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Abstract

While many previous studies assumed the functional connectivity (FC) between brain regions to be stationary,
recent studies have demonstrated that FC dynamically varies across time. However, two challenges have limited
the interpretability of dynamic FC information. First, a principled framework for selecting the temporal extent of
the window used to examine the dynamics is lacking and this has resulted in ad-hoc selections of window lengths
and subsequent divergent results. Second, it is unclear whether there is any behavioral relevance to the dynamics
of the functional connectome in addition to that obtained from conventional static FC (SFC). In this work, we
address these challenges by first proposing a principled framework for selecting the extent of the temporal win-
dows in a dynamic and data-driven fashion based on statistical tests of the stationarity of time series. Further, we
propose a method involving three levels of clustering—across space, time, and subjects—which allow for group-
level inferences of the dynamics. Next, using a large resting-state functional magnetic resonance imaging and
behavioral dataset from the Human Connectome Project, we demonstrate that metrics derived from dynamic
FC can explain more than twice the variance in 75 behaviors across different domains (alertness, cognition, emo-
tion, and personality traits) as compared with SFC in healthy individuals. Further, we found that individuals with
brain networks exhibiting greater dynamics performed more favorably in behavioral tasks. This indicates that the
ease with which brain regions engage or disengage may provide potential biomarkers for disorders involving al-
tered neural circuitry.
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state fMRI

Introduction

W ith the advent of functional magnetic resonance
imaging (fMRI), different methods for characterizing

brain connectivity and functional integration have received a
lot of attention (Friston, 1994). Functional connectivity (FC)
measures the instantaneous (zero-lag) temporal correlation
of mainly resting-state fMRI signals obtained from different
brain regions. One of the imports of investigating brain con-
nectivity lies in its diagnostic implications as well as its link
to human behavior. Previous works have shown that FCs be-
tween brain regions are more informative in predicting be-
havior than activity of functional regions in isolation (Cole
et al., 2012). Further, aberrant behaviors in subjects with
mental disorders have been linked to alterations in FC of spe-
cific brain networks (Filippi et al., 2012). Notably, recent
works have linked both inter-individual and intra-individual

variability in FC to corresponding variability in behavior
(Thompson et al., 2013). However, previous studies mainly
investigated FC by obtaining one connectivity value for the
entire duration of the experiment based on the assumption
that connectivity did not change significantly over time
(Greicius et al., 2007; van de Ven et al., 2004). Given that
the brain is a dynamic and adaptive system whose state is
likely to change over time, the stationarity assumption has
been relaxed by some recent works that explored the dynam-
ics of FC in time and frequency domains (Britz et al., 2010;
Chang and Glover, 2010; Chang et al., 2011, 2013; Chapuis
et al., 2013; Deshpande et al., 2006; Handwerker et al., 2012;
Hutchison et al., 2013; Keilholz et al., 2013; Leonardi
et al., 2013; Majeed et al., 2011; Sakoğlu et al., 2010; Sato
et al., 2006; Tagliazucchi et al., 2012). But unlike static FC
(SFC), the behavioral relevance of the dynamic variations
in FC is yet to be established, although preliminary reports
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support this notion (Madhyastha et al., 2014). Here we sur-
mise that greater temporal variability of FC increases the
adaptability and efficiency of brain networks, leading to bet-
ter behavioral performance. Accordingly, we hypothesize
that dynamics of the whole-brain resting-state functional
connectome will predict human behavior in various domains,
such as alertness, cognition, emotion, and personality traits,
better than conventional SFC measures. To test this hypoth-
esis, we correlated dynamic and static FC-based metrics with
behavioral data.

In this article, we address the following outstanding issues
related to evaluation of dynamic FC in order to test the afore-
mentioned hypothesis: (1) the choice of the length of the slid-
ing window within which connectivity is evaluated, (2)
characterization of dynamic changes in both nodal and con-
nectivity configurations using first-level adaptive clustering,
(3) definition of metrics that capture the dynamics described
previously, (4) investigation of dynamic connectivity pat-
terns that are consistent across time and across subjects
using second and third levels of clustering, respectively,
and (5) strategies for performing the aforementioned analy-
ses at a whole-brain level. In the later paragraphs, we briefly
elaborate on the just-mentioned themes.

To capture dynamics of FC, previous studies used sliding
windows of fixed length (Handwerker et al., 2012; Leonardi
et al., 2013). However, it cannot be assumed that nonstation-
ary dynamics imply fixed stationary windows. Cribben et al.
(2012) employed dynamic connectivity regression to detect
temporal change points in FC, which essentially allows win-
dow lengths to vary with time. However, their method makes
a restrictive assumption that, within each partition/window,
the connectivity configuration is the same across subjects.
Though such an assumption may be valid for task-based stud-
ies where all subjects are forced to perform a given task in
the window under consideration, it is not applicable in rest-
ing state wherein different subjects may be engaged in differ-
ent mental processes within a given window. To address this
issue, we propose an approach capable of capturing FC tem-
poral variations by employing dynamic windows of changing
length such that time series across the entire brain are statis-
tically guaranteed to be stationary within a given window.
The feasibility of this approach is demonstrated using simu-
lations followed by application to human resting-state fMRI
data from the Human Connectome Project (HCP) (Q3 release,
40 subjects; http://humanconnectome.org).

Once dynamics of FC have been obtained between multi-
ple brain regions, ad-hoc approaches have been used to char-
acterize and represent the information obtained. Since the
amount of information obtained from the assessment of dy-
namic FC can be quite large, it has been often difficult to in-
terpret the underlying neuroscientific meaning (Chang and
Glover, 2010). Some previous studies showed snapshots of
FC at various points during the experiment by using dif-
ferent window lengths (Handwerker et al., 2012; Lee et al.,
2013) or template pattern matching (Majeed et al., 2011).
Even though such approaches are good exploratory tech-
niques, the results and interpretation from them can become
subjective, depending on the window length and frames cho-
sen. One principled approach adopted by some recent reports
is to find connectivity configurations that are quasi-stable for
a certain period of time (Li et al., 2014). This follows from
similar quasi-stable scalp voltage configurations, called mi-

crostates, obtained from agglomerative clustering of elec-
troencephalographic (EEG) data (Britz et al., 2010; Musso
et al., 2010). Such approaches assume that a single functional
configuration exists across the whole brain at any given time
instant. Additionally, they also assume that the dynamics of
connectivity are essentially due to the brain changing from
one across-the-brain connectivity configuration to another.
These assumptions to some extent lose generality. For exam-
ple, the nodal configuration of each of the two networks
shown in Figure 1A does not change over time (having the
same nodes), but the connections between network nodes
change with time. Though previous studies have attempted
to capture this type of dynamics, the example showed in
Figure 1B, wherein both connections between nodes and
the nodal configuration of the networks themselves change
with time (having different nodes at different time instants),
represents a more general scenario of FC dynamic changes.
To capture the latter type of dynamics, we propose an ap-
proach based on adaptive evolutionary clustering (AEC)
(Xu et al., 2014) for finding brain network FC configurations
at each time instant. Based on this first-level clustering, met-
rics were defined for objectively characterizing the dynamic
changes in FC configurations. Using a regression model,
we investigated whether those metrics capturing FC dynam-
ics can predict behavior better than conventional SFC. Fur-
ther, first-level dynamic connectivity patterns that occurred
consistently across time and subjects were identified using
second- and third-level clustering, respectively.

