with leaves curling downward or with even pinhead-shaped leaves (Fig. 6e, f). 

Similarly, ago1-12 plants over-expressing the miR165M duplex also displayed an 

abaxialized phenotype that resembled the wild type Ler over-expression lines (Fig. 6e, f). In 

the leaves from the miR165M-OE lines, miR165 is associated with AtAGO2 (Fig. 6f), and 

miR165 target genes (PHB, PHAVOLUTA [PHV], and REVOLUTA [REV]), were down-

regulated (Fig. 6g).

To rule out the possibility that miR165M may be sorted into AtAGOs other than AtAGO2 to 

suppress PHB expression in these miR165M-OE lines, we examined 1) miR165M sorting 

efficiency in all the 9 AtAGOs known to be expressed in Arabidopsis (AtAGO2—AtAGO7 

and AtAGO9—AtAGO10; AtAGO8 was not included because it was annotated as a 

pseudogene), and 2) the accumulation of its target PHB. AGO1-H765L was used as a 

control. As expected, miR165M was efficiently loaded into AtAGO2, but surprisingly also 

into AtAGO4, AtAGO6, and AtAGO9, three AGOs known to load 24-nt sRNAs and be 

involved in RNA-directed DNA methylation pathway (Supplementary Fig. 11a). MiR165M 

was also sorted rather poorly into AtAGO3, and AtAGO7, two AGOs from the same 

subgroup as AtAGO2 36 (Supplementary Fig. 11a). A trace amount of miR165 was also 

found in AtAGO5 and AtAGO10. These AtAGOs were functional in terms of sRNA sorting, 

as shown by efficient sorting of miR390, miR390* (Supplementary Fig. 11a), and 

miR165WT (Supplementary Fig. 11b) into AtAGO7, AtAGO5, and AtAGO1 or AtAGO10, 

respectively.

The accumulation of the miR165M target PHB was also co-expressed and analyzed to 

evaluate the function of each AtAGO/miR165M complex. PHB protein accumulation was 

reduced in the presence of AtAGO2, and also in AtAGO3 and AtAGO5 to a lesser degree. 

However, PHB protein accumulation was not changed when AtAGO4, AtAGO6, AtAGO9, 

AtAGO7, and AtAGO10 were co-expressed. Note that although AtAGO5 did not associate 

efficiently with miR165M, PHB accumulation was also slightly reduced when AtAGO5 was 

co-expressed, most likely due to the sorting of endogenous miR165WT (Supplementary Fig. 

11b). Efficient sorting of miR165WT into AtAGO4, AtAGO6, and AtAGO10 was also 

observed (Supplementary Fig. 11b), providing additional evidence that neither AtAGO4, 

AtAGO5, AtAGO6, nor AtAGO10 could rescue the ago1-12 phenotype; otherwise, we 

would have only seen the ago1-12 phenotype in ago1-12 double mutants with these AGOs.

Finally, expression analysis of AtAGO2, AtAGO3, and AtAGO5 mRNAs in different 

tissues showed that only AtAGO2 mRNA is accumulated in ago1-12 leaves, while AGO5 is 

mainly accumulated in flower and siliques and AGO3 is mostly expressed in roots, flower 

and siliques (Supplementary Fig. 12), in agreement with previous microarray data 31. Taken 

together, these results strongly support that miR165 generated from miR165M duplexes was 

functional in vivo through AtAGO2.

DISCUSSION

The sorting of sRNAs into AGO proteins is a key step in RNA silencing pathways. First, we 

have found that the secondary structure of miRNA duplexes plays a significant role in AGO 
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sorting. miRNAs with the same 5′-terminal nucleotide but are derived from different 

secondary structures were sorted into AtAGOs with different efficiencies. Second, using 

structure modeling mutational analysis, we identified functional motifs within the PIWI 

domain of AGOs that are responsible for structural recognition of the miRNA duplex.

