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ABSTRACT

Structure mapping is a classic experimental approach for determining nucleic acid structure that has gained renewed interest in
recent years following advances in chemistry, genomics, and informatics. The approach encompasses numerous techniques that
use different means to introduce nucleotide-level modifications in a structure-dependent manner. Modifications are assayed via
cDNA fragment analysis, using electrophoresis or next-generation sequencing (NGS). The recent advent of NGS has dramatically
increased the throughput, multiplexing capacity, and scope of RNA structure mapping assays, thereby opening new possibilities
for genome-scale, de novo, and in vivo studies. From an informatics standpoint, NGS is more informative than prior technologies
by virtue of delivering direct molecular measurements in the form of digital sequence counts. Motivated by these new capabilities,
we introduce a novel model-based in silico approach for quantitative design of large-scale multiplexed NGS structure mapping
assays, which takes advantage of the direct and digital nature of NGS readouts. We use it to characterize the relationship
between controllable experimental parameters and the precision of mapping measurements. Our results highlight the
complexity of these dependencies and shed light on relevant tradeoffs and pitfalls, which can be difficult to discern by
intuition alone. We demonstrate our approach by quantitatively assessing the robustness of SHAPE-Seq measurements,
obtained by multiplexing SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) chemistry in conjunction with
NGS. We then utilize it to elucidate design considerations in advanced genome-wide approaches for probing the
transcriptome, which recently obtained in vivo information using dimethyl sulfate (DMS) chemistry.
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INTRODUCTION

RNA is a versatile molecule, capable of performing an array of
functions in the context of diverse cellular processes (Sharp
2009). To a large extent, its functionality is dependent on
its ability to fold into, and transition between, highly specific
complex structures. Structure analysis is thus fundamental
to basic RNA research as well as to large-scale engineering ef-
forts to design novel RNAs for a rapidly growing number of
biomedical and synthetic biology applications (Chen et al.
2010, 2013; Mali et al. 2013). However, determining struc-
ture from sequence remains a challenge. As a result of sever-
al recent technological advances, a family of experimental
approaches, collectively called structure mapping assays, is
emerging as a powerful technique in structural studies that
is complementary to other approaches (Weeks 2010).

Structure mapping assays rely on chemicals or enzymes
to introduce modifications into an RNA in a structure-de-
pendent fashion (see Fig. 1), so as to glean information about

intra- and intermolecular contacts (Weeks 2010). Until re-
cently, sites of modification have been determined by gel or
capillary electrophoresis (CE) (Mitra et al. 2008; Karabiber
et al. 2013), but these technologies are now being replaced
by next-generation sequencing (NGS), thereby allowing pro-
bing of a multitude of RNAs in a single experiment (Under-
wood et al. 2010; Zheng et al. 2010; Mortimer et al. 2012;
Silverman et al. 2013; Wan et al. 2013; Ding et al. 2014; Kiel-
pinski and Vinther 2014; Rouskin et al. 2014; Seetin et al.
2014; Siegfried et al. 2014; Talkish et al. 2014). NGS delivers
a fundamentally new way of measuring molecular dynamics,
namely, via their reduction to the identification and count-
ing of sequences. Once coupled to structural measurements,
this “digitalization” has opened up new opportunities for ge-
nome-wide structure analysis in vivo (Mortimer et al. 2014)
and for massively parallel analysis of RNA libraries in vitro
(Qi and Arkin 2014).
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The coupling of structure mapping to sequencing is con-
ceptually simple (see Fig. 1). First, a library of fragments that
terminate at the sites of modification is constructed. Their
subsequent sequencing reveals their identities, in contrast
to estimation of their length by electrophoresis. In practice,
however, performing multiplexed mapping requires a care-
ful balance between the extent of modification that is applied
to the RNAs in a sample and the depth of sequencing to be
performed to detect modifications. Moreover, the degree of
multiplexing and the relative abundances of the RNAs affect
the nature of this balance, and therefore, experiment design
requiresmaking a series of nontrivial decisions that can great-
ly affect outcomes.
In this study, we perform the first systematic quantitative

investigation of the effects of controllable experimental pa-
rameters on performance of NGS-based mapping assays via
a series ofmodeling and simulation studies. Our results quan-
tify input–output relationships, elucidate their complexity,
and shed light on relevant tradeoffs and pitfalls. Simulations
relyon stochasticmodels of themodificationprocess and frag-
ment generation dynamics. Since NGS readouts are in fact
“molecular counters,” we are able to directly link an experi-
ment’s molecular dynamics to data variation (or quality)—a
link that is missing in electrophoresis-based quantification.
Recent advances in genomics thus present new opportunities
for informatics-assisted design methodology.

