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Abstract

In observational studies of treatments or interventions, propensity score (PS) adjustment is often 

useful for controlling bias in estimation of treatment effects. Regression on PS is used most often 

and can be highly efficient, but it can lead to biased results when model assumptions are violated. 

The validity of stratification on PS depends on fewer model assumptions, but this approach is less 

efficient than regression adjustment when the regression assumptions hold. To investigate these 

issues, we compare stratification and regression adjustments in a Monte Carlo simulation study. 

We consider two stratification approaches: equal frequency strata and an approach that attempts to 

choose strata that minimize the mean squared error (MSE) of the treatment effect estimate. The 

regression approach that we consider is a Generalized Additive Model (GAM) that estimates 

treatment effect controlling for a potentially nonlinear association between PS and outcome. We 

find that under a wide range of plausible data generating distributions the GAM approach 

outperforms stratification in treatment effect estimation with respect to bias, variance, and thereby 

MSE. We illustrate each approach in an analysis of insurance plan choice and its relation to 

satisfaction with asthma care.
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1 Introduction

In observational studies where investigators seek the effect of a treatment (“treatment” and 

control), treatment assignment is not randomized. As a result, estimates of treatment effect 

may be biased (Rubin, 1991; Sommer and Zeger, 1991). Regression, matching, or 

stratification on the confounders results in unbiased estimates of treatment effect by 

ensuring that comparisons between treatments are made only among individuals with similar 
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covariate values (Cochran, 1968; Billewicz, 1965). Alternatively, the propensity score (PS), 

defined as the probability of treatment status given the observed covariates, may be used to 

condense information on many observed confounders into a single score and to identify 

individuals in each treatment group that are comparable with respect to those covariates 

(Rosenbaum and Rubin, 1983). Matching, stratification, and regression on the PS have been 

shown to yield unbiased estimates of treatment effect when the estimand is the expected 

difference in response between treatment and control (the average treatment effect, ATE) 

and treatment assignment is ’strongly ignorable’ with respect to the covariates included in 

the PS model (Rosenbaum and Rubin, 1983, 1984, 1985; Dehejia and Wahba, 2002). 

However, the performance of each of these approaches with respect to the bias, variance, 

and mean squared error (MSE) of the resulting treatment effect estimate depends on both the 

particular implementation of the approach and the data generating model.

Regression on the PS is the most commonly used approach for PS adjustment in published 

clinical research (Shah et al., 2005; Weitzen et al., 2004). When the relation between 

propensity and outcome is linear, including a linear term for the PS in the regression model 

is sufficient to achieve complete confounding control. In this scenario, regression on PS is 

preferable to stratification because it estimates treatment effect with lower variance than 

stratification and similarly removes bias (Rosenbaum and Rubin, 1984, 1983; D’Agostino 

Jr., 1998). When the relation between propensity and outcome is not linear, regression on 

the PS requires more care. However, investigators often fail to check the adequacy of their 

model specification (Shah et al., 2005). Little and An (2004) discuss the use of penalized 

spline models to estimate and adjust for the PS allowing for nonlinear associations among 

covariates, PS, and outcome, and they compare this approach with PS weighting in the 

context of missing data.

Stratification on PS is also prevalent in the medical and health services literature (Shah et 

al., 2005; Weitzen et al., 2004). In the stratification approach, treatment effect is estimated 

within each PS stratum, and the ATE is computed as a weighted mean of the stratum-

specific estimates. Stratification on PS does not require specification of the propensity-

outcome relation and, therefore, may be preferable to regression adjustment, especially 

when this relation is believed to be complex. However, choice of the number and placement 

of strata influences the variance and bias of the combined estimate. Generally, there are 

opposing effects; wide strata produce low variance but high potential bias, narrow strata the 

reverse.

