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Abstract

Variants identified in recent genome-wide association studies based on the common-disease 

common-variant hypothesis are far from fully explaining the hereditability of complex traits. Rare 

variants may, in part, explain some of the missing hereditability. Here, we explored the advantage 

of the extreme phenotype sampling in rare-variant analysis and refined this design framework for 

future large-scale association studies on quantitative traits. We first proposed a power calculation 

approach for a likelihood-based analysis method. We then used this approach to demonstrate the 

potential advantages of extreme phenotype sampling for rare variants. Next, we discussed how this 

design can influence future sequencing-based association studies from a cost-efficiency (with the 

phenotyping cost included) perspective. Moreover, we discussed the potential of a two-stage 

design with the extreme sample as the first stage and the remaining nonextreme subjects as the 

second stage. We demonstrated that this two-stage design is a cost-efficient alternative to the one-

stage cross-sectional design or traditional two-stage design. We then discussed the analysis 

strategies for this extreme two-stage design and proposed a corresponding design optimization 

procedure. To address many practical concerns, for example measurement error or phenotypic 

heterogeneity at the very extremes, we examined an approach in which individuals with very 

extreme phenotypes are discarded. We demonstrated that even with a substantial proportion of 

these extreme individuals discarded, an extreme-based sampling can still be more efficient. 

Finally, we expanded the current analysis and design framework to accommodate the CMC 

approach where multiple rare-variants in the same gene region are analyzed jointly.
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INTRODUCTION

Genome-wide association studies (GWAS) have been successfully performed in hundreds of 

human traits. These studies are based on the common-disease common-variant hypothesis 

[Reich and Lander, 2001] and have resulted in thousands of susceptibility loci identified and 

replicated across all traits [Hindorff et al., 2010]. However, these common variants are far 

from fully explaining the total hereditability of those traits [McCarthy et al., 2008; Ioannidis 

et al., 2009; Maher, 2008]. Rare variants may, in part, account for the missing hereditability. 

Human exome sequencing has shown that nonsynonymous SNPs impacting protein function 

tend to be rare [Ng et al., 2008], with these rare functional variants often having a larger 

estimated effect in comparison with common variants [Frazer et al., 2009]. In addition, 

previous sequencing studies focused on specific candidate genes have demonstrated an 

effect of rare variants on complex traits [Ramser et al., 2008; Nejentsev et al., 2009; Ji et al., 

2008].

To systematically identify the rare causal variants in the genome, there are several 

challenges that need to be addressed. Due to the low minor allele frequency (MAF), rare 

causal variants are more likely to be in weak linkage disequilibrium (LD) with nearby 

markers, making it infeasible to tag those variants. This will limit the success of cost 

reduction strategies by restricting the number of measured variants. Thus, it is preferable to 

measure all variants via whole-genome or at least whole-exome sequencing using 

sequencing techniques with high coverage. Furthermore, although collectively the rare 

variants may contribute considerably, the impact of a single variant may be small. 

Consequently, large sample sizes will be needed to detect specific rare causal variants with 

traditional designs. The current monetary cost associated with next-generation sequencing in 

large sample sizes limits the feasibility of traditional study designs and motivates the need 

for alternative solutions.

Here, we explored the potential of extreme-phenotype sampling (EPS), an idea with a long 

history in linkage analysis and LD mapping, in association studies aiming at rare causal 

variants of quantitative traits [Gu et al., 1997; Liang et al., 2000; Risch and Zhang, 1995; 

Wallace et al., 2006; Chen et al., 2005; Slatkin, 1999]. Based on a previously proposed 

analysis framework [Huang and Lin, 2007], we developed a corresponding power 

calculation method for EPS. We further investigated the usefulness of this design in future 

sequencing-based association studies from a cost-efficiency perspective with both 

genotyping and phenotyping costs taken into account. To address the practical limitations of 

the one-stage EPS when the source population is limited, we explored a two-stage design 

with the extreme sample sequenced in the first stage and the remaining nonextreme subjects 

utilized in the second stage. Analysis strategies for this extreme two-stage design were 

discussed and the corresponding optimization approaches were proposed. To address 

additional difficulties, such as potential phenotypic heterogeneity and measurement errors in 

the very extreme, we further explored the potential of an “almost-extreme” sample—an 

approach in which the very most extreme individuals are discarded in order to obtain a more 

robust inference. Finally, to demonstrate application of these ideas to analysis approaches 

aimed at testing multiple rare variants jointly in a region, we expanded the framework to 

accommodate the popular CMC approach [Li and Leal, 2008].
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MATERIALS AND METHODS

EPS AND THE ANALYSIS FRAMEWORK

Assume that there is a genetic factor G associated with a quantitative trait ϒ:

We assume that ϒ follows a normal distribution with mean µg and variance δ2 when G = g. 