FIG. 1. Schematic of two types of temporally dynamic net-
work configurations. (A) The first type illustrating a dynamic
network configuration wherein all nodes are part of the same
network, only the connections between them change with
time. (B) The second type illustrating a dynamic network
configuration wherein both connections between nodes and
the networks themselves are changing with time.
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Materials and Methods

Data acquisition and preprocessing

The resting-state fMRI (rfMRI) session1 minimally pre-
processed data from HCP were used in this work. This data-
set included 40 unrelated subjects (age range = 22–35 years,
21 women), each having two runs. During the scan, subjects
were instructed to lie at rest with eyes open and fixated on
bright cross-hair on a dark background. For each subject,
oblique axial acquisitions alternated between phase encoding
in a right-to-left direction in one run and phase encoding in a
left-to-right direction in the other run. rfMRI raw images
were collected with a multiplexed gradient echo planar imag-
ing sequence and the following parameters: 1200 volumes,
field of view (FOV) = 208 · 180 mm2; flip angle (FA) = 52�;
TR (repetition time)/TE (echo time) = 720 msec/33.1 msec,
in-plane matrix: 104 · 90; 72 slices per volume with slice
thickness = 2 mm; multiband factor = 8; and echo spacing =
0.58 msec. The acquired data were minimally preprocessed
involving removal of spatial distortions, motion correction,
normalization to Montreal Neurological Institute (MNI)
space, reduction of bias field, and masking out of regions
outside the brain. For more details about data acquisition
and ‘‘minimal’’ preprocessing of the data, please see HCP
Q3 release reference manual (http://humanconnectome.org/
documentation/Q3/Q3_Release_Reference_Manual.pdf).

We performed additional preprocessing using Data Pro-
cessing Assistant for Resting-State fMRI software (DPARSF)
(Chao-Gan and Yu-Feng, 2010), including mean and linear
trend removal for each voxel time series, temporal filtering
with passing band: 0.01–0.1 Hz, and regressing out the
white matter and cerebrospinal fluid (CSF) signals. Subse-
quently, the 190-region version of the CC200 brain atlas
(Craddock et al., 2012), which contains a parcellation of
all gray matter voxels in the brain to 190 homogeneous func-
tional regions based on spectral clustering, was employed for
Region of Interest (ROI) definition (for anatomical labels
corresponding to the 190 regions, please see Supplementary
Table S1; Supplementary Data are available online at
www.liebertpub.com/brain). We extracted the mean time
series from all 190 regions for subsequent use.

Behavioral and individual difference measures

Apart from rfMRI data, we also used HCP’s behavioral
data from the same subjects to investigate the relevance of
the dynamics of FC to human behavior as compared with
conventional SFC. The HCP collected behavioral measures
developed for the NIH Toolbox Assessment of Neurological
and Behavioral function (www.nihtoolbox.org) and several
additional measures to assess domains not covered by the
NIH Toolbox. The behavioral measures were categorized
into several domains and the domains that were employed in
this work were alertness, cognition, personality, and emo-
tion. We did not incorporate categories of motor and sensory
functions into our analysis since they were relatively less
relevant to resting-state data. Supplementary Table S2 gives
full details of individual behavioral measures.

Dynamic FC model

Pearson’s correlation calculated over entire time series
reflects the average or static FC (SFC) over the entire

length of the experiment. For capturing the dynamic vari-
ations in FC, we used sliding-windowed Pearson’s correla-
tion along the time axis. Previous reports have used fixed
window length with rectangular (Leonardi et al., 2013) or
Hamming windows (Handwerker et al., 2012). But there
was no evidence supporting the superiority of any given
window shape over others. Therefore, we employed a rect-
angular window shape for simplicity. However, for fixed
window length, the length adopted mattered very much
and different lengths produced different smoothing effects
(Chang and Glover, 2010). This is because previous studies
made arbitrary choices for the length of the fixed window.
On the contrary, we employed an approach wherein the
stationarity of the time series under consideration dictated
the length of the window. To guarantee that the time series
within the length of the window were locally stationary, we
employed the Dickey-Fuller test (DF test) (Said and Dickey,
1984) to determine the window length. The DF test is a hy-
pothesis test for the existence of unit root in a given time
series with zero mean. A given time series y(t) can be mod-
eled as follows:

y(t) = ay(t� 1)þ e(t) (1)

Where t is the time index, a is a coefficient, and e(t) is the
error term. A unit root is present when a = 1, in which case, the
mean and variance of y(t) are a function of time t, imply-
ing that y(t) is nonstationary. The DF test has a null hypothe-
sis that a unit root exists and the time series are nonstationary.
The test procedure in our work was as follows. At a given
time point t1, we chose the initial window length to be m�
(m� = 14 TRs in this work. The deduction of this initial win-
dow length is described in the ‘‘Selection of the Range of
Sliding Window Length’’ section in Supplementary Data),
and did the DF test on time series within [t1-m�+ 1, t1]
from all 190 regions. If no unit root existed for all 190
time series, then we assumed that they were consistently sta-
tionary and used these windowed time series to calculate
Pearson’s correlation for time point t1. Otherwise, the win-
dow length was increased by one time point (or one TR)
such that the windowed time series started from t1-m� to
t1, and then we redid the DF test. We iterated this procedure
until consistent stationarity was achieved or the maximum
window length was reached. The maximum window length
m + was chosen as 140 TRs (see ‘‘Selection of the Range
of Sliding Window Length’’ section in Supplementary Data
for mathematical deduction). The sliding window was moved
forward one TR each time, that is, from t1 to t1 + 1, and we
repeated the just-mentioned procedure to calculate the win-
dow length. The first 140 data points of the time series
were utilized for the DF test of the first sliding window.
Thus, t1 was started from the 141st time point and dynamic
FC had a length of 1060 time points (1200 is the total number
of time points).

It is noteworthy that using the aforementioned procedure,
the entire length of the time series was partitioned into vari-
able length segments wherein all 190 regions covering the
entire brain had stationary temporal activity. Statistically,
this does not guarantee that the covariance between these re-
gions will also be stationary within the given segment. How-
ever, it is physiologically unlikely that when the activity in
the entire brain exhibits stationarity, interactions between
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them will be nonstationary. Future studies must design ex-
periments to test the validity of this assumption.

Clustering

First-level clustering. The input to the first-level cluster-
ing algorithm was a distance matrix constructed from the dy-
namic FC matrix. We assumed that higher the absolute value
of FC, the closer the two regions are in feature space. Note
that we did not differentiate between ‘‘correlated’’ and ‘‘anti-
correlated’’ interregional relationships in this work. It is
noteworthy that lack of positive zero-lag correlation between
regions does not imply that they are disconnected as they
may have other types of associations (Deshpande et al.,
2011). Therefore, it is reasonable to assume that the absolute
value of the correlation coefficient is a measure of associa-
tion between ROI time series. We do plan to add an addi-
tional layer of complexity in future work by distinguishing
‘‘correlated’’ and ‘‘anticorrelated’’ interregional relationships.

We cannot directly use interregional FC as the ‘‘distance
measure’’ for the following reasons. First, the closer the two
regions in feature space, the smaller their distance should
be, but their connectivity’s absolute value should be bigger.
This implies that a monotonically decreasing transformation
is required to convert FC to a distance measure. Second, dis-
tances should be nonnegative, with the value being zero if
and only if the distance is between one region and to itself.
But the FCs have negative values and the FC from one region
to itself is one. To meet these requirements, we used a dis-
tance measure D, defined by D = 1 � jPj, where Pearson’s
correlation P ranges between �1 and 1. This transform is
monotonically decreasing, the result is nonnegative, and
the distance from one region to itself is zero. Other require-
ments of distance measures, including reciprocity (the dis-
tance from one region to another should be same as the
other way around) and triangular inequality, are also met by D.