The most common implementation of stratification is five equal frequency (EF) strata. A 

result from Cochran (1968), cited in Rosenbaum and Rubin (1983), indicates that 

approximately 90% of the initial bias due to the observed variables is eliminated with this 

stratification. Importantly, Cochran’s result is based on a linear relation between propensity 

and outcome. When this relation is nonlinear, stratification on the quintiles may not 

adequately remove bias, and other approaches to forming strata may be preferable. Hullsiek 

and Louis (2002) propose choosing strata that balance the variances of the stratum-specific 

estimates. This method generally produces an effect estimate with lower variance than the 

EF approach, but it can increase bias.
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In this paper, we compare the performance of flexible regression adjustment to that of 

stratification approaches with respect to bias, variance, and MSE under several data 

generating models. Specifically, we investigate the use of Generalized Additive Models 

(GAMs) (Hastie and Tibshirani, 1990) for estimating treatment effect adjusting for a 

nonlinear function of the PS. We present a Monte Carlo study that evaluates EF stratification 

on PS, an ’optimal’ stratification on PS that minimizes the estimated MSE of the resulting 

treatment effect estimate, and regression on PS using GAMs. We begin by assuming that the 

relevant confounding covariates are measured and the PS can be estimated well; we then 

further consider scenarios where an important confounding covariate is omitted from the 

model. Section 2 describes notation and the PS methods under consideration. Sections 3 and 

4 present the simulation studies and results. In Section 5, we present our analysis of the 

effect of health insurance type on satisfaction with asthma care. Section 6 summarizes our 

findings.

2 Model and Methods

Let Yi, i ∈ 1, … , N, denote the outcome for the ith individual in the study sample, and let Zi 

indicate treatment (Zi = 1 for treatment and Zi = 0 for control). Define Xi as a vector of 

confounders associated with both treatment and outcome. The PS for individual i is ei = 

e(Xi) = Pr(Z = 1∣Xi). Although we are generally interested in the effect of treatment 

conditional on covariates, to motivate methods utilizing the PS, we assume that the 

treatment effect may be represented in a simplified outcome model that directly incorporates 

the PS:

(1)

where β0 and β1 are scalar parameters and g is a smooth function. Our target of estimation is 

the ATE, given by Δ = β1.

We are interested in comparing estimation approaches for Δ with respect to MSE and its 

components, variance and bias,

(2)

With no confounding, a simple difference of means (  where  is the mean of Y for 

units in treatment group z) is minimum variance, unbiased, and therefore minimum MSE. In 

the presence of confounding, this estimate is biased. The bias for this unadjusted estimate is

(3)

where f1 and f0 are the densities of the PS in the treatment and control groups, respectively. 

In the following sections, we consider regression and stratification on PS for reducing this 

bias.
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2.1 Regression adjustment

The assumed model in (1) suggests the use of GAMs for estimating treatment effect. A 

GAM is an extension of the familiar generalized linear model (GLM), where the association 

between the independent variables and the outcome may be modeled nonparametrically. 

Specifically, a nonlinear association between a covariate and outcome is approximated as a 

linear combination of spline terms. Estimation of the coefficients on the spline terms is 

penalized, causing the coefficient estimates to be “shrunk” towards zero. This shrinkage 

allows for estimation of a smooth curve that is not highly sensitive to outliers. The degrees 

of freedom determines the amount of shrinkage (and, thus, the smoothness of the estimated 

curve), and an appropriate value of this parameter may be estimated from the data. (See 

Hastie and Tibshirani (1990) for a comprehensive overview of GAMs).

We estimate the GAM given by E(Y∣z, e) = β0 + β1z +g(e), assuming independent, normally 

distributed errors. In this regression, estimated treatment effect is given by  and the 

variance of  is given by the estimated variance of  returned from the model. The smooth 

term for PS, g(e), is approximated as a linear combination of thin plate regression splines, 

and we use cross-validation for selecting the degrees of freedom, as described in Wood 

(2003, 2004). Under our assumed model (1), this regression will yield unbiased estimates of 

treatment effect. Let T = (0 = t0 < t1 < … < tK = 1) define a partition of the range of the PS 

with K subclasses. Within each stratum, k ∈ {1, … , K}, treatment effect is estimated with a 

simple difference of means, , where  is the mean of Y for units in 

treatment group z and stratum k. The variance of  is estimated

(4)

where  is the sample variance of Y in treatment group z and stratum k and nzk is the 

corresponding number of individuals.