Our analysis leads to a roadmap for rational experiment
design, where quantification by simulations guides parameter
optimization rather than intuition or heuristics. The road-
map involves the incorporation of prior structure profiling
from small-scale studies, and we have developed an in silico
framework that exploits this paradigm to allow for experi-
ment design of large-scale multiplexed experiments as well
as for evaluation of data analysis schemes. In what follows,
we first devise it and demonstrate its utility in the context
of SHAPE (selective 2′-hydroxyl acylation analyzed by prim-
er extension) chemistry (Merino et al. 2005) and its recent
multiplexing in conjunction with NGS, dubbed SHAPE-
Seq (Mortimer et al. 2012). We then broaden its scope to en-
compass key features of nascent techniques, which further
leverage NGS advances to enable probing of entire transcrip-
tomes with multiple pertinent chemical reagents. As these
breakthroughs propel the field into an era of ribonomic big
data, we discuss data intricacies and subtleties, with a for-
ward-looking perspective on the role that solid informatics
infrastructure can play in accelerating progress. We anticipate
this work will provide a quantitative basis for intuition that
is needed to guide experimental design, and that it will be
of particular use to the many experimentalists that will soon
adopt current and forthcoming techniques as sequencing be-
comes cheaper and as the biochemical assays needed for in
vivo and in vitro studies become mainstream.

FIGURE 1. Overview of chemical structure mapping followed by next-generation sequencing. Reagent molecules preferentially react with uncon-
strained nucleotides to modify them. Reverse transcriptase (RT) traverses the RNA and drops off upon encountering the first modification. RT
may occasionally drop off prior to the modification in what is termed natural drop off. Sequencing of the resulting cDNA fragments reveals the sites
of modification. When RT starts at a single predetermined primer binding site, one can control two parameters: average degree of modification, which
depends on reagent concentration and reaction duration, and number of sequenced fragments, which depends on choice of sequencing coverage.
Stochasticity in the composition of sequencing readouts arises from randomness in modification patterns, transcription termination events, and frag-
ment sequencing.
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RESULTS

In silico analysis of large-scale chemical mapping

We use a stochastic model of a SHAPE experiment and the
sequencing that follows it (see Fig. 1) to generate SHAPE-
Seq data in silico for RNA sequences with predetermined
SHAPE profiles. The generated data undergo analysis by a
method we previously developed (Aviran et al. 2011a), which
uses a model and adjoined maximum-likelihood estimation
(MLE) algorithm to infer the degrees of chemical modifica-
tion by the SHAPE reagent at each nucleotide. This corrects
for numerous biases, which distort the sought structural in-
formation to yield noisy and convoluted measurements of
it. See Materials and Methods for experiment, model, and
statistical inference details.

The primary outcome of data analysis is a set of point
estimates that quantify the intensities of reaction between
each nucleotide and the SHAPE reagent (see, for example,
Fig. 2A). These are called SHAPE reactivities, and they can
be used either independently or in conjunction with algo-
rithms to infer RNA structural dynamics (Low and Weeks

2010). The basis for such structural inference is strong corre-
lation between low SHAPE reactivities and nucleotide partic-
ipation in base-pairing or other tertiary structure interactions
(Vicens et al. 2007; Bindewald et al. 2011; Sükösd et al. 2013).
In this paper, however, we limit attention to evaluating stat-
istical uncertainty in reactivity estimates, with no further
quantification of its subsequent impact on uncertainty in
structure prediction. In doing so, we eliminate additional
sources of variation which these computational and/or
knowledge-based methods inevitably introduce (Eddy
2014) and can thus focus solely on understanding interex-
periment variability.
We initialized simulations with two sets of values per

RNA, determined by previous SHAPE measurements. One
set comprised normalized relative SHAPE reactivities (also
called normalized SHAPE profile), and the other comprised
the propensities of reverse transcriptase (RT) to drop off at
each nucleotide in the absence of chemical modification
(see Materials and Methods for data and experiment des-
criptions). Throughout this study, we considered these to
be the true inherent structural properties of the RNA, and
we kept them fixed. Nonetheless, while a normalized profile
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FIGURE 2. Relative standard deviations (RSD) of ML reactivity estimates computed from 100,000 SHAPE-Seq simulations at a range of hit rates. (A)
Target normalized SHAPE reactivity profile of the P546 domain of the bI3 group I intron, following omission of negligible reactivities. RSD per nu-
cleotide values are grouped for hit rates 3 and 2 (B), 2 and 1 (C), and 0.5 and 0.1 (D). Vertical scale for the low-rate plot is >5 times the scale for high-
rate plots.
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is inherent to an RNA, it is not directly measured by a SHAPE
experiment. Rather, reaction intensities are being measured,
or more precisely, for each nucleotide, one assesses the
fraction of molecules in which it is modified—a measure
that depends on a tunable reagent concentration and/or
reaction duration, which we lump together into a notion of
concentration. It is thus a parameter that modulates the reac-
tivity profile that we estimated. To simulate changes in con-
centration, we defined a hit rate parameter corresponding
to the average number of modifications (see Materials and
Methods). It captures the overall degree of modification, or
the average number of modifications per molecule, also
termed hit kinetics. Notably, for a given RNA sequence, the
rate could range from small fractions of 1 to >1, depending
primarily on the concentration. Since the relative relations
between nucleotide reactivities should remain unchanged,
we scaled the normalized profile by the hit rate to obtain a
true SHAPE profile per given modification condition (see
Materials and Methods). A second controllable feature is
the total volume of data collected, which is the number of se-
quencing reads analyzed. It is a function of a chosen sequenc-
ing coverage depth and of the amount of RNA subjected to
modification and reverse transcription. In simulations, we
modified the total number of reads that we generated for
the control and the experiment. Since each read provides ev-
idence on a single molecule’s fate, this is the effective number
of probed molecules.
Once the hit rate and reads number are set, stochasticity in