After the distance matrix D was obtained for each time in-
stant, it was fed to the AEC algorithm (Xu et al., 2014). This
algorithm was used for determining the regions that cluster
together, based on the distances between them obtained
from Pearson’s correlation at each time point, such that the
smoothness of the transition of the whole-brain clustering
of FC patterns from one time point to the next is controlled
by a forgetting factor. The weighting of previous clustering
configurations on the current time instant was calculated
through a forgetting factor determined by Bayesian informa-
tion criterion (Roebroeck et al., 2005). The hierarchical
model ( Joe and Ward, 1963) was chosen as the clustering
method.

The choice of the number of clusters in any clustering al-
gorithm can be based on mathematical criteria, such as the
silhouette index (Rousseeuw, 1987), or based on heuristics
and prior information regarding the underlying variables.
Heuristics and prior information can guide us for selecting
the range of the number of clusters within which the silhou-
ette index is calculated. Specifically with respect to the num-
ber of FC networks in the brain, many previous works used
methods, such as fuzzy clustering (Lee et al., 2012); indepen-
dent component analysis (ICA)–based methods, especially
probabilistic ICA (PICA) (De Luca et al., 2006) and tensor
PICA (Damoiseaux et al., 2006); graph-theory-based net-
work analysis (Moussa et al., 2012); and fully exploratory

network ICA (FENICA) (Kalcher et al., 2012; Schöpf
et al., 2010; Wang et al., 2012), to find the number of con-
sistent resting-state networks (RSNs). The current under-
standing of human RSNs comprises a set of 10 confirmed
networks that are specialized in functionality: visual net-
work, working memory network, executive network, dorsal
attention network (DAN), ventral attention network, auditory
network, sensorimotor network, basal ganglia network, lan-
guage network, as well as the well-known default mode net-
work (DMN). Further, the RSNs are hierarchically organized
(Kalcher et al., 2012; Lee et al., 2012). This implies that
when the number of networks or clusters increases, some net-
works will split into subnetworks, usually into left and right
lateral parts or peripheral and foveal parts, rather than re-
shape into a new network that seemingly has no relation
with the previous ones. Previous studies have demonstrated
that if the number of networks is two, then the brain can
be functionally divided into task-positive and task-negative
networks (Lee et al., 2012). However, if the number of clus-
ters/networks increases to a number between 5 and 10, then
aforementioned 10 networks emerge gradually one by one
(Damoiseaux et al., 2006; Lee et al., 2012). Specifically,
Damoiseaux et al. (2006) used tensor PICA in which a three-
dimensional tensor represented spatial, temporal, and sub-
ject-specific loadings to find group representatives of these
10 networks. Further, Kalcher et al. (2012) investigated
the effect of the length of the time series (or scan time) on
the number of networks based on which 10 seems to be appro-
priate choice for the scan times used in this work. Given these
factors, we specified 2 to 20 as the search range for number
of clusters during first-level clustering so that the number of
clusters (for each time point) returned by the silhouette index
is physiologically meaningful.

Second-level clustering. We investigated which of the
first-level clustering (spatial) configurations consistently
occurred over time using second-level clustering. Thus, sec-
ond-level clustering was a clustering of the first-level results
over time. Unlike first-level clustering that was dynamic in
nature (i.e., clustering configurations at each time instant im-
pacted those at later time instants), second-level clustering
was static in nature. Hierarchical approach to clustering was
employed and the number of clusters was determined by sil-
houette index (with a search range between 2 and 20). The
search range was determined according to the current under-
standing of the number of quasi-stable FC configurations that
recur over time during the course of an experiment. The
number of temporal FC patterns found by previous works
is normally < 20. For example, Li et al. (2014) found 16 re-
producible temporal FC patterns across healthy people via
effective dictionary learning and sparse coding algorithms.
Zhang et al. (2014) found 12 representative functional states
using a dynamic Bayesian variable partition model. Besides,
the number of temporally quasi-stable patterns of EEG to-
pography, called microstates, found by previous studies is also
generally < 20. Britz et al. (2010) found the optimal number
to be 4; Musso et al. (2010) found 10 recurrent microstates.
Thus, we used the search range to be 2–20 to accommodate
all possibilities.

The distance measure between two first-level clustering
configurations was calculated using a procedure illustrated
in Figure 2. Suppose at time point tm, the first-level clustering
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result was called M and, at a different time point tn, the first-
level clustering result was called N. M has 10 clusters rep-
resented by mi, where i = 1, 2, . . . 10, and N has 10 clusters
represented by nj, where j = 1, 2, . . . 10. First, we compared
the number of common regions (common members) between
each possible pair mi, nj, and then among them we selected
the pair mi*, nj* that had the maximal number of common re-
gions, and we assigned the same label to all regions in mi*

and all regions in nj*. Then, we removed this pair and
found the next pair that had the maximal number of common
regions in remaining possible pairs, and assigned regions be-
longing to this pair the same label (this label was different
from previous labels.). Then, we removed this pair and this
procedure continued. If the maximal number of common re-
gions became zero for remaining possible pairs, then we
assigned all regions in all remaining clusters in M a label dif-
ferent from all previous labels, and all regions in all remain-
ing clusters in N a different label (also different from all
previous labels). Consequently, no pairs were left in M and
N and all regions were labeled in both M and N. Finally,
the distance measure was devised to be the number of regions
having different labels in M and N. It is evident that this dis-

tance measure meets requirements of reciprocity, nonnega-
tiveness, triangular inequality, and self-distance being zero.

Each second-level cluster had a number of clusters with
first-level configurations as its members. For each second-
level cluster, we calculated the mean matrix D from first-
level distance matrices Di of all its members, wherein i
indexes all members in the given second-level cluster. The
member whose distance matrix was closest to D in the Eucli-
dean sense was chosen to represent the centroid of the second-
level cluster. The Euclidean distance E between D and Di

was calculated using Equation 2.

E2 = +r

n = 1
+r

m = 1
(Di(m, n)�D(m, n))2 (2)

Where r represents the number of columns (or rows),
which is equal to the number of regions, in the corresponding
matrix.

Third-level clustering. Second-level brain network pat-
terns that occurred consistently across runs/subjects were
identified using a third-level clustering across all runs/subjects.
Dominating second-level centroids were predicated based on

FIG. 2. A schematic illustrating the calculation of distance measure in second-level clustering. The schematic starts with
any two first-level clustering configurations at different time points as shown on the upper left corner. Red arrows indicate the
direction of the procedure (R1,., R8 denote region #1 to region #8, and C1, C2, and C3 denote cluster #1, cluster #2, and
cluster #3).
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the histogram of second-level clusters’ occurrence times
obtained from all runs/subjects (Supplementary Fig. S1). It
is evident that the majority of second-level clusters had oc-
currence times < 100 TRs. Therefore, second-level clusters
with occurrence times > 100 TRs were considered to be
dominating, which were then input to third-level clustering.
Transient second-level patterns with occurrence times
< 100 TRs were inconsistent and hence were not input to
third-level clustering since the objective of performing
third-level clustering was to find dominant and consistent
second-level patterns across subjects/runs.

To calculate the distance measure between dominating
second-level centroids, the strategy adopted in second-level
clustering is not feasible since each centroid had a weight,
that is, the occurrence times of the second-level cluster it
represented. Therefore, we performed weighted clustering.
For any dominating second-level centroid i, we had its FC
distance matrix Di. We picked out all the lower (or upper) tri-
angular elements of Di and vectorized them to represent
their corresponding points in feature space. The diagonal el-
ements were not considered. Then, weighted K-means algo-
rithm was employed to cluster these points in feature space.
The number of clusters was determined by silhouette crite-
rion and each cluster’s centroid was calculated by weighted
mean. Similar to the second-level clustering, the member
whose distance matrix was nearest to the theoretical centroid
was selected as the third-level centroid. The procedure for
all three levels of clustering is schematically illustrated in
Figure 3.