A mismatch at #15 in miRNA duplexes reduces miRNA sorting efficiency in both AtAGO2 

and AtAGO1. The QF-V motif that resides near the nucleotide at #15 is involved in the 

recognition of the base-pairing at this position. AGOs with mutations at QF or V lost their 

preference for the base-pairing at #15. The Q residue is conserved in all analyzed AGOs 

from Arabidopsis, humans, Drosophila, and Neurospora crassa (Supplementary Fig. 5). The 

F and V residues are conserved in all Arabidopsis AGOs, as well as in HsAGO2, DmAGO1, 

and Neurospora crassa QDE2 (NcQDE2) (Supplementary Fig. 5). Such a high degree of 

conservation strongly suggests that the QF-V motif is imperative to AGO function. The 

HsAGO2 structure studies also suggest that this motif may contribute to the binding of 

sRNA 7-8, supporting its essential role in AGO function.

AtAGO2 associates preferentially with miRNAs derived from duplexes without central 

mismatches, whereas AtAGO1 tolerates or prefers miRNAs derived from duplexes with 

central mismatches. Although switching the catalytic core residue D954 to H does not 

appear to change AGO2 slicing activity 38, our structure modeling and domain swap 

analysis demonstrated that the DDDE catalytic tetrad within the PIWI domain of AtAGO2 

contributes to the sorting preference for miRNAs derived from duplexes without middle 

mismatches. AGO2 carrying D954H or K786Q-E-E788L mutations lost its preference for 

duplexes without central mismatches, and could tolerate duplexes with central mismatches. 

Similarly, DmAGO2 also preferentially binds duplexes without central mismatches, while 

DmAGO1 has the same preference as AtAGO1, which tolerates or prefers duplexes with 

central mismatches 16. DmAGO2 encodes a LEE motif, which is highly similar to the KEE 

motif in AtAGO2, supporting the importance of this motif in preferential binding of 

duplexes without central mismatches. The catalytic core DDDE is only present in eukaryotic 

AtAGO2, AtAGO3, and NcQDE2 and prokaryotic Thermus thermophilus AGO, while 

DDHE is the most common catalytic core for most AGOs, including DmAGO2. However, 

AtAGO1 with a H988D mutation or with the KEE motif of AtAGO2 cannot distinguish 

between duplexes with or without central mismatches as AtAGO2 does, indicating that these 

motifs are important but not sufficient to discriminate against duplexes with central 

mismatches. These results suggest that other amino acids may be required in addition to 

these residues. Further analysis is required for identification of such peripheral residues or 

motifs.

Furthermore, in addition to AGO proteins, double-stranded RNA binding proteins, such as 

DRB1, DRB2, DRB3, DRB4, and DRB5 in Arabidopsis, are believed to contribute to RNA 

silencing. In the drb1 mutant, most of the miRNAs have decreased abundance and most of 

the miRNA*s have increased abundance, while in the drb2345 quadruple mutant, the 

opposite is true 43. As most miRNAs are sorted into AtAGO1, while many miRNA*s are 

sorted into AtAGO2, these dsRBPs are also likely to interfere with the sorting of sRNAs 

into different AtAGOs.
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A better understanding of AGO sorting mechanisms will benefit both the functional study as 

well as the application of RNA silencing. Many organisms encode a large number of AGOs, 

which participate in distinct RNA silencing pathways. They may have evolved different 

mechanisms for sRNA sorting and function. The 5′-terminal nucleotide and the structure of 

sRNA duplexes play an important role in AGO sorting. However, there are still several 

AGO sorting phenomena and RNA silencing functions that cannot be fully explained by the 

5′-terminal nucleotide or duplex structure rules. Therefore, further functional studies are 

required to better elucidate the mechanisms of sRNA sorting in plants.

METHODS

Vector construction

The DNA fragments of miRNA precursors pre-miR396a*, pre-miR393b*, pre-miR390a, 

premiR390b, pre-miR165a, and pre-miR162 were cloned from genomic DNA with 

corresponding oligos (Supplementary data 2). The DNA fragment of amiRNA/amiRNA* 

was amplified by PCR using synthesized long oligos. These fragments were cloned into 

pENTR vector and then cloned into destination vector pEarleyGate 100 (pEG100).