β0 is the mean of ϒ when G is absent, and β1 represents the additive effect of G.

The extreme sample is defined by sampling individuals from the tails of ϒ, i.e., ϒ < C2 or ϒ 

> C1, C1 > µy > C2. Here we assume that C1 and C2 define the Kth and 1−Kth quantile in 

each extreme end of ϒ with the same number of individuals sampled from the two ends, 

although the following methods can be easily generalized to scenarios with asymmetric 

cutoffs.

According to Huang et al. [24], we can model the distribution of ϒ conditional on G and the 

sampling framework. This is a variation of the truncated normal distribution [Johnson and 

Kotz, 1970] if we believe that ϒ follows a normal distribution conditional on G, with the 

density function:

(2)

Here ℕ(µg, δ2) is the normal density function with mean µg and variance δ2 and φ is the 

cumulative normal function. Its likelihood can be easily maximized numerically and the 

hypothesis of no association between ϒ and G can be tested using a likelihood ratio test.

POWER CALCULATION FOR EPS

To comprehensively illustrate the performance of EPS for rare variants, we developed a 

power calculation approach for the analysis framework proposed by Huang and Lin [2007] 

based on the likelihood theory. Under the null hypothesis, the likelihood ratio test statistics 

approximately follow a χ2 distribution.

Under the alternative hypothesis, the likelihood ratio statistics approximately follow a 

noncentral χ2 distribution, L ~ χ2(λ, η) where the noncentrality parameter (NCP) η can be 

calculated as η = N γ, with γ as the expected log likelihood contribution for a single subject. 

The power of likelihood ratio test is then:
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(3)

Details of the calculation of γ as well as the consistency of this power calculation approach 

with empirical power are shown in Appendix A.

INFLUENCE OF MAF

Across different minor allele frequencies (MAFs), we compared the advantage of EPS with 

two other designs to detect a single causal variant in the genome: (1) the cross-sectional 

design in which subjects are randomly sampled with a corresponding linear regression 

analysis to assess the association between ϒ and G; and (2) a “case-control” design with a 

corresponding likelihood ratio test for the genotype frequency difference in cases and 

controls. For the “case-control” design, the threshold employed to dichotomize the 

quantitative trait is assumed to be the upper 10% percentile of the quantitative trait ϒ 

(although conclusions are similar for thresholds of 20, 10, 5, or 1%). Equal numbers of cases 

and controls were randomly sampled, and allele frequencies in the cases were compared 

with controls. Assuming one million independent variants in the genome, we used a 

genome-wide significance threshold of 0.05/1 M = 5.0 × 10 −8.

To illustrate the performance of the various approaches across a range of MAF, we 

compared the NCPs of each design for a given sample size when the causal effect of the 

variant is fixed. We calculated the ratio of the NCPs, using the cross-sectional design as a 

reference.

The calculation of the NCP follows standard procedures for the cross-sectional and case-

control designs [Gauderman and Morrison, 2006]. Note that here we assume a large source 

population in which to sample from for EPS.

COST-EFFECTIVENESS OF EPS

Let NΓ denote the sample size needed to achieve a given power Γ with the upper and lower 

Kth percentile of the distribution of ϒ sequenced in EPS. If S1 and S2 are the sequencing and 

phenotyping costs for a single individual, the cost of EPS is:

Let NΓ, represent the number of subjects to be sequenced to achieve the same power in the 

cross-sectional design. Thus, the cost of the cross-sectional design is:

We used the cost ratio of the cross-sectional design vs. EPS to represent the relative cost-

effectiveness of EPS. With a given sequencing/phenotyping cost ratio r = S1/S2, this total 

cost ratio is:
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Here γ and γ′ is the expected log likelihood contribution for a single subject in EPS and 

cross-sectional design, respectively. S′/S is a function of K and can be maximized 

numerically with simple optimization approach such as a golden section search [Kiefer, 

1953].