The overall treatment effect estimate is a weighted mean of the subclass-specific estimates. 

Under the assumption of an approximately constant treatment effect across strata, any 

weighting scheme will produce an unbiased estimate of the ATE, and inverse-variance 

weights will minimize the variance and, thus, the MSE. If a uniform treatment effect cannot 

be assumed, then one must use weights that reflect the estimand of interest. More generally, 

we may consider stratum weights, wk = Σi∈κk vi, where vi is a weight for the individual i and 

κk is the set of individuals in stratum k. The treatment effect estimator and variance 

estimator are given by

(5)

(6)
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For our purposes, we assume the estimand is the ATE and therefore use individual weights 

vi = 1/N, leading to the prevalence weights recommended by Rosenbaum and Rubin (1983).

We consider two methods for choosing T. In EF stratification, the partition is defined by the 

quantiles of the PS. As an alternative, we seek to choose a partition that minimizes the MSE 

of . In order to find the optimal partition, we must have an estimator for the MSE of the 

stratified treatment effect estimate for a given partition. The estimator for the variance of the 

stratified treatment effect estimate is given above in (6).

Under the assumed model (1), bias in stratum k is

(7)

where . Substituting empirical estimates of g, f1, and f0 into this formula 

yields an estimator for stratum-specific bias. Specifically, we use the estimated functional 

form of the relation between PS and outcome, , returned by the GAM described in Section 

2.1, and we estimate the densities of the PS in each treatment group, f1 and f0, using a simple 

kernel density estimator.

Overall estimated bias of the treatment effect estimator is the weighted mean of the 

subclass-specific biases. Combining the estimates for bias and variance as in (2), we produce 

a function that returns the estimated MSE for a given partition, T, and dataset, (y, z, e). The 

optimal partition for K subclasses is then found by treating the K – 1 elements of T between 

0 and 1 as the input parameters in an optimization algorithm for minimizing the estimated 

MSE function. We use the box-constrained optimization of Byrd et al. (1995) via the optim 

function in R (R Development Core Team, 2010), which forces the strata boundaries to be in 

the range (0, 1). This method yields the stratification with the lowest estimated MSE for a 

fixed K; one could repeat this method for each potential value for K and compare the 

estimated MSE of the optimal stratifications at each value of K. R code for each analysis 

approach presented in this section is available in Web Supplement A.

3 Simulation Study: A Well-estimated PS

We began by simulating data where the PS, e, is modeled correctly. We consider the 

scenario of two covariates, Xi = (X1i, X2i), and generated data for N individuals in the 

following order:

(8)

We generated outcomes under two different models: the additive model,
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(9)

and the log-additive model,

(10)

where h1 and h2 are smooth functions and, as before, β0 and β1 are scalar parameters.

For all models, we considered the treatment effect of interest to be the ATE, or the average 

difference in expected outcome between treatment and control, conditional on covariates. In 

the additive model, Δ = Δ (X = x) = β1. In the log-additive model, the treatment effect 

depends on the functional forms of h1 and h2 and the values of β0 and σ2. In that case, we 

calculated the true value of Δ under each set of simulation parameters using a Monte Carlo 

average.

With each simulated dataset, we estimated the PS using a logistic regression model of the 

treatment on covariates. We then estimated Δ using this PS in each of the methods presented 

in Section 2, including: (1) the GAM that controls for a smooth relation between PS and 

outcome; (2) EF stratification using K ∈ {1, … , 6} subclasses; and (3) optimal stratification, 

using K ∈ {1, … , 6} subclasses.