The genomic DNA fragment of 3HA-AtAGO2 and cDNA fragment of 3HA-AtAGO1 were 

amplified from pMDC32-AGO2/AGO129 and cloned into pENTR vectors. Point mutations 

in AtAGO1 and AtAGO2 were introduced into pENTR-3HA-AGO1 and pENTR-3HA-

AGO2, respectively, using the GENEART Site-Directed Mutagenesis System. These AGO 

fragments were then cloned into pMDC32. 35S-HAAGO3, 35S-HAAGO4, 35S-HAAGO5, 

35S-HAAGO6, 35S-HA-AGO7, 35S-HAAGO9, 35S-HAAGO10 and 35S-PHB were 

previously described 44-45.

Plant growth, transient plant expression and stable transformation

Arabidopsis and N. benthamiana plants were grown at 23°C in a 12-h light/12-h dark 

photoperiod. Agrobacterium GV3101 cultures transformed with pEG100-miRNA or 

pMDC32-AGO were grown overnight at 28°C with 20 μM acetosyringone. The 

Agrobacterium containing either AGO or a sRNA duplex was adjusted to a concentration of 

OD600=1.0 and then mixed in equal proportions. Three-week-old N. benthamiana plants 

were infiltrated with the mixed Agrobacterium. The transient expression tissue was collected 

three days post inoculation. Agrobacterium containing pEG100-miRNAs was incubated 

similarly and transformed into genotyped ago1-12 +/− plants.

Immunoprecipitation, RNA analysis, and protein analysis

RNA immunoprecipitation of HA-AtAGO1/HA-AtAGO2 was performed as previously 

described 36. Briefly, 2 g N. benthamiana tissue or 0.5 g Arabidopsis tissue was ground and 

dissolved in IP extraction buffer. After spinning, the lysates were used for RNA extraction 

using Trizol for the RNA input and protein extraction for protein input. The same lysates 

were precleaned with protein A beads (Roche, 11134515001) and then immunoprecipitated 

with AtAGO2 antibody or HA-beads (Roche, 43400075). The washed beads were then used 

for RNA and protein analysis. 40 μg total RNA was used for input control. Total and 

immunoprecipitated fractions are probed with HA antibody (Santa cruz, NC9929626), c-
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myc antibody (Santa cruz, SC-786), and tubulin antibody (Sigma-Aldrich, T6074). The 

uncropped blots are shown in Supplementary Fig. 13. 5 μg input total RNA was treated with 

DNase I and then used for reverse transcription and subsequent quantitative real-time PCR.

Structure prediction

The structure of HmAGO2 (PDB ID 4EI3) 7-8 and HmAGO1 (PDB ID 4KRF) 12-13 were 

used for the construction of AtAGO1 and AtAGO2 models. First, multiple sequence 

alignments were performed using VMD software and the T-Coffee program 46-47. Different 

templates were used to build the initial homology models, and crystal structures 4EI3 (32% 

sequence identity to AtAGO2) and 4KRF (35% sequence identity to AtAGO1) were 

selected as the template to build our models based on their sequence identity and the torsion 

angle energy in the trail models. SWISS-MODEL (http://swissmodel.expasy.org/) Alignment 

Mode was used for the homology modeling 48. The double stranded mir396* RNA structure 

was built with VMD and VegaZZ programs 49. The structure was then refined to ensure 

correct intramolecular contacts. The RNA was then docked to apo AtAGO2 and the energy 

of the complex was minimized by removing clashes and optimizing intermolecular 

interactions. All molecular mechanics calculations were performed with CHARMM force 

field using VMD and NAMD programs 50-51.