For different sequencing/phenotyping cost ratios, r, we calculated S′/S and the 

corresponding optimized Ks.

TWO-STAGE EXTREME SAMPLING DESIGN

Suppose a random sample of n individuals is available for genotyping and in the first stage 

of the extreme two-stage design, whole-genome sequencing of M markers is performed on 

individuals in the upper and lower K percentile of ϒ. That is, the total number of individuals 

sequenced in the first stage is a proportion of the total number of n individuals (πsample = 2 

K). Let πmarker be the proportion of markers selected for genotyping in the remaining n(1 − 

πsample) individuals with nonextreme phenotypes. Here for simplification we require that for 

the markers to be followed up in the second stage, the P-values should be less than πmarker 

in the first stage.

There are two possible strategies for the joint analysis of the two-stage data in the extreme 

two-stage design. The first strategy is similar in spirit to the joint analysis in the traditional 

two-stage design [Skol et al., 2006], in which the test statistics in the two stages are 

combined to produce a joint test statistic. We call this strategy as the statistics-combining 

strategy. The second strategy directly combines the data on the markers genotyped in both 

stages and is named as the data-combining strategy. Here we focus only on the data-

combining strategy. For completeness, details of the statistics-combining strategy and 

comparison of the two strategies are shown in Appendix B.

In the data-combining strategy, we combine the data for the Mπmarker SNPs in the two 

stages and the joint test statistics (Tjoint) are easily generated based on the joint data. For the 

Mπmarker SNPs genotyped in the second stage, the joint statistics are actually equivalent to 

the test statistics in the cross-sectional design in which all the individuals are sequenced 

simultaneously. Then a significance threshold considering all the M markers is applied to the 

Mπmarker test statistics in the second stage. This is equivalent to performing a costly cross-

sectional design, but only reporting the results of the Mπmarker SNPs. Under the null 

hypothesis this approach is conservative, since with Λ1 and Λgenome being the critical values 

for the first stage and genome-wide significance level and T1 and Tjoint being the 

corresponding test statistics, it is always true that
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Despite its conservative nature, under the alternative hypothesis there is a modest gain in 

power when comparing the data-combining strategy to the statistics-combining strategy (see 

Appendix B).

We compared the extreme two-stage design (based on the data-combining strategy) with the 

traditional two-stage design with cross-sectional random sample in both stages, and a one-

stage cross-sectional design in which whole-genome sequencing is performed on all the 

available subjects.

OPTIMIZATION OF THE EXTREME TWO-STAGE DESIGN

Suppose that in a two-stage design with the extreme sample as the first stage, the total 

genotyping cost available is Δ. Assume that per SNP genotyping cost is τ1 for the first-stage 

whole genome sequencing and τ2 for the second-stage customized genotyping. Then for a 

given proportion (πsample) of individuals allocated in the first stage, the proportion of 

markers (πmarker) passed to the second stage genotyping can be calculated as:

Here M is the number of SNPs in the first stage. If we assume Δ = ψNτ1 M and τ2/τ1 = ρ, 

then for any 0<ψ≤l, we have:

For the data-combining strategy, the power of the two-stage design can be written as:

since with given parameter θ, Tjoint is not affected by the selection of Λ1. Thereby with fixed 

total sample size, optimizing the two-stage design (with this analysis strategy) is equivalent 

to optimizing Pr(T1 >Λ1), which is actually the power of one-stage EPS with a K value of 

πsample/2 and alpha level of πmarker There is no closed form solution that can maximize 

Pr(T1 > Λ1). However, we can calculate it for any 0<πsample ≤ ψ, and the πsample (and the 

corresponding πmarker) can be easily optimized to get a maximized Pr(T1 > Λ1) with simple 

optimization techniques.

The statistics-combining strategy can be optimized in a similar way, although the optimized 

πsample (and the corresponding πmarker) is different for the two analysis strategies. 

Comparison of the optimization results of the two strategies can be found in Appendix C.

EXTENSION OF THE ANALYSIS AND POWER CALCULATION FRAMEWORK

Almost-extreme sampling—The very extremes of the phenotypes, although in theory 

highly informative, can be vulnerable to potential measurement errors and phenotype 

heterogeneity. In practice, the investigators might want to discard the very extremes and use 
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the almost-extreme sample for more robust hypothesis inference. This leads to a slightly 

different likelihood with a modified truncation function:

Here C1 and C2 define the extreme phenotype to sample from, and C3 and C4 define the 

extreme tails of the phenotypic distribution in which individuals are discarded. The power 

calculation and design optimization procedures discussed previously can be easily extended 

to the almost-extreme sample.