measurements arises from the molecules’ random fates, as
their reverse transcription may abort at different sites due
to differences in modification patterns and/or natural drop-
off events. The many possible events yield cDNA fragments
of varying lengths, thus contributing to variation in the
counts of cDNAs of each possible length. It is worth noting
that the likelihood that a molecule will give rise to a cDNA
fragment of a certain length remains fixed under these set-
tings, as it is fully determined by the reactivity profile and
by RT’s drop-off properties (see Materials and Methods).
In other words, the distribution of fragment lengths is fixed,
but finite samples from it display variation in fragment
counts. One can think of these theoretical samples as repre-
senting technical replicates, i.e., multiple libraries, originating
from the same RNA sample and modification experiment,
which undergo sequencing and analysis separately.
Each simulation thus entailed finite sampling from a pre-

computed fragment-length distribution. Randomness in
sample composition then propagated into variation in sam-
ple-based reactivity estimates. The complex relationship be-
tween these estimates and the observed fragment counts
rendered direct assessment of estimation precision infeasible.
It is common practice in such cases to resort to empirical as-
sessment via resampling methods, where one repeats estima-
tion multiple times from subsamples of the original data set.
In our in silico study, we evaluated the true precision (under
model assumptions) by repeating our workflow sufficiently

many times, so as to faithfully reproduce the true distribution
of the ML estimate. We utilized this approach to investigate
the robustness of measurements and analysis under different
experimental conditions.

Quantitative assessment of effects of controllable
parameters

We sought to quantify the variation in reactivity estimates
across a range of hit rates and data set sizes. Before we present
our findings, we note that the lengths of variation intervals
correlate with reactivity magnitudes, and in light of the range
of SHAPE reactivities in a typical profile, it is challenging to
visualize trends in these intervals across a profile. Instead,
we depict the relative standard deviation (RSD) per nucleo-
tide, that is, the ratio of estimated standard deviation (SD)
to the true reactivity. We also filter out very small reactivities,
as they are prone to zeroing out by our estimation method,
which results in very large RSDs. Yet, in the context of an en-
tire profile, these amount to minuscule fluctuations above
zero that do not affect data interpretation. Finally, we note
that we conducted simulations and observed similar results
for several RNA sequences, but for coherence of exposition,
in what follows we refer to a SHAPE profile of the P546
domain of the bI3 group I intron.

Effects of hit kinetics

Conducting structure mapping experiments routinely in-
volves optimizing the reagent concentration. The optimum
is often sequence- and system-specific, but a common aim
is to balance between the adverse effects of too many and
too fewmodifications (Low andWeeks 2010). This is because
in molecules that carry multiple modifications, we detect
only the one that is closest to the 3′ end (see Fig. 1). The
loss of information from the 5′ region manifests itself in sig-
nal decay, which we correct for during analysis (Aviran et al.
2011a). Yet, high hit rates intensify signal decay and ultimate-
ly expedite signal loss, thereby shortening effective probing
lengths. They might also introduce analysis-based inaccura-
cies due to substantial reliance on proper decay correction
(Karabiber et al. 2013). Lowering the rate alleviates these con-
cerns, but also decreases the signal-to-noise ratio (SNR), or
signal quality, thus impacting analysis accuracy as well. The
fact that both scenarios affect measurement precision, but
in complex and subtle ways, motivated us to quantify their ef-
fects via simulations.
Figure 2 shows RSD values computed over a range of rates

for the P546 RNA, along with its normalized SHAPE profile,
where negligible reactivities were omitted from analysis (Fig.
2A). For ease of visualization, we divide the rates into three
ranges, plotted separately in Figure 2B–D, and group the
RSDs per nucleotide per each range group. Note that for
comparison purposes, we plot the data for a hit rate of 2 in
panels B and C (green bars). Some trends are immediately
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apparent from this comparison, most notably, a comprehen-
sive increase in RSD with decreasing modification intensity,
attributed to degradation in the obtained signal quality.
One can also observe a threshold effect, where modification
becomes so sparse such that it vastly degrades the quality
(see panel D for rate 0.1 in pink).When scanning these trends
across the sequence, we also note a change in pattern near the
5′ end. Specifically, reducing the rate from 3 to 2 (blue to
green in panel B) results in decreased RSD (see sites 1–19),
as opposed to increased RSD over the remaining sites. In
other words, while increasing reagent concentration beyond
two benefits measurements in one portion of the molecule, it
trades off with the precision elsewhere. This observation cap-
tures the impact of severe signal decay on the SNR, as RT’s
drop-off process leaves very few fragments that can inform
us of modifications at the 5′ region. The practical implication
of this is that the molecule length for which high-quality data
is effective is even shorter than the length for which signal is
observed.