3.1 Simulation Settings

We considered samples of size N = 200 and set ρ = 0 so that the two covariates are 

independent. We also let α0 = 0 to achieve approximately equal sample size in each 

treatment group. Since the amount of bias strongly depends on the amount of imbalance in 

covariates across treatment groups, we generated data using three different values for the 

association between covariates and treatment: α1 = α2 = α = 0.5, 1, and 1.5, corresponding 

to low, moderate, and high imbalance, respectively. Furthermore, for each set of α values, 

three sets of functional forms for h1 and h2, the relations between covariates and outcome, 

were considered: (A) h1(x) = h2(x) = 0.25x, (B) h1(x) = 0.25x, h2(x) = .025(x + x3), and (C) 

h1(x) = h2(x) = .025(x + x3). Each of these functions is monotone increasing and has an 

approximate range of [−3,3] over the same domain (where most data lie). The three values 

for α and three sets of functions for h1 and h2 yield 9 simulation scenarios for each of the 

outcome models.

In the additive model, we chose β0 = 0, β1 = 0.125, and σ = 0.25, so that the true treatment 

effect is equal to one half of the error standard deviation. These parameters result in R2 

values of approximately 0.67, 0.55, and 0.28 for simulation scenarios A, B, and C, 

respectively. In the log-additive model, we chose β0 = −2, β1 = 0.25, and α = 0.5. These 

values result in R2 values of 0.24, 0.16, and 0.09 for simulation scenarios A, B, and C, 

respectively. We simulated 1000 datasets under each scenario and each model.

3.2 Simulation Results

In this section, we present a selection of the simulation results, but results for all simulations 

are available in Web Supplement B. In all of the data-generating scenarios considered, 
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nontrivial positive bias existed when treatment effect was estimated directly, corresponding 

to stratification with K = 1. Initial bias was similar (but not constant) across the three sets of 

covariate-outcome relations. Varying the amount of imbalance in covariates, indexed by α, 

varied the amount of bias with higher (absolute) α values creating more bias. Data simulated 

with high imbalance also suffered from lack of sufficient overlap; when using the EF 

stratification approach in datasets with α = 1 or α = 1.5, the outermost strata sometimes 

contained data from only one treatment group. Therefore, no treatment effect estimate was 

possible for those strata. In those situations, we excluded those strata, so that the number of 

strata actually used in treatment effect estimation, denoted by K* , was smaller than K, the 

number of strata intended. On the other hand, when using the optimal stratification method, 

a partition with fewer than K strata was more likely to be chosen for datasets with lower 

imbalance (α = 0.5).

Figure 1 shows the average estimated treatment effect with one observed standard error bars 

(left panel), observed standard errors and average estimated standard errors with 95% 

quantile bars (center panel), and observed root MSE (right panel) for data simulated under 

the additive model with a linear relation between covariates and outcome (relation (A)). 

Data are displayed for simulations using all three values of α and for all analysis approaches 

considered. The horizontal axis is K, the number of strata used, where K = 0 refers to the 

non-stratification method, GAM. When K = 1, there was no stratification (direct estimation 

through a simple difference of means); these estimates show the amount of initial bias. For 

K > 2, the number of simulations out of 1000 that had K* = K is printed above the 

corresponding plotting point for EF stratifications, and below the corresponding point for 

optimal stratifications.

The effect estimate plots show that the GAM and both stratification approaches were 

effective at reducing or eliminating bias due to covariate imbalance. In particular, for each 

value of α, the GAM produced estimates of treatment effect that were on average unbiased. 