From single-SNP to multiple-SNP based analysis—In the previous sections, we 

focus on single-SNP based analysis in EPS. Nevertheless, several multiple-SNP- or gene-

region-based rare-variant analysis strategies have been proposed as powerful alternatives to 

single-marker-based strategies [Li and Leal, 2008; Madsen and Browning, 2009; 

Zawistowski et al., 2010; Asimit and Zeggini, 2010; Bansal et al., 2010]. In particular, the 

CMC approach proposed by Li and Leal [2008] is conceptually straightforward and more 

efficient than a single-marker-based analysis. Based on the CMC strategy, we extend the 

likelihood-based extreme sample analysis framework to incorporate multiple variants in the 

same gene region. Thus, supposing that in a gene region M rare-variants G1, G2 … GM with 

MAFs p1, p2 … pM are associated with ϒ with effects β1, β2,… βM, a new variable can be 

defined by collapsing those rare variants:

The likelihood of the CMC-based extreme-value analysis can be approximately calculated 

as:

Here βCMC represents the marginal association of GCMC with the outcome, which is 

determined by the MAFs of the M markers, the corresponding LD structure as well as the 

effects of each marker. Similar to single-variant-based analysis, this likelihood can be easily 

maximized. Furthermore, power calculation and design optimization procedures used for the 

single-variant analysis can be easily extended to CMC with flexibility in specification of the 

MAFs and effects of the M markers.
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As an example, we calculated the power of the CMC-based analysis for three sampling 

scenarios of 800 individuals: the extreme, random, and case-control sample. For 

simplification, we assume that there are 100 SNPs with MAF < 0.01 in the gene-region, with 

10 or 20 of these SNPs causal. The causal SNPs were assumed to contribute equally to the 

phenotype variance with a total variance contribution of 0.02.

RESULTS

EPS IN RARE VARIANTS

The NCP ratio in the EPS or case-control design relative to the cross-sectional design with 

the same sample size is shown in Figure 1. The NCP ratio of EPS is always greater than 1 

and is always larger than that of the case-control design. Moreover, this advantage in NCP 

ratio is enhanced for rare variants. For example, when the effect size is fixed at 0.5, the NCP 

ratio for EPS (K = 0.01) relative to the cross-sectional design changes from 3.95 to 6.06 

when the MAF changes from 0.1 to 0.02. More extreme K values and larger effect sizes lead 

to increased gains for the EPS approach. There is a slight increase in the NCP ratio for the 

case-control design as the MAF decreases.

COST-EFFICIENCY OF EPS

The relative cost-efficiency of EPS with different K values when the genotyping/

phenotyping cost ratio varies is demonstrated in Figure 2. Here, the cost-efficiency is 

measured by the ratio of the total cost to achieve 80% power (including both phenotyping 

and genotyping cost) with the EPS to that with the cross-sectional design. EPS is less cost-

efficient than a cross-sectional design when phenotyping is more expensive than genotyping. 

When the genotyping/phenotyping cost ratio is low (≤10), the gain in cost-efficiency is 

marginal and EPS can be less cost-efficient especially for a poorly chosen K. However, 

when the genotyping/phenotyping cost ratio is high (>10) EPS is more cost-efficient even 

with a suboptimal K. With an optimized K, this advantage in cost-efficiency is further 

improved. For example, when the genotyping/phenotyping cost ratio is 100, EPS can be 4.43 

times more cost-efficient than the cross-sectional design for an optimal K of 0.013.

PERFORMANCE OF THE EXTREME TWO-STAGE DESIGN

In more realistic scenarios, the size of the source population available for sampling is 

limited. In this scenario, the power of the proposed extreme two-stage design and traditional 

two-stage design is compared in Table I. With similar proportions of samples allocated in 

stage 1 (πsample) and similar proportions of markers selected to follow up in stage 2 

(πmarker), an extreme sampling procedure in the first stage can greatly increase the power of 

the two-stage design. Furthermore, to achieve nearly the same power as the more costly one-

stage design, much less genotyping is required in the first stage of the extreme two-stage 

design. For example, when a variant with MAF of 0.005 contributes 0.25% variance (with a 

β of 0.5), a sample of 18,177 individuals is required to be sequenced to achieve a power of 

90% for the cross-sectional design with a genome-wide significance level of 5.0 × 10−8. 