Nevertheless, if one aims to circumvent the signal decay
problem by resorting to very low hit rates, then the obtained
signal spans longer stretches and exhibits little decay, but it
also results in overall poor quality (e.g., see high RSDs in
the 5′ region in Fig. 2D). Importantly, when rates are low,
the counts of fragments mapping to the 5′ region may be
comparable to or sometimes even higher than their counter-
parts under higher rates, such that we indeed observe a longer
and seemingly strong signal at the (+) channel (data not
shown). But in fact, the SNR depends on the relative differ-
ences between counts at reactive versus unreactive sites, or al-
ternatively, counts in the (+) versus (−) channels, which
become negligible as fewer molecules are being modified.
While frequent users of such probes are well aware of these
tradeoffs and pitfalls, it is difficult to determine the quality
and/or effective probing length based on eye inspection
and/or acquired intuition alone.

More subtle observations from Figure 2 include inverse
correlation between a site’s normalized reactivity magnitude
and its RSD. This raises the question whether observed vari-
ations have meaningful impact on the overall quality of the
reconstructed profile or perhaps they amount to small abso-

lute perturbations. We address it by overlaying the tenth and
ninetieth percentiles of the simulated MLE distribution
on the true normalized profile, as shown in Figure 3 for select
hit rates. Note that absolute reactivities scale with the rate,
and therefore, we consider variation around a fixed nor-
malized profile. One can see from the figure that indeed,
the large RSDs translate into fairly small profile perturba-
tions, such that reactive/unreactive sites are well discrimi-
nated. It is also apparent that low reactivities cannot be
determined accurately and often are indistinguishable from
zero, but their range is also confined to strongly indicate
structural constraints.

Effects of sequencing coverage

The recent coupling of digital sequencing with structure
probing not only facilitated multiplexing and increased
throughputs, but also opened the door to more predictable
experiment design through precise control over the volume
of collected data. Previously, this was nontrivial, as CE plat-
forms generate analog signals from which relative, but not
absolute, quantities are determined. Several factors common-
ly affect the choice of sequencing volume, including platform
availability (e.g., desktop versus large-scale machines), data
processing cost, multiplexing capacity, and data quality.
Next, we elucidate the dependence of measurement precision
on the number of analyzed fragments, to shed light on trade-
offs associated with these factors and on relations with re-
agent concentration.
Figure 4A shows RSDs obtained at rates 2 and 1, after a 10-

fold reduction in the number of reads. It illustrates the same
trends as in Figure 2, but with considerably larger variations.
These are even more pronounced for rates <1 (data not
shown), and obviously, for lower read numbers. Figure 4B il-
lustrates the overall degradation in quality of reconstruction
for rates 0.5 and 0.1, with 10% of the reads. Again, effects
are exacerbated at lower depths (data not shown). While it
is expected that measurements under low hit kinetics are
more susceptible to reductions in data size, Figure 4 shows
that variation can be significant under high hit kinetics as
well, especially at the 5′ region. In such cases, collecting fewer
sequences might further shorten the effective probing length
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and may be suitable only for very short RNAs. These results
also demonstrate that one can compensate for effects of low-
hit kinetics by collecting more data. This is particularly im-
portant in multiplexed settings, since less structured RNAs
tend to be more reactive than highly structured ones, and
may thereby attract more reagent molecules. In well-con-
trolled conditions, sequencing deeper or populating the sam-
ple with more low-reactivity RNAs could bias the coverage
toward them. However, such strategies apply predominantly
to cell-free studies, where sample manipulation at the labora-
tory is common, but are irrelevant when RNAmaterial is lim-
ited or sample composition cannot be easily altered.

Analysis of transcriptome-wide mapping via random
primer extension

Length limitations inherent in detection via primer extension
are apparent from our analysis and widely appreciated. Tra-
ditionally, long molecules were probed with multiple prim-
ers, carefully designed to anneal at intermediate locations
(Wilkinson et al. 2008), a labor-intensive effort that also pre-
cludes de novo characterization. With the advent of NGS,
techniques such as RNA-Seq leveraged multiple distinct hex-
amer primers capable of random pervasive annealing to
enable transcriptome-wide (TW) studies. Alternatively, tran-
scripts are fragmented into random templates that are ligated
to adapter sequences, where primers are designed to bind.
SHAPE-Seq and similar assays which rely on single primer

extension (SPE) set the foundation to more advanced proto-
cols that detect modifications via random primer extension
(RPE) along with capabilities to probe structure in vivo
(Ding et al. 2014; Rouskin et al. 2014; Talkish et al. 2014).
Implementation and nuances differ between methods, but
here we attempt to provide the broadest assessment of
RPE-based strategies, because RPEmay be coupled to a range
of probes and is applicable in diverse conditions, and as such

it opens up many more possibilities. For example, in vivo
mapping was obtained with dimethyl sulfate (DMS), but a
SHAPE-NAI probe has similar functionality (Spitale et al.
2013), whereas other probes enhance structural characteriza-
tion at in vitro or near-in vivo conditions (Kielpinski and
Vinther 2014; Wan et al. 2014).
A useful property of RPE is that it circumvents 3′ direc-