Bias reduction through stratification was achieved better at larger values of K, and 

consideration of partitions with more than 6 strata could have potentially resulted in 

unbiased stratified estimates. The optimal stratification method slightly outperformed EF 

stratification with respect to bias reduction at moderate values of K, but at large values of K, 

the bias was equivalent for both stratifications (or even slightly favoring EF stratification) 

and the observed standard error was smaller for EF stratification. The standard error plots in 

Figure 1 show that our standard error estimator for the stratified treatment effect estimates 

underestimated the observed standard error on average. Observed standard errors generally 

increased as K increased. The standard error estimate resulting from the GAM was on 

average close to the observed standard error and generally lower than the observed standard 

errors resulting from either stratification approach. The plots of root MSE (RMSE) in Figure 

1 show that in these data the GAM resulted in lower RMSE than the stratification 

approaches, regardless of the value of α. The differences in RMSE between the GAM and 

stratification approaches became larger as α increased.

In Figure 2, we display the same information as in Figure 1, except for α = 0.5 only and for 

covariate-outcome relations (B). The patterns are primarily the same as they were when the 

covariate-outcome relations were linear. GAM again provided an unbiased estimate with 
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equivalent or smaller observed standard error than either stratification method. Although not 

shown, the differences in RMSE among estimation methods were again larger at larger 

values of α. These results, as well as the simulation results for relations (C), are available in 

Web Supplement B and are similar to the results presented in Figures 1 and 2.

Figure 3 displays simulation results for data simulated under the log-additive model with α 

= 1.5 and covariate-outcome relations (A). Note that the true ATE in these data is no longer 

equal to β1 and will vary depending on other simulation parameters. Both the GAM and the 

stratification approaches with K = 6 estimated the true treatment effect well, but the 

observed standard errors of the stratified estimators were much larger than that of the GAM 

estimator, resulting in higher RMSE for the stratified estimators. However, the difference in 

the estimated standard errors were reversed; the GAM generally overestimated the standard 

error of the treatment effect estimate, while the standard errors of the stratification estimates 

were underestimated. Therefore, the average estimated standard error was higher for the 

GAM compared to the stratification approaches.

In Figure 4, results are shown, as in Figure 3, for the log-additive simulations with α = 1.5 

and covariate-outcome relations (B). Results were similar to those with covariate-outcome 

relations (A) and again show that the GAM generally outperformed stratification. The 

results for other values of α and the covariate-outcome relations (C) were similar. See the 

Web Supplement for these results.

4 Simulation Study: A Poorly-estimated PS

We conducted a second simulation study to compare the performance of methods when the 

PS is poorly-estimated. We simulated data exactly as in Section 3 and generated outcomes 

under the additive model (9). In each simulated dataset, we estimated a PS using logistic 

regression with the covariate X1 only. The estimated PS, (X1), was then used with each 

of the methods as before.

4.1 Simulation settings

We again considered samples of size N = 200, and we considered the functional forms (B) 

and (C) from Section 3 for the covariate-outcome relations. The values of all model 

parameters were identical to those used with the additive model in Section 3, so the ATE is 

β1 = 0.125.

4.2 Simulation Results

Figure 5 presents the results for the simulation scenario defined by α = 1.5 and covariate-

outcome relations (B). The results for other simulation scenarios are not presented here but 

are similar to those in Figure 5 and are included in the Web Supplement. In general, when 

the covariate X2 was strongly associated with outcome, as in Figure 5, all methods utilizing 

the poorly-estimated PS produced highly biased estimates of treatment effect. Although all 

methods performed poorly, reflecting the unmeasured confounding from X2, the GAM still 

produced estimates with lower bias and lower RMSE than either stratification method. In 

addition, the observed standard error of the GAM estimate was generally equal to or lower 

than the observed standard errors of the stratified estimates.
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5 Analysis of Insurance Plan Choice Data

The following analysis considers data collected on 2515 asthma patients as part of the 1998 

Asthma Outcomes Survey (Masland et al., 2000). This study was initiated by the Pacific 

Business Group on Health and HealthNet health plan for the purpose of evaluating the 

quality of asthma care from 20 physician groups. Huang et al. (2005) developed PS methods 

to assess the effect of physician group in a multiple treatment analysis. Because we prefer a 

binary treatment, our analysis evaluates the effect of health insurance type on satisfaction 

with asthma care across the 20 providers. Insurance type is classified as public, purchased 

through an employer, purchased personally, or other. A large majority, 2360 individuals, 

held either employer or personally purchased health insurance, and we consider the subset of 

data with these two insurance types. Our treatment variable, Z, indicates having personally 

purchased health insurance.