Similar power can be achieved by sequencing only 20% of the subjects in the extreme two-

stage design (corresponding to a K of 0.10) when πmarker = 0.001 for the second stage. In 
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contrast with the same πmarker and πsample, the power of the traditional two-stage design is 

only 20%.

OPTIMIZATION OF THE EXTREME TWO-STAGE DESIGN

Figure 3 presents examples of optimizing the extreme two-stage design under various 

genotyping budgets (ψ) when the per SNP genotyping cost ratio (ρ) in the two stages equals 

0.1. The optimized πsample and the maximum power of the extreme two-stage design are 

further shown in Table II. With an optimized extreme two-stage design, a genotyping budget 

(ψ) about 20% of that in a one-stage design can yield a power (88%) close to the maximum 

(90%).

EFFICIENCY OF THE ALMOST-EXTREME SAMPLE

Efficiency of the almost-extreme sample compared with a random sample is demonstrated in 

Figure 4. As expected, although the almost-extreme sample is less powerful than the 

extreme sample (with no individuals in the very extremes discarded), the sampling approach 

can be more powerful than a cross-sectional sample even with a substantial proportion of the 

very extremes discarded. For example, after discarding the top 5% of individuals with 

extreme phenotypes in both tails, the power of an almost-extreme sample from the 5–10% 

and 90–95% quantile can be more than twice that of a random sample of similar size.

CMC APPROACH FOR THE EXTREME SAMPLE

Table III compares the power of the CMC-based analysis strategies in an extreme, a cross-

sectional and a case-control sample. Consistent with the single-variant based results, the 

CMC strategy shows increased power with the extreme sample. For example, with 20 causal 

SNPs each contributing 0.1% of the phenotypic variance, an extreme sample of 800 

individuals from the 5% quantile of the upper and lower tails can achieve more than 80% of 

power using the CMC strategy. In comparison, with a random and case-control sample of 

the same size, the power is 30 and 16% respectively.

DISCUSSION

The idea of sampling the extremes was initially proposed in linkage analysis as a way to 

increase efficiency [Gu et al., 1997; Liang et al., 2000; Risch and Zhang, 1995]. In LD 

mapping for common variants, this idea has also been introduced and demonstrated 

[Wallace et al., 2006; Chen et al., 2005; Slatkin, 1999]. However although intuitively 

attractive, application of this design has been limited. Even with increased awareness of this 

design for future large-scale association studies aimed at rare variants [Li and Conti, 2009; 

Cirulli and Goldstein, 2010], the potential gain by sampling the extremes and more 

importantly, technical details of this design have not been well established. Aiming at 

providing insights and tools for planning future large-scale association studies, we explored 

the advantage of EPS for rare variants. By accounting for both genotyping and phenotyping 

costs, we demonstrated the potential cost advantages of this design. Additionally, since a 

straightforward implementation of sampling the extremes requires a large source population, 

we proposed a two-stage design with the extreme sample as the first stage and the 

nonextreme sample as the second stage. We show that even with a limited source 
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population, this two-stage design can achieve similar power as the one-stage design with 

much less cost.

Based on the power calculation approach proposed, we compared the performance of EPS 

with two traditional designs, the cross-sectional design based on the random sampling and a 

“case-control” design in which cases and controls are defined by a clinical diagnosis 

criterion dichotomizing an underlying observable quantitative trait. The rationale for 

including the case-control design in this comparison is that, often in clinical practice, 

diseases such as hypertension and obesity are defined by setting a threshold for quantitative 

traits [Chobanian et al., 2003; Expert Committee on the Diagnosis and Classification of 

Diabetes Mellitus, 2003]. Despite the potential gain by using a quantitative trait, many case-

control studies of this nature have been performed [Niu et al., 2010; Yamada et al., 2006; 

Lin et al., 2010; Schleinitz et al., 2010]. Performance of different designs is evaluated as 

NCP ratio, using the cross-sectional design as a reference. The NCP ratio can be viewed as 

an inverse of the ratio of sample size to be sequenced to achieve the same power. For 

example, with an MAF of 0.05 and effect size of 0.5, we observed an NCP ratio of 3.91 

when comparing EPS (K = 0.01) to cross-sectional design, which indicates that 3.91 times 

fewer subjects are needed in the EPS to achieve the same power as the cross-sectional 

design.