Simulations

To validate our proposed method for dynamic FC calcula-
tion and clustering, simulations were performed on artificial
data. We simulated time series from 12 regions, each with

1000 time points, using a multivariate vector autoregressive
model (MVAR) given as follows:

V(t) = +
p

i = 1

Ai � V(t� i)þ e (3)

Where V(t) denotes the matrix of signals from 12 regions,
Ai is the regression coefficient matrix, and e represents noise
vector with covariance matrix C, which has autocorrelation
coefficients normalized to 1. To test time-varying FC, three
scenarios were used.

(i) Ais were all zero matrices (thus, time-lagged connec-
tivity was excluded, and there was no need to specify
p), C was constant over time, and time series of 12 re-
gions were divided into four clusters, each having
three members connected to each other (regions 1, 2,
and 3 were in one cluster; regions 4, 5, and 6 were in
one cluster;.; regions 10, 11, and 12 were in one clus-
ter). In this case, C was a blocked symmetric positive
definite matrix with 3 · 3 blocks on the diagonal.

(ii) Same as first scenario except that every nonzero ele-
ment in C was slowly varying over time in a sinusoidal
manner with period equal to 200p and randomized
phases. The belongingness of each region was not
changed compared with scenario (i).

(iii) Same as first scenario except after every 200 time
points, C was circularly shifted by one column and
one row such that the membership of each time series
changed with respect to its cluster.

Note that the lower and upper limits of sliding window
length for DF test were set to 10 and 100 time points as de-
rived in the ‘‘Selection of the Range of Sliding Window
Length’’ section in Supplementary Data. Moreover, the win-
dowed Pearson’s correlation calculated was the ‘‘valid’’

FIG. 3. Schematic of the
procedure for all three levels
of clustering. The top left part
illustrates the transformation
of dynamic FC to a distance
measure; top right part is the
first-level clustering. Second-
and third-level clustering is
illustrated below that. Since
each of the 40 subjects had
2 runs, we had a total of
80 runs. FC, functional
connectivity.
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section of it, that is, only those parts that were calculated
without the zero-padded edges. The sliding window moved
forward one time point each time, and the [1, 100] section
of simulated time series was preserved for DF test of the
first sliding window. Thus, the resultant time series of dy-
namic FC had 900 time points, corresponding to [100,
1000] section of simulated MVAR time series. Aforemen-
tioned rule was applied to HCP fMRI data analysis also. It
is noteworthy that the objective of our simulation was to
demonstrate the ability of the proposed method for tracking
connectivity dynamics and hence we generated synthetic
data using a simple MVAR model. While many previous
studies have used more realistic generative dynamic causal
modeling-based synthetic fMRI data (Friston et al., 2003),
the physiological basis of time-varying FC is yet unclear
(Keilholz, 2014). When more clarity is available on this as-
pect, more realistic simulations may be performed in future
studies.

Characterization of dynamic and static FCs
and their behavioral relevance from experimental data

We defined three metrics to characterize dynamic FC
based on the first-level clustering result. The first is the
mean time that two regions are in connected (or disconnect-

ed) state before transitioning into a disconnected (or con-
nected) state, called mean time before state transition (MTST).
The second is standard deviation of the time before state
transition (SDTST). The third is called clustering frequency
percentage (CFP), which measures the percentage of total
time that two regions are clustered relative to total scanning
time. In addition, the conventional SFC was adopted as the
fourth metric.

We used these metrics to find their relevance to behavior
measures. An illustrative example demonstrating state transi-
tions and the procedure to calculate these metrics are shown
in Figure 4. The behavioral scores from a variety of behav-
ioral tests were input into a general linear model (GLM) as
the dependent variables with dynamic and static FC metrics
as explanatory variables as given below:

Bi, j = ai, j �MTSTi, jþ bi, j � SDTSTi, jþ ci, j � CFPi, j

þ di, j � SFCi, jþCi, jþ ei, j

(4)

Where i indexes different behavioral tests, j indexes the
FCs between different pairs of regions, Bi,j is a vector of be-
havioral scores for all subjects, and MTSTi,j, SDTSTi,j,
CFPi,j, and SFCi,j are vectors of corresponding metrics for
all subjects. ai,j, bi,j, ci,j, and di,j are their coefficients, respec-
tively; Ci,j is a constant term; and ei,j is a residual. It should

FIG. 4. An illustrative example of the calculation of three metrics: MTST, SDTST, and CFP. The first-level clustering re-
sult leads to a series of state transitions for every pair of regions between clustered and unclustered states. Specifically, two
regions either belong to the same cluster (connected, clustered state) or different clusters (disconnected, unclustered state),
and switch between these two states, as reflected in the black-and-white bar with ‘‘Yes’’ and ‘‘No’’ indicating whether they
are clustered or not. Then, the three metrics MTST, SDTST, and CFP are calculated as in corresponding boxes. Note the
fourth metric SFC that is widely known and thus not illustrated here. CFP, clustering frequency percentage; MTST, mean
time before state transition; SDTST, standard deviation of the time before state transition; SFC, static FC; TR, repetition time.
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be noted that we had the four metrics from 80 runs (2 runs for
each of the 40 subjects), but behavioral scores only from 40
subjects. So each subject’s behavioral score was used twice
in the GLM corresponding to its two runs. The coefficients
from this GLM were estimated using a standard least squares
procedure and were tested for statistical significance using a
z-test. A Bonferroni corrected p-value threshold of p = 0.05/
(75 · N), where 75 is the number of behaviors and N is the
number of paired connections, was used in this test. Then,
the variance explained in this GLM by each metric was cal-

culated. For example, (ai, j �MTSTi, j)
2 is the variance

explained by MTST. The overline denotes mean operation

over all is and js. And (ai, j �MTSTi, j)
2= (ai, j �MTSTi, j)

2þ
�

(bi, j � SDTSTi, j)
2þ (ci, j � CFPi, j)

2þ (di, j � SFCi, j)
2
�

repre-

sents the relative percentage of variance explained by MTST.

Results

Simulation results

Simulations described before were conducted 100 times
for each scenario and the corresponding results are shown
in Figure 5. The mean and standard deviation (over all 100
iterations) of the resulting time-varying FC time series
from several representative regions are illustrated. Figure
5A corresponds to scenario (i) specifically showing the con-
nections from region 1. The estimated time-varying FCs ap-
proach the ground truth very well and the autocorrelation
is constantly one. Figure 5B and C shows the results corre-
sponding to scenarios (ii) and (iii) wherein the estimated
time-varying FCs track the ground truth sufficiently well,
and the regions belonging to different clusters (regions 4
and 11 in Fig. 5B and regions 1 and 8 in Fig. 5C) have nearly
zero correlation, indicating no false positives. In particular,
when the simulated cluster belongingness changes in Figure
5C, the estimated time-varying FCs respond to it swiftly and
converge quickly. Figure 5D demonstrates one representa-
tive realization of AEC algorithm over time (first-level clus-
tering) for simulated time-varying FCs of scenario (iii). After
every 200 time points, the cluster belongingness (and hence
the nodal configuration for the networks) was circularly
shifted once. For example, from time points 1 to 200, regions
1, 2, and 3 were clustered together; region 4, 5, and 6 were
clustered together; and so on. Then from time points 201
to 400, regions 2, 3, and 4 belonged to the same network; re-
gions 5, 6, and 7 belonged to the same network;.; regions
11, 12, and 1 belonged to the same network. This switching
pattern is tracked correctly, with only short transitional time.
Note that since the time-varying FC time series correspond to
[100, 1000] section of MVAR time series, the cluster belong-
ingness switches occur at time points 100, 300, 500, and 700.