tionality bias. Ideally, all modifications are equally amenable
to detection, as a primer could drop, for example, in between
the two modifications cartooned in Figure 1. Our SPE anal-
ysis warrants revisiting then, for balancing between too many
and too few modifications may no longer be relevant. Fur-
thermore, RPE spreads the reads (i.e., their 3′ end site) across
a molecule, thereby redistributing the amount of information
allocated per site. Intuitively, it improves signal quality near
the 5′ end at the expense of reducing it near the SPE site,
while obviating reliance on signal correction methods.
In this work, we avoid detailed SPE versus RPE compar-

isons, since we view them as geared toward distinct endeav-
ors, e.g., molecular engineering (Qi and Arkin 2014) versus
genome-scale studies (Mortimer et al. 2014), respectively.
Instead, we extended our model and analysis to capture key
additional features of RPE and TW mapping data and to
highlight new complexities and tradeoffs in design and in-
formatics. An evident new challenge is that multiplexing
is no longer easily manipulable. Biasing coverage toward se-
lect transcripts becomes nontrivial and furthermore, one
now faces natural variation in abundances ranging over sev-
eral orders of magnitude (Mortazavi et al. 2008). Conse-
quent variation in effective coverage per RNA is a clear
cause of SNR and performance differences, which, to date,
has been circumvented with low-throughput targeted ex-
periments (Kwok et al. 2013). Before discussing additional
layers of complexity, we introduce two new design parame-
ters: primer rate and fragment length range. Importantly,
priming and fragmentation are equivalent from a modeling
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perspective (see Materials and Methods), thus primer rate
stands for the average density of RT start sites within either
setting. Prior to sequencing, fragments are size-selected to
obtain a library of fragments that are within an admissible
range.

Unlike the SPE case, the analysis below ties measurement
quality to three pivotal factors, or design decisions, rather
than directly to parameters. Moreover, it reveals how entan-
gled these factors and decisions are. While a simple model
suffices to render key performance determinants, it fails
to capture additional real-world intricacies of ribonomic
big data. Thus, we complement our in silico analysis with
a qualitative discussion that elucidates finer details as well
as conveys difficulties in their comprehensive treatment by
simplistic data analysis schemes. To simplify exposition, we
discuss primarily the primer-based DMS approach in Ding
et al. (2014)—a natural extension of SPE. For the most
part, results carry over to fragment-based methods (Rouskin
et al. 2014; Talkish et al. 2014), but otherwise we specifically
address them.

(1) Ratio of hit to primer rates. To consider the ratio’s
effects, it is helpful to draw an analogy to SPE. In SPE, we es-

sentially fix the primer density at 1 per the RNA length, and
when changing hit rates we in fact modulate the ratio.
Dynamics generally carry over to RPE, with two deviations:
No stochasticity in priming location prevails in SPE; and
RT stops due to primer encounters are unique to RPE. At
this point, we note that our understanding of standard
NGS protocols, integrated into our model, is that no strand
displacement takes place at such encounters, and that RT
aborts. Yet, similar models can accommodate nonstandard
RT steps. Furthermore, our modeling assumption aligns
with fragment-based approaches, where RT drops off at a
template’s end—the analog of a priming site, thus extending
the scope of analysis.
While fragment dynamics in SPE and RPE are not identi-

cal, the ratio presents a similar tradeoff, namely, decreased
SNR due to background noise versus increased 3′ direction-
ality bias (seeMaterials andMethods for formal analysis). For
example, under small ratios, RPE features frequent consecu-
tive primers, preventing RT from reaching adducts (see Fig.
5B, inset). Primer encounters have two undesired outcomes:
(1) background noise and (2) economic inefficiency due to
high proportion of noninformative, but sequenced, cDNA
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FIGURE 5. Read distribution in RPE experiment at different ratios of hit-to-primer rates and cDNA length ranges. (A) Normalized reactivity profile
for a fictive RNA obtained by replicating the P546 SHAPE profile five times. Model-derived fractions of reads that reach each site at hit rates 0.003 (B)
and 0.05 (C,D), with primer rate fixed at 0.01 and length range upper bounded at 500 nt. Signal decay intensifies when lower size cutoff of 25 nt is
applied (D). Highlighted windows depict regions of signal decay.
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(see Fig. 5B versus Fig. 5C,D). A straightforward way to re-
duce these encounters is to sparsely modify and prime, in
which case long interprimer distances allow for significant
natural RT drop off in between primers—yet another source
of background. In fragment-based protocols, template-end
background can be discerned and removed prior to sequenc-
ing via fragment selection (Rouskin et al 2014; Talkish et al.
2014). Yet, this trades economic inefficiency with experimen-
tal one, as the fraction of informative, modification-based,
fragments remains small. As we discuss below, when biolog-
ical material is limited, both remedies might be infeasible.
High hit-to-primer rate ratios, in contrast, give rise to fre-
quent consecutive adducts with no intermediary primer—
a source of signal decay and information loss when reactivi-
ties are not uniform (see Fig. 5C, in particular highlighted
regions).
The analogy to SPE aims to recapitulate our previous