The outcome is also dichotomous; Y = 1 indicates very good or excellent satisfaction with 

care, and Y = 0 indicates less than very good satisfaction. We are interested in estimating the 

average difference in the probability of high satisfaction with care between individuals with 

personally purchased and employer purchased insurance plans, controlling for confounders 

of treatment assignment and outcome. Although the outcome in this example is binary rather 

than continuous as in the simulation studies, our goal of estimation, the ATE, is the same. 

Therefore, we followed the suggestion of Hellevik (2008) and applied each PS adjustment 

method exactly as it was implemented in the simulation studies in Sections 3 and 4.

We began by considering the measured covariates available for use in the PS, which include 

information about demographics, medical care, and health status. Demographic covariates 

are age (18-56), race (Black, White, Asian/Pacific Islander, American Indian, Other), 

Hispanic identification, gender, educational attainment (high school or less, college, post-

graduate work), and employment status (none, part-time, full-time). Covariates that describe 

subjects’ medical care are primary physician specialty (pulmonary/allergy specialist, other), 

consistent care by the same provider, physician group (1-20), and drug insurance coverage. 

Health status covariates include smoking (none, moderate, high), physical activity in the last 

four weeks (1-7), severity of asthma (1-4), comorbidity count (0-8), number of years with 

asthma (1-54), and the SF36 Health Survey composite scores for physical and mental health 

(0-100).

We next had to choose which of the measured covariates to include in the PS model. Several 

simulation studies have found that best results are achieved by only including covariates that 

are associated with outcome (Austin et al., 2007; Brookhart et al., 2006). This selection will 

include all of the measured confounders, those covariates associated with both treatment 

assignment and outcome. Therefore, before we estimated any PS models, we checked each 

covariate for an independent association with outcome by fitting a logistic regression model 

of outcome on treatment and the covariate. These models allowed us to order the covariates 

with respect to their association with outcome, as recommended by Hill (2008). For nominal 

categorical covariates, we fit logistic GLMs, and for continuous or ordinal categorical 

covariates, we fit logistic GAMs. Results from these models for the 11 categorical covariates 

and 6 continuous covariates are displayed in Web Supplement B. From these figures, we 
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determined that only smoking, employment status, and physical activity share no association 

with the outcome, satisfaction with asthma care, after adjusting for treatment.

In the spirit of flexible model estimation, we used a logistic GAM of the personal health 

insurance indicator on the remaining 14 covariates that are associated with outcome to 

estimate the PS for each individual (Woo et al., 2008). The PS obtained is the predicted 

probability of holding personally purchased insurance, rather than employer purchased 

insurance, given model covariates. We ran an all subset regression with the eight most 

important covariates (always present in the model) and some subset of the other six 

predictors. We compared the unbiased risk estimator (UBRE) of these 64 models to identify 

a smaller set of useful candidate models. For each candidate model, we then checked the 

balance of all 14 covariates associated with outcome to identify our final model for 

propensity score estimation. Balance was checked through side-by-side boxplots of 

covariates, stratified on both treatment and PS quintile, or through two-by-two tables of 

treatment and covariates within PS quintiles. Figures in Web Supplement C show the 

balance checks for the final model chosen, which included: (1) random intercepts for 

physician groups; (2) main effects for race, education, consistent provider care, drug 

coverage, years with asthma, physical composite score, and mental composite score; and (3) 

a smooth term for age, which we note has a nonlinear relation with the log odds of 

treatment. Older and younger adults are more likely to have personally purchased health 

insurance than adults in middle-age.