Characterization and quantification of dynamic
and static FCs using HCP data

First-level clustering. Figure 6 shows interregional MTST,
SDTST, CFP, and SFC matrices averaged over all runs and
subjects. Generally, a higher value of MTST indicates lesser
dynamic variations of FC between regions. We can observe
that several regions have much less dynamics of FC in rela-
tion to other regions, such as regions 35 and 36 and region

168, corresponding to brainstem and right rectus gyrus (for
corresponding AAL anatomical area of each region, please
see Supplementary Table S1). In theory, a high value of
MTST could be obtained regardless of whether a pair of re-
gions spend most of their time with strong correlation or weak
correlation. However, from Figure 6, we can observe that con-
nections having higher MTSTs generally have lower CFPs and
SFCs. This negative correlation between MTST and CFP/SFC
indicates that, in the context of the human brain, higher MTST
implies that the corresponding regions spend most of their
time having weak correlation. Accordingly, regions, such as
brainstem and rectal gyrus, with high MTSTs are connected
with other regions for a very short period of time.

Figure 7 shows the paths (connections between regions)
with MTSTs within the top and bottom 0.1%, 0.5%, and
1% of MTSTs of all paths. The MTSTs here are averaged
over all runs and subjects. Figure 7A is intended to improve
visualization such that paths with most significance could be
emphasized. These results reinforce the point we made about
large MTSTs for the rectal gyrus and brainstem that they
were seldom clustered (at the first level) with other regions
for most of the time, implying that they had very weak dy-
namic FCs with other regions. The blue paths with low
MTSTs represent connections with highly dynamic FC.
One network involving the mid-frontal cortex, anterior and
mid cingulate, insula, and supplemental motor area as well
as another intra-cerebellar network stand out in Figure 7A.
These two networks were connected to each other by multi-
ple intermediary nodes in the temporal and parietal cortices
at a lower threshold (Fig. 7C).

We defined a metric, regional MTST (rMTST), by finding
the mean MTST of all paths associated with a given region.
Brain regions with rMTST in the top 30% and bottom 30%
are shown in Figure 8A and B, respectively. Similarly, re-
gional CFP (rCFP) was defined as the mean CFP of all
paths associated with a given region and regions with rCFP
in the top 30% and bottom 30% are shown in Figure 8C
and D, respectively. At this proportion of 30%, known
RSNs are revealed. For comparison, Supplementary Figure
S2 shows regions with top and bottom 20% rMTST and
rCFP. Compared with Figure 8, there are fewer regions high-
lighted and some important RSNs are even missing in Sup-
plementary Figure S2, such as the visual network in Figure
8A, and so are some important regions, such as posterior
cingulate cortex (PCC), in Figure 8C. This implies that Sup-
plementary Figure S2 is not as informative as Figure 8. There-
fore, we only elaborate on Figure 8 here. It can be seen from
Figure 8 that the brainstem and rectus have highest rMTST
and lowest rCFP, which is in agreement with the results pre-
sented earlier, that is, low dynamics and unconnected to other
regions for a major portion of the experiment. Also, DMN,
DAN, and fronto-parietal control network (FPCN) (Vincent
et al., 2008) have low rMTST, indicating high dynamics of
FC. Especially DMN has the lowest rMTST, that is, highest
dynamics of FC. Most occipital, temporal, superior frontal,
and parietal areas have high CFP, indicating that they gener-
ally have strong FC to other regions for most of the time.

Third-level clustering. Supplementary Figure S3 shows
the eight centroids obtained from third-level clustering,
which represent whole-brain FC patterns appearing consis-
tently across space, time, and subjects. In this figure, brain
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FIG. 5. Simulation results for time-varying FC and first-level clustering. The simulated MVAR processes consisted of 12
regional time series, each with 1000 time points. (A) Left: example showing simulated ground truth for time-varying FCs of
scenario (i); right: estimated mean and standard deviation (std) of simulated time-varying FCs. Color bands span [mean� std,
mean + std] with mean in the middle. (B) Left: example showing simulated ground truth for time-varying FCs of scenario (ii);
right: estimated mean and standard deviation of simulated time-varying FCs. (C) Left: example showing simulated ground
truth for time-varying FCs of scenario (iii); right: estimated mean and standard deviation of simulated time-varying FCs. (D)
Left: ground truth clustering pattern for one representative example of simulated time-varying FCs corresponding to scenario
(iii); right: corresponding estimated clustering pattern using AEC algorithm. Regions rendered with the same color are con-
nected to each other and hence belong to the same cluster. AEC, adaptive evolutionary clustering; MVAR, multivariate vec-
tor autoregressive model.
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regions with the same color are functionally connected to
each other. A statistical summary of third-level clusters is
listed in Table 1, including number of members (dominating
second-level centroids), and the sum of occurrence times of
members in TRs. Together, these two metrics determine the
relative dominance of each third-level cluster. We obtained 8
third-level clusters according to the silhouette criterion (Boy-
ett-Anderson et al., 2003). It is clear that clusters #1, #2, #6,
and #7 are more dominant than others, and cluster #8 is the
least dominant. Note that the numbers assigned to clusters
are incidental and carry no particular meaning. Also, the
cluster centroids in Figure S3 are in the same order as in

Table 1. The DMN can be observed in the centroids of clus-
ters #3, #4, #6, and #8. These four clusters accounted for
*32% of the total occurrence times of dominating second-
level clusters (OTDSLCs). Also, the regions of the DMN
were connected to regions outside the DMN in addition to
being connected to each other in clusters #2, #5, and #7.
Taken together, this implies that the regions of the DMN
were connected to each other and appeared as part of the
same cluster for *78% of OTDSLCs. The visual network,
comprising of primary and secondary visual cortices, ap-
peared in centroids #1, #3, #4, #5, and #6, with #6 having
only occipital area, #3 having occipital-parietal-frontal

FIG. 6. Interregional MTST, SDTST, CFP, and SFC matrices averaged over all runs. Numbers along horizontal and ver-
tical axes are region labels. For the automatic anatomical labeling (AAL) nomenclature corresponding to these numeric
labels, please see Supplementary Table S1. (A) MTST, (B) SDTST, (C) CFP, and (D) SFC (Note: for each matrix, diagonal
elements represent the dynamic or static FC metric between a given region and itself. Therefore, the colors of diagonal el-
ements have no meaning and not comparable to off-diagonal elements).
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interaction (merged with DAN), and others having frontal-
occipital interaction. They accounted for 57% of OTDSLCs.
The language network appeared in centroid #6 and clustered
with cerebellar regions. This network accounted for 15% of
OTDSLCs. The sensorimotor network appeared in centroid
#1 and splits into bilateral parts in centroid #4, accounting
for 33% of OTDSLCs. The DAN merged with the visual net-
work in centroid #3 and appeared as an individual network in
centroid #6. So, in total it accounted for 19% of OTDSLCs.
The executive network can be seen only in centroid #4,
which accounted for 11% of OTDSLCs. The ventral atten-
tion network appears as a clear network (dark red) only in
centroid #8, which accounted for 11% of OTDSLCs. The
limbic network can be seen in its entirety in centroid #1,
which accounted for 22% of OTDSLCs, and split into several

parts (thalamus, caudate, basal ganglia, etc.) with each part
having connections with cortical regions in centroids #3,
#5, and #7. Brainstem appears as an individual cluster in cen-
troid #2. Also in centroid #2 we can observe that the ventral
frontal areas shaped into individual clusters, such as rectus,
indicating that they have weak FC with other areas. It should
be noted that since many networks co-occur in certain cen-
troids, percentages of the total OTDSLCs for all RSNs do
not sum to 100%.