Survey of sRNA duplex sorted into AGOs

The survey was performed with published high throughput sequencing datasets containing 

AtAGO1- and AtAGO2-sorted small RNAs 30. A two times enrichment was set as the 

cutoff. The small RNAs generated from the different loci but containing the same structure 

and sequence were counted as 1 (for example, miR166a, miR166b and miR166c in AtAGO1 

dataset). The miR159b in AtAGO2 was not counted as the linker bias due to its un-

methylated ends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Changes in miR396* duplex structure affect miR396* sorting efficiency into AtAGO2. (a) 

Distinct miR396* duplexes with mismatches at different positions. Red strand: miRNA, 

purple strand: miRNA*, large bulge: mismatch, small bulge: wobble mismatch, black 

number: mismatch or wobble position, blue letter: 5′ first nucleotide. (b) miR396* duplexes 

shown in (a) were co-expressed with HA-AtAGO2 in N. benthamiana. miR396* was 

detected from HA-AtAGO2 immunoprecipitated (HA IP) and input fractions with a 

miR396* antisense probe. Accumulation of HA-AGO2 in immunoprecipitated (HA IP) and 

input fractions is shown in the corresponding Western blots. U6 and tubulin were used as 

RNA and protein loading controls, respectively. Uncropped images are shown in 

Supplementary Fig. 13. Relative abundance (RA) indicates the relative fold change of 

miR396* in each lane compared to immunoprecipitated miR396*WT. These values were 

assessed with ImageQuant software for each lane by first normalizing the miR396* input 

levels to U6, then normalizing the immunoprecipitated miR396* levels to those values. 

Similar results were obtained from more than three biological repeats.
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Figure 2. 
Mismatches at #15 and #11 in the miRNA duplex reduce sorting efficiency of miRNAs into 

AtAGO2. Structures of miR393 and miR390 duplexes with or without a mismatch at #15 or 

#11 are shown in (a) and (c), respectively, as red strands (miRNAs), purple strands 

(miRNA*s), bigger bulges (mismatches), and small bulges (wobble pairings). (b) and (d) 

miRNAs were co-expressed with HA-AtAGO2 in N. benthamiana. RNA recovered from 

HA-AtAGO2 immunoprecipitated (HA IP) and input fractions were probed to detect 

specific miRNAs by Northern blot. Accumulation of HA-AGO2 was detected by Western 

blot. U6 and tubulin were used as controls for RNA and protein blots, respectively. Similar 

results were obtained from three biological repeats. Uncropped images are shown in 

Supplementary Fig. 13.
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Figure 3. 
Mismatches at #15 and in the central region of miRNA duplexes regulate miRNA sorting 

efficiency into AtAGO1. Structures of miR165 and miR162 duplexes with mismatches at 

different positions are shown in (a) and (c), respectively, as red strands (miRNAs), purple 

strands (miRNA*s), bigger bulges (mismatches), and small bulges (wobble pairings). (b) 

and (d) The miRNA duplexes were co-expressed with HA-AtAGO1 in N. benthamiana. 

RNA recovered from HA-AtAGO1 immunoprecipitated (HA IP) and input fractions were 

probed to detect specific miRNAs by Northern blot. The accumulation of HA-AGO1 was 

detected by Western blot using HA antibody. Accumulation of HA-AGO2 was detected by 

Western blot. U6 and tubulin were used as controls for RNA and protein blots, respectively. 

Similar results were observed in more than two biological repeats. Uncropped images are 

shown in Supplementary Fig. 13.
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Figure 4. 
The QF-V residues of AtAGO2 PIWI domain contribute to its bias for miRNAs derived 

from duplexes without mismatches at #15. (A) A stereoview of the interaction between 

AtAGO2 and the miRNA guide strand (purple) and passenger strand (gray) at #15 of the 

miRNA duplex. Inset box is enlarged to show residues in the PIWI domain located near #15. 