We observed that the NCP ratio of EPS is always greater than 1 and much larger than the 

case-control designs. This indicates the advantage of the EPS relative to the traditional 

designs, with a substantially smaller sample size required to achieve the same power. This 

advantage of EPS is consistent with results in previous investigations demonstrating the 

efficiency of EPS [Wallace et al., 2006; Chen et al., 2005; Slatkin, 1999, Huang and Lin, 

2007].

More interestingly, we observed a consistent increase in the NCP ratio when the MAF 

decreases. Similar trends can be observed when comparing the NCP of EPS to that of the 

case-control design (details not shown). Thus, the advantage of EPS over traditional designs 

increases as the MAF decreases. Moreover, this enhancement of performance increases with 

larger causal effect. When considering that rare causal variants may have stronger effects 

than more common variants [Ng et al., 2008; Frazer et al., 2009], the potential advantage of 

EPS designs could be substantial. This, combined with the fact that EPS is also more 

efficient with common variants, makes EPS a viable alternative to traditional designs for 

future sequencing-based association studies in which both common and rare variants are 

targeted.

Although the sample size sequenced in EPS can be much less than that in traditional 

designs, a much larger source population must be pre-phenotyped to generate this extreme 

sample. Thus, it is imperative to account for the phenotyping costs when designing an EPS-

based study. Our results demonstrate that EPS can be less cost-efficient than the cross-

sectional design when the genotyping/phenotyping cost ratio is low. This potentially 

explains the limited application of such approaches for linkage analysis and LD mapping, in 

which a limited number of markers are genotyped with a low genotyping/ phenotyping cost 

ratio. However, in future whole genome-sequencing-based association studies, the 

Li et al. Page 10

Genet Epidemiol. Author manuscript; available in PMC 2014 November 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



genotyping/ phenotyping cost ratio are expected to continue to be high, especially for studies 

in which the phenotype information has already been collected, as is common in large 

biobanks such as GenBank [Benson et al., 2008] and the UK BioBank [Oilier et al., 2005].

In contrast to these large biobanks, it is more likely that the population available for 

sampling is relatively small. For example, in the University of Southern California 

Children’s Health Study [Salam et al., 2004], only 10,000 individuals are available for 

potential genotyping or sequencing. If we only incorporate the individuals with extreme 

phenotypes for an optimized cutoff or K-value that is most cost-efficient for an assumed 

infinite source population, we may, in practice, have much less power due to the limited 

sample sizes. As an alternative, an extreme sample with a more conservative K can serve as 

the first stage for a two-stage design. A similar idea has been discussed in previous 

investigations [Song et al., 2009; Zhou et al., 2011]. In this design, the top hits in the first 

stage can be further evaluated in the second stage, in which the remaining nonextreme 

samples can be genotyped with customized SNP-chips. By limiting the number of 

individuals in the costly first stage and incorporating EPS, we show that this approach can 

be more cost-efficient than the comparable two-stage designs without sampling conditioned 

on the phenotype. This novel two-stage approach makes it more feasible to incorporate an 

extreme two-stage design for future sequencing-based association studies with limited 

source populations. However, investigators need to be aware that some SNPs identified 

through sequencing may fail with followup via customized genotyping. This might limit the 

application of many two-stage designs in practice, as well as the extreme sampling two-

stage design.

Our investigation of EPS is based on the analysis framework proposed by Huang et al in 

2007 [24]. By taking the sampling framework into account, this likelihood-based method 

yields unbiased estimates for the genetic effects and is highly flexible. Huang and Lin 

[2007] demonstrated that this approach is also more powerful than other methods, such as 

the combined-test based approaches proposed by Chen et al. [2005] and Slatkin [1999], a 

Hotellin’g T2 test proposed by Wallace et al [2006] as well as the naive case-control analysis 

which ignores the trait value and compares the allele frequencies in upper and lower extreme 

sample.