Behavioral relevance of dynamic and static FCs

Figure 9, which presents the relative percentage of vari-
ance explained by MTST, SDTST, CFP, and SFC for 75 be-
havioral scores pertaining to alertness, cognition, emotion,

FIG. 7. Paths with top and bottom 0.1% MTSTs in (A), top and bottom 0.5% MTSTs in (B), and top and bottom 1% MTSTs
in (C). The red paths represent interregional MTSTs whose values are among the top 0.1% of all MTSTs in (A), top 0.5% of
all MTSTs in (B), and top 1% of all MTSTs in (C), and blue paths represent interregional MTSTs whose values are among the
bottom 0.1% of all MTSTs in (A), bottom 0.5% of all MTSTs in (B), and bottom 1% of all MTSTs in (C). The MTSTs men-
tioned here have been averaged over all runs and subjects. If the threshold is set beyond 1%, the number of paths is too big
such that it prevents any meaningful visualization.
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and personality (please see Supplementary Table S2 for de-
tails of individual behavioral measures), is the most impor-
tant contribution of this article. It is remarkable that the
variances explained by dynamic FC metrics MTST and
SDTST are clearly higher than those by CFP and SFC for
every behavioral measure. MTST in particular, has much
more power in explaining behavioral variability than the
other three. This is significant because it implies that the dy-
namics of FC can be a better predictor of human behavior
than conventional SFC. Visual inspection of scatter plots
of behavioral data against each of the four metrics revealed
that the correlations were not driven by outliers.

Figure 10 shows the paths whose MTSTs significantly pre-
dicted several selected behavioral measures. Note that Fig-
ure panels 10G and J both have two subfigures, one being
original and the other having been further processed. Since

there were a lot of paths whose MTSTs significantly corre-
lated with true positives and false negatives of SCPT task,
we obtained a distribution of the number of paths emanating
from each region and found that only 10% of regions had
more than four paths emanating from them. Based on this,
we retained only those paths that connected at least one of
the regions with a nodal degree of 5 or more to obtain the
processed subfigures. In this way, we were able to identify
only the prominent hubs for proper visualization. However,
all of our conclusions would still be valid with the original
subfigures. In Figure 10A and B, all paths are cobalt blue, im-
plying that higher the episodic memory score, lower the
MTST and greater the dynamics of FC. Many of these paths
involve the cerebellum, which makes sense given previous
reports of its role in episodic memory retrieval (Andreasen
et al., 1999; Wiggs et al., 1999). Other important areas

FIG. 8. Regions with top and
bottom 30% rMTST and rCFP.
Regions with top 30% of all rMTST
are shown in (A) and with bottom
30% of all rMTST are shown in (B).
Corresponding maps for top and
bottom 30% rCFP are shown in (C)
and (D), respectively. Hot colormap
is used to represent the numeric
value of corresponding metric for
each region shown (A, anterior; P,
posterior; S, superior; I, inferior; L,
left; R, right). rCFP, regional CFP;
rMTST, regional MTST.

Table 1. Statistical Summary of Third-Level Clustering

Third-level cluster Cluster #1 Cluster #2 Cluster #3 Cluster #4 Cluster #5 Cluster #6 Cluster #7 Cluster #8 Sum

No. of cluster members 33 19 7 19 4 15 15 1 113
Sum of all members’

occurrence times (TR)
13,776 14,702 2787 6838 2744 9140 11,209 813 62,009

TR, repetition time.
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include frontal cortex, occipital cortex, temporal cortex, par-
ahippocampal, precentral, and parietal areas. Previous works
have shown that these areas are activated in an episodic-
memory-retrieval task (Tsukiura et al., 2002; Wiggs et al.,
1999). Figure 10C shows paths significantly predicting cor-
rect responses for the fluid intelligence behavioral test and
Figure 10D shows paths significantly predicting skipped
items (a measure of error rate) in the same test. They show
that individuals with more correct responses had lower MTST
and greater dynamic FC while increased error rate was pre-
dicted by lower dynamics of FC. Areas associated with this
pattern include inferior and medial frontal cortices as well
as the parietal cortex, which have been previously implicated
in fluid intelligence (Geake and Hansen, 2005; Gray et al.,
2003). Also, fluid intelligence is mediated by a composite
of working memory systems and many regions involved in
fluid intelligence are associated with working memory, in-
cluding regions in the temporal lobe, hippocampus, and cer-
ebellum (Prabhakaran et al., 1997), as in Figure 10C and D.
Besides, pallidum in the basal ganglia has also been shown
to be involved in fluid intelligence (Rhein et al., 2014). In
Figure 10E and F, MTSTs of most paths are significantly
negatively correlated with self-regulation. Many regions seen
in these two figures, that is, prefrontal cortex, especially its ven-

tral area (Jimura et al., 2013); lateral intraparietal cortex (Louie
and Glimcher, 2010); thalamus; and caudate (Kinnison et al.,
2012; Komura et al., 2001), have been previously implicated
in self-regulation. Figure 10G–M belongs to the behavior
test of the same category: sustained attention, also termed
vigilance. It is conspicuous that Figure 10G and J is exactly
the same except for the polarity (cobalt blue and red), and so
is Figure 10H and I. Also, Figure 10K is the same as Figure
10G, and Figure 10L is the same as Figure 10H, except for
polarity. Taken together, these imply that lower MTST and
hence greater dynamics of FC are associated with better per-
formance on SCPT. The specific paths whose MTSTs predict
behavioral variability involved brain regions, such as frontal
cortex, precentral cortex, insula, occipital cortex, temporal
cortex, inferior parietal cortex, and cingulate gyrus, which
have been previously implicated in sustained attention and
vigilance (Breckel et al., 2013; Olbrich et al., 2009; Seidman
et al., 1998).

It is noteworthy that even though MTST explained a
higher percentage variance in behavior compared with other
metrics across the whole range of tasks, different paths/
networks were involved in explaining each behavior.
This indicates that our findings are unlikely to be driven
by correlation between behaviors themselves.

FIG. 9. Percentage of variances in behavioral measures explained by dynamic and static FC metrics. Percentage of vari-
ances is shown as error bars with mean and standard deviation derived across all paths between the 190 regions. Along the
horizontal axis are labels for 75 behavioral tests (please refer to Supplementary Table S2 for behavioral test details). The
broad behavioral domains of groups of behavioral tests are indicated above and below the figure. Note that a value of 0.6
on the y-axis indicates that 60% of the variance in behavior is explained by the corresponding connectivity metric.
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Discussion

In this work, we have proposed a framework for estimating
dynamic FC between functionally homogeneous regions across
the entire brain using adaptive windowing based on time series
stationarity. The multidimensional FCs obtained from each sub-

ject were subjected to three levels of clustering across space,
time, and subjects in order to derive metrics for capturing con-
nectivity dynamics as well as to find brain FC network patterns
that aredynamic in time, yet consistent across subjects. Bothdy-
namic and static FC metrics were correlated with behavioral
variables to find their ability to predict human behaviors.