The Mid (top), PIWI (middle), and N (bottom) domains are shown on the left, and the PAZ 

domain is presented on the right. The labeled residues represent QF-V amino acids that 

potentially recognize the nucleotide at #15 (pink). miR396/miR396* (b) and miR393/

miR393* (c) duplexes with or without mismatches at #15 were co-expressed with HA-

AtAGO2 QF-V mutants in N. benthamiana. Duplexes are shown with red strands 

(miRNAs), purple strands (miRNA*s), bigger bulges (mismatches), and small bulges 

(wobble pairings). miRNA recovered from HA-AtAGO2 immunoprecipitated (HA IP) and 

input fractions were detected by Northern blot. Accumulation of HA-AGO2 was detected by 

Western blot using HA antibody. U6 and tubulin were used as controls for RNA and protein 

blots, respectively. Similar results were obtained from three biological repeats. Similar 

results were obtained from three biological repeats. Uncropped images are shown in 

Supplementary Fig. 13.
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Figure 5. 
The catalytic domain and the KEE/QEL motif determine the AtAGO2 sorting bias. (a) The 

stereoviews (top panel) and enlarged detailed views of the interaction between AtAGO2 

protein (cyan) with the guide strand (blue) and passenger strand (gray). Structures of 

AtAGO2 displaying DDD (left) and AtAGO2 KEE (right) were predicted by homology 

modeling. The selected DDD catalytic domain and KEE motif are shown as colored atoms. 

Nucleotides #11 of the guide strand and #9 of the passenger strand are indicated in pink. 

miR396/miR396* (b) and miR393/miR393* (c) duplexes with varying mismatches were co-

expressed with HA-AtAGO2 in N. benthamiana. Duplexes are shown as red strands 

(miRNAs), purple strands (miRNA*s), bigger bulges (mismatches), and small bulges 

(wobble pairings). miRNA recovered from HA-AtAGO2 immunoprecipitated (HA IP) and 

input fractions were detected by Northern blot. Accumulation of HA-AGO2 was detected by 

Western blot using HA antibody. U6 and tubulin were used as controls for RNA and protein 

blots, respectively. Similar results were obtained from three biological repeats. Uncropped 

images are shown in Supplementary Fig. 13.
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Figure 6. 
An artificial miR165 designed to be sorted into AtAGO2 is functional in vivo. (a) Structures 

of miR165 duplexes with mismatches at different positions with red strands (miRNAs), 

purple strands (miRNA*s), bigger bulges (mismatches), and small bulges (wobble pairings). 

(b) The miR165M duplex has the highest sorting efficiency with AtAGO2 from the N. 

benthamiana transient expression assay. Mismatches at central positions or at #15 of 

miR165 duplex decreased the sorting efficiency of miR165 into AtAGO2. miR165 

recovered from HA-AtAGO2 immunoprecipitated (HA IP) and input fractions was detected 

by Northern blot. Similar results were obtained from three biological repeats. (c) miR165 

derived from the miR165M duplex is predicted to function through association with 

AtAGO2 when AtAGO2 was co-expressed with miR165 and 35S-PHB-myc in N. 

benthamiana. The PHB-myc protein was detected by Western blot using myc antibody. 

Tubulin was used as a loading control. Similar results were obtained from four biological 

repeats. (d) PHB mRNAs were coordinately down-regulated when co-expressed with 

AtAGO2 and miR165. The expression of PHB genes in (c) was analyzed by quantitative 

real-time PCR. Error bars represent standard deviation from three technical repeats. N. 

benthamiana ubiquitin was used as internal control. Similar results were obtained from three 

biological repeats. (e) Transgenic Arabidopsis plants overexpressing the miR165M duplex 

suppressed the adaxialized phenotype of ago1-12 (scale bars represent 5 mm). Transgenic 

miR165M plants were generated in both Ler wild-type (WT) and ago1-12 backgrounds. 

Plants were grown under 12-h light, and pictures were taken of 4-week-old plants. (f) 

Transgenic miR165M plants with high accumulation of miR165 in Ler WT and ago1-12 

plants were selected.. U6 and tubulin were used as controls for RNA and protein blots, 

respectively. Similar results were obtained from two generations. (g) miR165 target RNAs 
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PHB/PHV/REV were down-regulated in miR165M overexpression (OE) plants. AtActin2 

was used as an internal control for quantitative real-time PCR. Error bars represent standard 

deviation from three technical repeats. Similar results were obtained from three biological 

repeats. Uncropped images are shown in Supplementary Fig. 13.
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