Figure 6 shows the density of the PS in each treatment group. The two groups overlapped 

well with respect to PS, indicating that ATE can be estimated for the entire PS range. We 

next applied each of the three methods for estimating treatment effect that were considered 

in the Monte Carlo studies: GAM regression, EF stratification, and optimal stratification. In 

addition, we compared these PS-based methods with the usual regression of outcome on the 

covariates used in the PS model and the treatment indicator.

Figure 7 displays the treatment effect estimation results of all analysis approaches 

considered. All methods estimated a positive (but generally not statistically significant) 

effect of holding personally purchased health insurance on satisfaction with asthma care. In 

particular, the GAM regression on PS estimated that, on average, the probability of being 

highly satisfied with asthma care is 0.047 (−0.004, 0.097) higher for individuals with 

personally purchased health insurance than for individuals with employer purchased health 

insurance, controlling for propensity to treatment. For individuals with average estimated 

PS, this risk difference corresponds to 59.8% and 55.1% of individuals highly satisfied with 

asthma care in the treated and untreated groups, respectively. This estimate is reduced 

slightly from the unadjusted treatment effect estimate, 0.061 (0.015, 0.107). In Web 

Supplement C, we show the estimated smooth term for PS as estimated by the GAM. There 

is a small positive relation between PS and outcome, reflecting the confounding of the 

treatment-outcome association.
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6 Discussion

The objective of this study was to compare the relative merits of stratification and regression 

approaches utilizing the PS for estimating treatment effects in nonrandomzied studies and to 

explore the potential of an ‘optimal’ stratification procedure. Stratification on PS and 

regression on the PS via GAM both estimated treatment effect flexibly, allowing for 

nonlinear association between PS and outcome, and both were effective at reducing bias due 

to confounding. Within the framework of the Monte Carlo simulations presented here, we 

recommend the GAM approach because it generally produced estimates with lower bias and 

variance than the stratification approaches. In addition, with cross-validated smoothing 

parameter selection the GAM depended less on accurate user choice to achieve bias 

reduction compared with stratification where, at minimum, an appropriate value of K was 

required. The lack of necessary user choice in GAMs allowed the outcomes to stay “hidden” 

until the final step of analysis (except for choosing variables to enter the PS model), as 

advocated by Rubin (2001, 2007). Any attempt to improve on the stratification procedure, as 

we have done here with our ‘optimal’ stratification, will require using outcome data to 

choose the partition.

Although the findings presented in this paper are consistent across a wide spectrum of data 

generating models, our simulation studies do have some limitations. First, the variance 

estimator that was used for the stratified treatment effect estimates is known to 

underestimate the variance because it treats the PS partition as fixed, rather than data 

dependent (D’Agostino Jr., 1998; Tu and Zhou, 2002). Our overall estimation procedure 

could be bootstrapped to provide a more accurate variance estimate; however, choosing a 

partition based on the bootstrapped variance estimate is infeasible because it would require 

estimating a separate bootstrap variance for each potential partition. Second, the variance 

estimator that we used will be highly variable when sample size is small or when there is 

poor overlap in PS in some strata. This problem was apparent in the simulation studies when 

examining the variability of the variance estimator in data with good overlap (α = 0.5) 

compared to data with poor overlap (α = 1.5). Regardless of this variability, the preference 

for GAM over stratification with respect to MSE was consistent. Third, the relative 

importance of the bias and variance components of the total estimation error that was seen in 

this study is specific to the data generating mechanisms used. In particular, studies with a 

larger sample size than the N = 200 subjects assumed here will find minimizing bias to be a 

much more important concern than reducing variance. The GAM estimation procedure was 

generally preferred to stratification with respect to both bias and variance, so this preference 

should not depend on sample size.