points that avoiding signal decay and thereby reliance on
nontrivial data correction does not necessarily translate
into better-quality data, and that quantitative evaluation of
design choices and informatics pipelines is beneficial. Nota-
bly, resemblance to SPE dynamics increases once high-pass
cDNA filtering is introduced via lower size cutoff, as it im-
poses a fixed blind window downstream from each modifica-
tion, which intensifies signal decay (see Fig. 5D, highlighted
regions). For example, highly reactive sites located down-
stream from a modification and within this window fre-
quently display modifications that “shadow” it (see Fig. 5D,
inset). As we increase the hit rate, the more severe this direc-
tionality bias is. For a window size w, we can think of it as
similar to positioning a primer w nucleotides downstream,
which means the decay spans a window’s size and can be dif-
ficult to spot for short windows. Other effects of fragment fil-
tering are discussed next.
(2) Fragment lower-size cutoff. Size-selection throws away

potentially valuable information. While normally undesired,
it is common practice when data entail complexities or am-
biguities which are nontrivial to resolve. Mining information
from NGS readouts has been an ongoing challenge in TW
studies, mainly because read lengths are such that alignment
to multiple genomic locations is common (Trapnell et al.
2010). Despite consistent increases in read lengths, the gen-
eration of short cDNAs is inherent to existing mapping
methods, and is even more pervasive in experiment than in
control. Ambiguous cDNA alignments then give rise to un-
certainty with respect to a cDNA’s true origin, translating
into noisy hit counts per site.
A straightforward remedy is to discard all ambiguously

aligned reads, but that decreases total counts, or signal
strength, and might leave some regions unmapped. One
may also increase the size cutoff point as a means to reduce
uncertainty in counts, but that too leaves us with less usable
information. Either measure reduces both noise and signal
power, making the composite effect on SNR difficult to pre-
dict. Furthermore, the extent of ambiguity in alignments is

system- and reference-dependent. For example, transcrip-
tomes often consist of multiple gene isoforms with substan-
tial sequence overlap, that are absent from the matching
genome reference. Isoform-level studies are then more prone
to this issue than gene-level ones. At the same time, the extent
of ambiguity is design-dependent, as it is tightly linked to
the shape of the cDNA length distribution. When cDNAs
are relatively short, larger fractions of them trigger uncertain-
ty in comparison to data sets comprising of longer fragments.
Length distributions largely depend on the sum of the hit and
primer rates, which sets the interprimer/adduct distances
(see Materials and Methods for detail). Sparse dynamics
would then be more robust to this issue, but as we discuss
next, they pose other critical challenges.
(3) Sum of hit and primer rates. The total frequency of

priming and modification events determines key features of
the cDNA length distribution, e.g., its mean and variance.
As mentioned, one can circumvent some confounding issues
by targeting low hit and primer rates (i.e., sparse dynamics).
Sparse dynamics yield fewer reads per molecule—a problem-
atic outcome when biological material is limited to a degree
that a “sequence deeper” brute force solution is infeasible.
Taking the wide variation in RNA abundances into consider-
ation, design also greatly depends on the transcripts of
interest.
Material limitations are analogous to limiting coverage per

transcript. To get a sense of current capabilities and associ-
ated data quality, we revisit our SPE analysis with coverage
anticipated based on recent work. For example, extended
Figure 2 in Ding et al. (2014) shows maximal coverage close
to 100 reads on average per site, obtained for a minute frac-
tion of the RNAs from libraries of tens of millions of reads.
For the P546 RNA, this amounts to an order of total 104

reads, whereas Figure 4 depicts an order of magnitude deeper
coverage (4 × 105). If we allocate an average of 100 reads to a
transcript of length 775 nt (profile shown in Fig. 5) and set hit
and primer rates to 0.003 per site, our model predicts
variation as shown in Figure 6, where lower rates or coverage
display further degradation (data not shown). Critically, re-
ported coverage-per-transcript ranges over five orders of
magnitude, with merely a quarter of them featuring at least
one read per site on average, yielding about 102 or more reads
in the P546 example. Unfortunately, the need for deep cover-
age has not been assessed quantitatively, albeit highlighted
qualitatively in Talkish et al. (2014). Notably, crude prelimi-
nary assessment does not require sophisticated models.
Instead, one can bootstrap the data for preliminary quality
measures, for example, by using the NGS-based approach in-
troduced in Aviran et al. (2011a). Yet, prior in silico design is
still useful. For example, we showed that the read-per-mole-
cule yield also depends on the size cutoff, with sparse dynam-
ics affording higher fractions of retained fragments, thus
linking this factor to another design choice.
Key principles of judicious design are well-captured by our

model, but numerous other confounding factors are beyond
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its scope, some unique to structure mapping and others
widely prevalent in functional genomics NGS assays. Inter-
estingly, our experience is that some issues can be addressed
by model-based statistical approaches, which typically treat
most reads as valuable information and include them in anal-
ysis (Trapnell et al. 2010; Roberts et al. 2011). In what fol-
lows, we touch briefly upon factors we have become aware
of while working in this field.