In a recent investigation evaluating the extreme sample in association analysis aiming at rare 

variants, Xing and Xing [2009] claimed that the extreme sample is more efficient in 

detecting common rather than rare variants and is efficient only when the level of declaring 

significance is not stringent. However, this study was based on a Fisher’s combined P-

values from two analyses: a logistic regression treating the upper extreme as cases and the 

lower extreme as controls, and a linear regression on the association between the 

quantitative trait and the genotype, ignoring the truncated distribution. The contradictory 

conclusion drawn by this study may be due, in part, to the less efficient analysis framework 

[Huang and Lin, 2007] in which issues of data sparseness and the level of conservativeness 

of the test is largely unknown. In our simulation, comparing the performance of the 

likelihood-based analysis and approach presented by Xing and Xing [2009] (Supplemental 

Table I), we demonstrated that although the power of Xing and Xing approach is 

comparable to that of the likelihood-based approach under a significance threshold of 0.05, 
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its performance deteriorates sharply with more stringent significance levels. This observed 

deterioration explains why Xing and Xing concluded that the extreme sample is more 

efficient only when the significance level is not stringent. Here, we demonstrate that using 

the likelihood-based approach, extreme-value sampling remains efficient even with more 

stringent significant levels.

In this investigation, we mostly focused on single-marker-based association tests in EPS. 

However, the likelihood-based analysis framework can be easily expanded to incorporate 

multiple markers, haplotypes, or even risk index analyses for rare variants. Furthermore, 

several approaches have recently been proposed for grouped or pooled analysis of rare 

variants in a gene region [Li and Leal, 2008; Madsen and Browning, 2009; Zawistowski et 

al., 2010; Asimit and Zeggini, 2010; Bansal et al., 2010]. Those ideas can also be applied to 

EPS-based samples. As an example of how extreme sampling may perform with these 

subsequent analyses techniques, we adapted the likelihood analysis framework for the CMC 

approach, a relative straightforward but powerful rare-variant analysis strategy. We 

demonstrated that with the higher information content in the extreme sample, the 

performance of CMC-based analysis strategy can be substantially improved in comparison 

with traditional designs. The power calculation and design optimization procedures we 

developed for single-variant based analysis are easily extended for the CMC strategy.

While clear advantages exist in applying EPS for a quantitative trait, the realization of such 

advantages depends greatly on the underlying diseases mechanism. In practice, it may be 

more likely that the very extremes of a phenotype distribution (K< 0.001, for example) may 

consist of unknown genetic heterogeneity due to genes with large effects (i.e. Mendelian 

disorders). In such cases, the corresponding variants will be enriched in the extreme sample. 

While this may help to understand the genetic heterogeneity of the phenotype, the power to 

detect rare variants with more moderate or weak genetic effects may be reduced. Thus 

depending on the purpose of the study, investigators should be cautious when choosing very 

extreme K-values, even if in certain scenarios the very extreme K-values may be more cost-

effective for either the one-stage or two-stage extreme-value design. As a more robust 

alternative in practice, investigators can use the almost-extreme sampling instead of the very 

extremes. For such sampling schemes, we demonstrated that even after discarding a 

significant proportion of the individuals with very extreme phenotypes, the almost-extreme 

sampling can still be more efficient than the traditional designs when using a corresponding 

likelihood-based analysis framework.

Likewise, the potential gains in efficiency of EPS with a quantitative trait relative to a case-

control analysis may rely on the appropriateness of using a quantitative trait to represent a 

truly dichotomous diseases state. Clearly, when disease status is defined by a convenient 

dichotomization of an underlying continuous variable, the resulting case-control design is 

less efficient for detecting rare risk variants. In addition, its power to detect protective 

variants, rare or common, is even more limited. This kind of disease diagnosis criterion is 

common in clinical practice and investigators should be aware of the potential inefficiency 

of the case-control design. However, the alternative scenario in which case status captures a 

more complex underlying mechanism, such as cancer or cardiovascular disease, may also be 

true. Here, the use of EPS may be limited and the investigators need to evaluate the 
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appropriateness of using underlying quantitative traits as a proxy for these disease 

mechanisms. However, despite these potential caveats, we have demonstrated and provided 

the framework for evaluating the potential advantage for EPS in both single-stage and two-

stage approaches, thus increase the feasibility of this approach in practice. Software for 

evaluating various study designs scenarios is available from the authors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A. POWER CALCULATIONS FOR THE EPS

In the power calculation approach we proposed, γ is the expected log likelihood contribution 

for a single subject and is calculated as follows:

Here α0 and δ0 are values that maximize the likelihood under the alternative hypothesis and 

Pg is the expected genotype frequencies in the extreme sample.
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The proposed power calculation method is evaluated by comparing it with the empirical 

power based on 1,000 replications. As expected, highly consistent results are observed 

across different effect sizes and MAFs, as is shown in Supplemental Figure 1.