FIG. 10. Paths whose MTSTs significantly predicted variability in selected behavioral measures. The predictive ability is
quantified by the regression coefficient a for each MTST in the GLM shown in Equation 4 in the main text. The coefficient a
is passed through a z-test and Bonferroni corrected for multiple comparisons (corrected p < 0.05). In each subfigure, cobalt
blue paths have negative a values, and red paths have positive a values. The behavior tests for subfigures are as follows: (A)
Episodic memory (picture sequence test, unadjusted). (B) Episodic memory (picture sequence test, adjusted). (C) Fluid in-
telligence (PMAT24_A_CR). (D) Fluid intelligence (PMAT24_A_SI). (E) Self-regulation (AUC_200). (F) Self-regulation
(AUC_40k). (G) Sustained attention (SCPT_TP). The top one is the original figure. Since it has too many paths that hamper
visualization, we show the processed figure as the bottom one with only paths that connect to nodes with five or more paths.
(H) Sustained attention (SCPT_TN). (I) Sustained attention (SCPT_FP). ( J) Sustained attention (SCPT_FN). The top one is
the original figure. Since it has too many paths that hamper visualization, we show the processed figure as the bottom one with
only paths that connect to nodes with five or more paths. (K) Sustained attention (SCPT_SEN). (L) Sustained attention
(SCPT_SPEC). (M) Sustained attention (CPT_LRNR). Please refer to Supplementary Table S2 for details about specific
metrics referred to for each behavior. GLM, general linear model.
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This section is organized as follows. We first discuss the
third-level clustering results that show the most consistent
whole-brain connectivity patterns across time and subjects.
Second, we discuss the implications of paths as well as re-
gions that exhibit highest and lowest dynamics. Third, we
discuss the behavioral relevance of the dynamics of FC
and support for our central hypothesis that temporal varia-
tions in connectivity are a better predictor of human behavior
than static connectivity. Fourth, we discuss methodological
issues surrounding group comparisons using different win-
dow lengths and the effect of parcellation schemes on the re-
sults. Finally, we list certain limitations of the current study
and future directions that may be worth pursuing.

First, among the RSNs revealed by third-level clustering
results shown in Supplementary Figure S3, DMN and visual
network occupy more than 50% of the total OTDSLCs, appar-
ently higher than other RSNs. This is expected since the DMN
(Greicius et al., 2003) and visual networks (Patriat et al., 2013)
have been shown to be predominant and highly reproducible
networks in the resting human brain by many previous reports.

Second, results shown in Figures 6–8 consistently indicate
that rectal gyrus has very weak SFC and low dynamics of FC
with other regions reflected as high MTST, low CFP, and low
SFC. This indicates that it seldom clusters with other regions;
that is, it appears as an individual cluster. The function of
rectal gyrus is currently yet unclear, but anterior parts of
the orbito-frontal cortex in general have been implicated in
the processing of motivational information (Kringelbach
and Rolls, 2004). Given that there is little motivational infor-
mation to process during a resting state scan with eyes open
and fixed on a target, it is understandable that there is very
little static connectivity as well as its dynamics associated
with this region. This region is generally known to possess
susceptibility-based distortion. However, the HCP prepro-
cessing pipeline contains many steps for removing this arti-
fact based on field maps (Glasser et al., 2013). Therefore
further studies that employ more appropriate acquisition
strategies (as opposed to postprocessing employed here for
artifact removal) are required to confirm the functional sig-
nificance of low FC and high MTST in the rectal gyrus.
The brainstem also had low FC and high MTST with other
regions. The brainstem plays an important role in regulating
cardiac and respiratory functions, maintaining consciousness
and regulating sleep. However, resting-state FC between the
brainstem and the neocortex is tightly coupled with corre-
sponding variations in physiological fluctuations (Chang
et al., 2013). Therefore, further research is required to assess
the impact of the presence (and removal) of the dynamics of
physiological fluctuations on corresponding dynamics of
resting-state FC between the brainstem and the neocortex.

On the other hand, a network consisting of the mid-frontal
cortex, anterior and mid cingulate, insula, and supplemental
motor area as well as an intra-cerebellum network stand out
as having highly dynamic FC (Fig. 7A). Results with a more
liberal threshold of 0.5% indicate that these two networks are
connected by paths converging to the parietal cortex (Fig.
7B). In other words, the fontal-parietal-cerebellar circuit dis-
plays high FC dynamics. When the threshold is further re-
laxed to 1% (Fig. 7C), direct fronto-cerebellar paths
emerge. These regions are involved in a range of functions
that are too exhaustive to be listed here. Briefly, the mid-
frontal cortex is implicated in planning complicated cogni-

tive processes (Ridderinkhof et al., 2004), while the anterior
cingulate plays a role in many cognitive functions, such as
initiation, motivation, and goal-directed behaviors (Devin-
sky et al., 1995). Insula plays a role in various functions, in-
cluding perception, motor control, self-awareness, cognitive
functioning, and interpersonal experience (Karnath et al.,
2005). High FC dynamics associated with the insula may
be supported by the virtue of the fact that it was identified
as one of the hubs in the ‘‘rich-club’’ organization of the
brain’s structural connectome (van den Heuvel and Sporns,
2011). Further, the role of the insula in functional integration
(Kurth et al., 2010) and dynamic switching as part of the
‘‘Salience’’ network (Menon and Uddin, 2010), along with
the anterior cingulate cortex, may be supported by high FC
dynamics of both the insula and anterior cingulate observed
in this study. Stoodley and Schmahmann (2010) suggest that
different regions of the cerebellum containing sensorimotor,
cognitive, and limbic representations interact with the parie-
tal cortex. Taken together, fronto-parietal, intra-cerebellar,
and cortico-cerebellar networks that support a large range
of brain functions appear to display highest dynamics of FC.

A closer look at regions having high dynamics of FC to all
other brain regions in Figure 8B reveals that nodes of com-
mon RSNs, such as DMN, DAN, and FPCN, have similar
level of dynamics. As pointed out by Vincent et al. (Vincent
et al., 2008), DAN and DMN are two opposing brain net-
works that are implicated in attention to the external world
versus internally directed mentation, respectively, and the
FPCN (which includes regions implicated in cognitive con-
trol and is structurally located in between DMN and DAN re-
gions) controls the switching between DAN and DMN. This
controlling mechanism and the competing roles of DAN and
DMN may underlie its high dynamics of FC. The PCC and
precuneus have high dynamic FC and high CFP, probably
as a result of strong FC paths with high dynamics linking
it to frontal and cerebellar regions as discussed previously.

The regions of the DMN were connected to each other for
a large portion of the total time as well as exhibited high con-
nectivity dynamics with other brain regions. This finding
needs to be understood in the context of resting state being
defined as ‘‘Random Episodic Silent Thinking’’ (Andreasen
et al., 1995). We believe that it is the ‘‘randomness’’ of rest-
ing state that is being supported by frequent state changes ac-
companying high connectivity dynamics. Since this state
dominates during a resting-state scan, DMN regions not
only display high dynamics, but are also connected to each
other for a large portion of the experiment. DMN’s purported
role in social cognition, autobiographical memory, and mind
wandering (Buckner et al., 2008) supports the aforementioned
notion. For example, mind wandering, autobiographical/
episodic memory, and internal mentation require processing
different contexts of past, present, or future. In addition, so-
cial cognition is also characterized by ‘‘largely unconstrained
decision making, including reliance on potentially multiple
instances of recursive thinking’’ (Mars et al., 2012). Support-
ing the mental processes described previously requires flex-
ible engagement and disengagement with multiple brain
regions, which fits the pattern of high dynamics and occur-
rence of the DMN during rest.