(1) Nonuniform priming. Analysis of RNA-Seq data reveals
systematic biases in cDNA generation, attributed to hexamer
binding or fragmentation (Roberts et al. 2011). These biases
introduce local signal amplitude changes, which might alter
the relativity among inferred reactivities. Distortion may be
more pronounced when a narrow range of fragment sizes is
selected (e.g., 25–45-nt fragments in Rouskin et al. 2014),
in which case the information per site originates from a short
stretch of RT start sites. In other words, a narrow range local-
izes a perturbation’s effect whereas a wide range smoothens it
out. Note, in passing, that some published analyses alleviate
these discrepancies by comparing normalized counts be-
tween control and experiment, with normalization account-
ing for transcript abundance and possibly length (Ding
et al. 2014; Talkish et al. 2014). Local count normalization
over 50–200-nt windows is carried out in Rouskin et al.
(2014) to remedy fragmentation-specific artifacts at the 3′

end. Such heuristic could have somewhat compensated for
nonuniformity, if normalization had spanned a similar win-
dow size (i.e., 45–25 = 20 nt). Instead, boosted fragmentation
at a site would result in attenuation of all reactivities in a win-
dow of, say, 200 nt, whereas counts are effectively enriched
within 25–45-nt upstream of that site. This not only leaves lo-
cal perturbations in place, but also generates further imbal-
ance in relativity in between normalization windows.

(2) Multiple alignments and transcript abundances. Sta-
tistical uncertainty due to multiple alignments is intricately
related to another confounding factor—unknown RNA
abundances. Knowledge of relative abundances often implies
that certain alignments are more probable than others, and
this way, it can inform alignments, counts, and reactivities.
For example, a subset of reads mapping to two isoforms
would be split differently if the isoforms are equally or differ-
entially expressed. In RNA-Seq, statistical methods resolve

such ambiguities jointly with quantification of abundances,
read error rates, and biases (Roberts et al. 2011), but one
must keep in mind that mapping assays introduce additional
complexity in the form of unknown reactivities.
(3) Fragment upper size cutoff and ambiguous RT stops. A

useful property of RPE is that no sequence information is
needed a priori. But there is also no notion of full-length
RNA template with well-defined ends, which makes it im-
possible to discern by sequencing alone between fragments
arising from modification and those resulting from RT
runs through template ends or bound primers. Current frag-
ment-based methods (Rouskin et al. 2014; Talkish et al.
2014) approach this ambiguity experimentally by filtering
all fragments of the latter type. From an informatics stand-
point, Rouskin et al.’s approach is more brute force, as it dis-
cards more than just full-template copies, but nonetheless,
both protocols throw away potentially valuable informa-
tion. For example, if signal decay prevails, its correction relies
on the number of successful elongations past a site (see
Equation 4 in Materials and Methods), a quantity whose
recovery may suffer bias due to missing information. It is
interesting to note that this issue becomes negligible under
sufficiently sparse conditions, because RT’s imperfect proces-
sivity limits achievable cDNA lengths and chances to run
through template ends or primers. This appears to be the
case in Ding et al. (2014), although their approach may po-
tentially account for primer encounters under different con-
ditions through integration of (+) and (−) data into the
reactivity estimates.
(4) Protein–RNA interactions. A fundamental difference

between in vitro and in vivo probing is the absence/presence
of protein–RNA interactions (PRI), many of which are yet to
be revealed. PRI can trigger structural rearrangements, and
indeed, recent studies reveal global measurement differences
between conditions (Kwok et al. 2013; Rouskin et al. 2014).
Yet, observed changes may also be attributed to protein pro-
tection from modification by way of solvent inaccessibility
(Kwok et al. 2013), yielding low reactivities. PRI thus give
rise to ambiguity, as one cannot readily discern between
structurally constrained regions and protein-bound ones
from weak signal alone. This has been a long-standing chal-
lenge, but with recent breakthroughs and anticipated wealth
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FIGURE 6. Variation in reactivities reconstructed by the scheme in Ding et al. (2014) and computed from 100,000 RPE simulations of 77.5 × 103

reads. Box boundaries mark tenth and ninetieth percentiles of the empirical distribution; plus signs mark target normalized SHAPE reactivities in
the fictive 775 nt-long RNA depicted in Figure 5. Hit and primer rates are 0.003 per site, and shown is a middle window of reactivities to circumvent
end-effects.
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of data, it becomes a critical barrier and possibly a primary
bottleneck to accurate interpretation of in vivo data and their
power to improve structure prediction. Clearly, this is unique
to these emerging techniques, and more so, increasing the
information content of these probes via statistics or deeper
coverage does not seem plausible. We anticipate that progress
will be achieved through integration and joint analysis of
complementary assays.
(5) Background noise. A (−) channel controls for RT’s im-

perfect processivity, which generally features nonuniform,
possibly structure-dependent, rates, with occasional spikes.
Given the nonwhite nature of this noise, it is standard prac-
tice to integrate it at nucleotide resolution into SPE analysis.
In RPE, this is also warranted and obtained in Ding et al.
(2014) and Talkish et al. (2014) through comparisons of
(−) and (+) readouts. There are several points one should
keep in mind when integrating background. First, its magni-
tude depends on experimental conditions, which can be
probe-dependent (e.g., DMS versus SHAPE), as well as on
fragment lengths. Second, it is important to retain the same
RNA structure in (−) and (+). This is problematic when ran-
domly fragmenting, as each fragment adopts its own struc-
ture prior to the RT step. Since short fragments are quicker
to denature when heated, they are advantageous for noise re-
duction (Rouskin et al. 2014). Third, when signal decay pre-
vails, it is also present in the (−) channel, albeit more
moderately (Aviran et al. 2011a). Decay can then become sig-
nificant upstream of spikes or of sites with high noise levels.
(6) Missing information near transcript ends. Coverage