APPENDIX B. DETAILS OF THE STATISTICS-COMBINING STRATEGY FOR 

THE EXTREME TWO-STAGE DESIGN

For the first stage extreme-sample, as an alternative to the likelihood ratio test, an 

approximately equivalent Wald’s test can be performed:

In the n (1–πsample) individuals with nonextreme phenotypes genotyped in the second stage, 

the distribution of ϒ conditional on G and sampling follows truncated normal distribution:

(A2)

Similar to the first-stage extreme sample, its likelihood can be maximized and a Wald test 

statistics can be constructed:

Under the null hypothesis, both z1 and z2 approximately follow the standard normal 

distribution. Thus, a joint statistic can be constructed as:

Here, we set w to be:

Here I1 and I2 are the observed Fisher’s information for β1 and β2 in the two samples.

Under the null hypothesis with given z1 = t, zjoint follows a normal distribution with mean 

 and variance 1. Then similarly to the traditional joint analysis for the two-stage GWAS, 

the probability of detecting the association with given w can be calculated as:
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Here T1 is the corresponding threshold for z1 to be selected for second stage, and Tjoint is the 

critical value for zjoint, which can be calculated by allowing z1 and zjoint follows their null 

distribution.

Supplemental Figure 2 compares the performance of the two analysis strategies for the 

extreme two-stage design. The power of the data-combining and the statistics-combining 

strategies are both calculated based on 1,000 simulation replicates, although the power of the 

statistics-combining strategy can also be calculated numerically. Slight loss in power is 

observed in the statistics-combining strategy. For example, when πsample is 0.2 and πmarker is 

1.0 × 10−3, the statistics-combining strategy has a power of 0.845, while the power of the 

data-combining strategy is 0.898. The gain in power in the data-combining strategy is 

probably due to the difference of allele frequencies between the extreme and nonextreme 

sample.

APPENDIX C. DIFFERENT OPTIMIZATION RESULTS OF THE STATISTICS-

COMBINING STRATEGY AND DATA-COMBINING STRATEGIES

In Supplemental Figure 3, we compared the optimized πsample of the two analysis strategies 

when the per SNP genotyping cost ratio and total genotyping cost in the two stages are 

fixed. Clearly, the optimized πsample is larger for the statistics-combining strategy.
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Fig. 1. 
Influence of the MAF on the performance of different designs. (A) Performance of EPS 

across different MAFs when β1 equals 0.25. (B) Performance of EPS across different MAFs 

when β1 equals 0.5. (C) Performance of EPS across different MAFs when β1 equals 1. MAF, 

minor allele frequency; EPS, extreme-phenotype sampling.
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Fig. 2. 
Cost-efficiency of EPS with different genotyping/phenotyping cost ratios. EPS, extreme-

phenotype sampling.
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Fig. 3. 
An example of the optimization of the extreme two-stage design.
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Fig. 4. 
Performance of the almost-extreme sampling.
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TABLE II

Optimized πsample and power of the extreme two-stage design based on the data-combining strategya

ψ Optimized πsample Optimized power

0.1 0.081 0.73

0.2 0.163 0.88

0.3 0.244 0.90

0.4 0.321 0.90

0.5 0.396 0.90

a
Total sample size in the two-stage design is 9,140 individuals; the genome-wide α level is set to be 5.0 × 10−8. A causal SNP with a MAF of 

0.005 is assumed to contribute to 0.5% of the phenotypic variance (corresponding to a β of 0.71). ψ is the proportion of individuals that can be 
sequenced if all the costs are allocated in the first stage. Per SNP genotyping cost in the two stages are set to be 1:10.

Genet Epidemiol. Author manuscript; available in PMC 2014 November 20.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Li et al. Page 24

TABLE III

Power of different designs for CMC-based analysis strategy

Power

# of causal variants Variance contribution per SNP (%) Random sample Case-control sample Extreme sample

10 0.2 0.190 0.118 0.655

20 0.1 0.298 0.156 0.816

We assume there are 100 SNPs with MAF<0.01 in the gene-region, 10 or 20 of which are causal. The causal SNPs are assumed to contribute 
equally to the phenotypic variance with a total variance contribution of 0.02. Sample sizes for different designs are all set to 800 individuals.
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