Third, emerging evidence suggests that important individ-
ual differences can be associated with patterns of resting-
state brain connectivity, and the variability of SFC patterns
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across individuals can be reflected in corresponding variabil-
ity of important cognitive and behavioral variables (Cole
et al., 2012; Filippi et al., 2012; He et al., 2012). Recent re-
ports indicate that dynamic FC is also predictive of behav-
ioral performance in healthy individuals (Kelly et al., 2008;
Madhyastha et al., 2014; Thompson et al., 2013). However,
it is yet unclear whether dynamic FC can provide additional
predictive value over that provided by SFC. To answer this
question, we obtained the predictive power of both dynamic
and static FCs on behavioral performance using a single
GLM. Our results clearly demonstrate that dynamic FC met-
rics, especially MTST, have much more power in explaining
variance in behavioral performance tasks than SFC metric
for all of the 75 behavioral tests considered, covering do-
mains of alertness, cognition, emotion, and personality. Fur-
ther, results from Figures 9 and 10 demonstrate that higher
dynamics of FC are predictive of superior/favorable behav-
ioral performance. For example, higher episodic memory
score, better sustained attention, higher self-regulation, and
lower impulsivity are predicted by lower MTST and hence
greater dynamics of FC. This supports our hypothesis that
information derived from dynamic variations in FC better
predicts behavior as compared with conventional static mea-
sures and that greater dynamic variability supports superior
behavioral performance in healthy individuals.

The results presented here have profound implications for
our understanding of what constitutes a healthy and desirable
brain. Conventional wisdom dictates that deviations of SFC
from what one would typically observe in a matched control
population represent altered neural circuitry underlying var-
ious disorders. For example, hyperconnectivity has been ob-
served in psychiatric disorders, such as psychosis (Wotruba
et al., 2014), schizophrenia (Shinn et al., 2013), and post-
traumatic stress disorder (Qin et al., 2012; Yin et al.,
2011), and hypoconnectivity has been observed in disorders,
such as autism (von dem Hagen et al., 2013). In addition to
the SFC value, the amount of variability of FC values over
time may provide additional dimensions on which brain al-
terations may be assessed. For example, the inability to dis-
engage from a state of altered connectivity may explain why
one observes altered static connectivity in the first place. The
fact that higher dynamics predicted better behavioral perfor-
mance in healthy individuals indicates that the ease with
which brain regions engage or disengage may be potential
biomarkers for disorders involving altered neural circuitry.
Specific examples of the application of this hypothesis to pa-
tient populations have begun to emerge. For example, a re-
cent study showed that the inability of brain connections to
dynamically adapt may be linked to behavioral inflexibility
in autism (Uddin et al., 2014). Therefore, further exploration
of this hypothesis in patient populations will likely emerge as
a promising area of research.

Fourth, we discuss certain methodological issues arising
from our study. Since the windows are allowed to be of vary-
ing lengths in our method, time-varying correlations cannot be
directly compared across different populations. Rather, met-
rics, such as MTST, that capture state transitions due to
time-varying connectivity dynamics are indeed comparable.
Shorter windows due to inherent nonstationarity in the time
series are likely to result in more state transitions at shorter in-
tervals resulting in smaller MTST. This indicates greater dy-
namics, which could potentially be significantly different in

a patient population as compared with controls. In addition,
simpler metrics, such as variance of time-varying connectivity
calculated over time, can also be compared across groups.

Another methodological issue concerns the choice of the
parcellation scheme we have used to reduce the dimension-
ality of the dataset. There is an abundance of resting-state
connectivity studies that have examined specific networks,
usually involving < 10 anatomically identified regions,
rather than the entire brain. These studies are motivated by
specific hypotheses regarding the functionality of specific
networks. The methods used for this purpose include seed-
based correlation (Greicius et al., 2003), as well as principle
component analysis and ICA-based analysis (Radua et al.,
2010; Soldati et al., 2013). Even though convenient for test-
ing targeted hypotheses, the effect of other regions in the
brain cannot be ignored and it is difficult to obtain the com-
plete picture when investigating brain networks of a few re-
gions in isolation. Accordingly, many studies explored
whole-brain SFC (Shirer et al., 2012) and even whole-brain
dynamic FC patterns (Allen et al., 2014; Leonardi et al.,
2013). However, they suffered from the following limita-
tions: (i) some works (Leonardi et al., 2013) employed a par-
titioning of the whole brain according to AAL atlas whose
segmentation is solely based on anatomy, thus making the
ROIs (regions of interest) functionally heterogeneous, and
(ii) ICA-based functional definition (Allen et al., 2014) of
ROIs combined distant regions into a single ROI, which is
really not an appropriate parcellation scheme. We recognize
that dimensionality reduction is essential given that dynamic
evaluation of connectivity from all voxels in the brain can be
computationally expensive. Therefore, unlike previous stud-
ies, we adopted a dimensionality reduction strategy that par-
cellated voxel time series into 190 functionally homogeneous
gray matter regions using spectral clustering (Craddock et al.,
2012). This 190-region atlas was derived using a large resting-
state dataset (Craddock et al., 2012) (for corresponding AAL
anatomical areas of the 190 regions, please see Supplementary
Table S1). We extracted mean time series from each of the
190 regions and fed them into dynamic FC model. Here, we
would like to note the differences between the parcellation
schemes that we have adopted and other schemes in the liter-
ature. One set of methods rely on FC itself to generate parcel-
lation of brain regions (Wig et al., 2014; Yeo et al., 2011).
Although useful for exploring underlying neurophysiology,
using such methods to generate ROIs in our context amounts
to double dipping since we are interested in investigating con-
nectivity dynamics between regions. However, another set of
methods relies on the homogeneity of fMRI time series in
spatially contiguous regions and such methods are more
suited as a method for ROI definition for subsequent connec-
tivity analysis. Spectral clustering, the one we have used
(Craddock et al., 2012), is one such method. However, certain
recent advancements, such as the one by Ryali et al. (2013),
provide more robust performance. Future studies may inves-
tigate the performance of our proposed model on ROIs gen-
erated by such superior parcellation schemes.

Finally, we note a few limitations of this study and suggest
that future work should be oriented in these directions. First,
for dynamic FC calculation, we did not differentiate between
‘‘correlated’’ and ‘‘anticorrelated’’ interregional relation-
ships in this work, and we plan to add this additional layer of
complexity in a future study. This is important because in

756 JIA ET AL.



addition to characterizing functional associations between
regions, the nature of such associations can be characterized
by including the sign. Second, fluctuations of brain states
represented by RSNs measured by fMRI should coordinate
with EEG microstates (Van de Ville et al., 2010). Thus, it is
necessary to conduct a similar analysis using simultaneously
acquired EEG data. Third, some form of cross-validation
would also be helpful in determining stable ranges for the
major free parameters used in the proposed method, which
would be important if this method is to be successfully ex-
tended to other datasets. Fourth, the sensitivity of the pro-
posed method to an improper choice of the search range
for the number of clusters needs to be investigated. Fifth, it
is yet unclear whether metrics of dynamic FC obtained
from simpler approaches, such as fixed window sliding cor-
relation, are also capable of explaining as much variance in
behavior as the proposed adaptive windowing method. If
so, it may reduce computational complexity and future stud-
ies must investigate this aspect. Sixth, since our focus was to
investigate the behavioral relevance of dynamic FC metrics,
we used them in a regression model to predict behavior and
did not perform tests to determine the statistical significance
of metrics such as MTST. Future studies can develop non-
parametric permutation tests in order to address this issue.
Finally, FC does not provide information on the directional-
ity (or causality) of connections. Previous reports have
shown that causal relationships provide a complimentary
mode of communication between brain regions in resting
state and that regions that seem to be dissociated at zero-
lag might as well have time-lagged relationships (Deshpande
et al., 2011). Therefore, a similar analysis must be carried out
using causal effective connectivity (EC). Further, the predic-
tive ability of dynamic EC on human behavior must be de-
duced and compared with that of dynamic FC and static EC.
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