The benefits of GAMs do not, however, overcome the need for great care in PS analysis. For 

example, analysts must still check for covariate balance conditional on the estimated PS and 

for sufficient overlap of treatment groups with respect to PS. In the analysis presented in 

Section 5, we checked approximate balance of covariates within propensity score quintile, 

which ensures unconfounding of treatment and outcome within quintile. How best to check 

for balance when the propensity score will be used in a covariate regression has not been 

studied. Insufficient overlap of the PS may result in a modified estimand or inappropriate 

extrapolation, regardless of the PS analysis method used. In each of the simulations 
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presented in this paper, we additionally implemented a GAM that estimated a separate 

smooth term for PS among treated and untreated subjects. We then estimated average 

treatment effect using this model to predict the unobserved potential outcomes. We did not 

present the results from this method in Sections 3 and 4 because the imbalance in the tails of 

the PS distributions led to inappropriate extrapolation and extremely poor estimates of ATE. 

The GAM with a single smooth term for PS is partially protected from this kind of 

extrapolation because the estimated effect of treatment is forced to be constant across the 

range of the PS. Therefore, treatment effect is estimated primarily from data units that lie in 

overlapping regions of the PS distributions; in the case of heterogeneous treatment effects, 

both GAM and stratification procedures may result in an estimand for treatment effect that is 

different than what the investigator intended.

In addition, although not discussed above, we repeated the simulation experiments using a 

much smaller sample size of N = 40 with the expectation that the GAM would perform 

poorly. The GAM estimates were biased and highly variable, but GAM estimation still out-

performed both stratification methods. We additionally ran one simulation scenario with a 

sample size of 10,000 and again found that a modification to sample size did not effect our 

conclusions. Furthermore, we note that, despite many attempts, we were unable to design a 

reasonable simulation scenario that resulted in lower RMSE for the stratification methods 

compared with GAM regression. The two covariate case that we studied provides 

information on relative performance that will generalize to additional covariates. However, 

additional studies will provide specific information for other cases. Also, it is possible that 

regression adjustment may be more problematic when variances differ between treatment 

groups (Rosenbaum and Rubin, 1983). We investigated this possibility in the log-additive 

simulation studies, where data were simulated with heteroscedastic errors. The stratification 

approaches allow for differing variance estimates between treatment groups and across 

strata. The GAM approach does not model the heteroscedasticity, but still outperformed 

stratification in these simulations.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Average estimated treatment effect with one observed standard error bars (left panel), 

observed standard errors and average estimated standard errors with 95% quantile bars 

(center panel), and observed root MSE (right panel) for data simulated under the additive 

model with linear relations between covariates and outcome (relations (A)). Data is 

displayed for simulations using all three values of α and for all analysis approaches 

considered. The horizontal axis is K, the number of strata used, where K = 0 refers to the use 

of non-stratification methods (GAM), and K = 1 means no stratification (direct estimation 

through a simple difference of means).
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Figure 2. 
Simulation results for data simulated under the additive model with α = 0.5 and covariate-

outcome relations (B), corresponding to h1(x) = 0.25x and h2(x) = 0.025(x + x3).
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Figure 3. 
Simulation results for data simulated under the log-additive model with α = 1.5 and 

covariate-outcome relations (A), corresponding to h1(x) = h2(x) = 0.25x.
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Figure 4. 
Simulation results for data simulated under the log-additive model with α = 1.5 and 

covariate-outcome relations (B), corresponding to h1(x) = 0.25x and h2(x) = 0.025(x + x3).
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Figure 5. 
Performance of methods applied to a poorly-estimated PS for data simulated under the 

additive model with α = 1.5, and covariate-outcome relations (B), corresponding to h1(x) = 

0.25x and h2(x) = 0.025(x + x3).
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Figure 6. 
Relative frequencies of the estimated PS conditional on treatment. Only 26.4% of 

individuals had personally purchased health insurance (“Treated”), and 73.6% had employer 

purchased health insurance (“Untreated”).
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Figure 7. 
Treatment effect estimates with confidence intervals, using a regular regression approach 

(Reg), the GAM regression on the PS approach (GAM), and the optimal (Opt) and equal 

frequency (EF) stratification on PS approaches.
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