levels decline gradually toward the 3′ end due to shortening
of regions accessible for hexamer priming. The longer the
cDNA fragments are (on average), the more pervasive the as-
sociated SNR degradation is, rendering sparse conditions less
ideal for short transcript studies. Near the 5′ end, informa-
tion is lost when attempting to discriminate between frag-
mentation and modification by way of two size-selection
rounds (Rouskin et al. 2014), leaving an unmapped stretch
matching the length gap between rounds.
(7) Comparative analysis. Our SPE analysis illustrates the

role of profile normalization in facilitating comparisons.
Commonly used normalization schemes bridge varying sig-
nal intensities (Low and Weeks 2010) and may successfully
accommodate variation in coverage-per-transcript. However,
we anticipate unprecedented diversity of structural profiles,
encompassing a range of lengths, probes, and conditions,
which would require thoughtful comparisons. A comprehen-
sive framework is currently lacking, along with standardiza-
tion of analysis routines, such that the entire process of
analysis followed by normalization is meaningful.

Software availability

The computational tools developed for this study are
freely available at http://www.bme.ucdavis.edu/aviranlab/
sms_software/.

DISCUSSION

We presented novel informatics methodology for assessing
the precision and reproducibility of measurements obtained
from an emerging class of assays that leverage NGS to dra-
matically enhance the throughput, scope, and efficiency of
structural RNA studies. From a data analysis standpoint,
NGS is also transformative by virtue of delivering digital
readouts, as compared with previous readout of analog dye
intensities. This new wealth of digital information provides
opportunities to improve experiment design and reproduc-
ibility. In the case of structure mapping assays, we can now
determine the number of collected reads and directly link it
to measured quantities via computer simulations. Yet, mea-
surements suffer from complex dependencies on reagent
concentrations and on fragment size selection. Integration
of mathematical models into simulations allows linkage of
these experimental parameters to measurements as well as
automation of data analysis (Aviran et al. 2011a). These
new capabilities motivated us to use model-based simula-
tions to elucidate effects of controllable parameters on data
quality.
While our work provides platform and conceptual frame-

work for quantitative evaluation of these effects, its main
contribution is in rendering the complexity of input–output
relationships. Furthermore, our results highlight the diffi-
culty in accurately determining them by intuition or visual
data inspection. In SPE setting, we showed that factors such
as reactivity magnitude and probing length modulate the
SNR, and that the gradual quality degradation trend as hit
rates decrease may reverse at some point. However, such
events are case-specific and may not be readily detected.
Similarly, it is difficult to infer an effective probing length
for obtaining high-quality data through observation of a
signal’s strength. The advent of RPE shifts the scale of exper-
iments and introduces additional parameters and confound-
ing factors, bringing complexities to levels that warrant
dedicated big data infrastructure for computer-aided design.
Finally, one must keep in mind that tradeoffs are RNA-spe-
cific, and in and of itself, this justifies careful evaluation.
The workflow we developed is useful for this purpose and
will aid new users of these transformative technologies in
gaining the intuition required for experiment design.
At the core of our work is a model of SHAPE-Seq and sim-

ilar chemistries. While modeling is what facilitates such
study, it may also constrain its applicability as long as a model
has not been thoroughly validated. In modeling SHAPE, we
made two assumptions: (1) site-wise independence of mea-
sured features and (2) Poisson reaction dynamics. While
the latter is standard in modeling biochemical or low-inci-
dence reactions (Aviran et al. 2011b), the former is not yet
fully established, likely because these methods gained popu-
larity only recently. We thus anticipate that ongoing data col-
lection will trigger much needed data-driven modeling (see,
e.g., Bindewald et al. 2011; Sükösd et al. 2013), which we
can then reiterate to refine the model and improve its
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predictive power. There is also need to assess the degree of
other noise and bias sources, for example, those incurred in
NGS library preparation, although progress is being made
in overcoming these issues (Jayaprakash et al. 2011; Shirogu-
chi et al. 2012; Ding et al. 2014). With the emergence of TW
assays, additional modeling questions arise: (1) Does cDNA
synthesis proceed through encounters with primers via
strand displacement or does RT abort? and (2) Does modifi-
cation interfere with primer binding by preclusion or biasing?
Answers may be protocol-dependent (e.g., the choice of RT
and reagent) and would alter the model and data properties,
particularly the differences between the distributions in con-
trol and experiment, fromwhich reactivities are derived (data
not shown). A more overarching question concerns the new
capacity for in vivo studies—do bound proteins interfere
with the probing chemistry, for example, by protecting sites
from modification (Kwok et al. 2013)? If yes, then how do
they alter a structural signature and how can a model account
for that? Nevertheless, we emphasize that the conceptual
analysis framework we presented is generic in that it is not
tied to any protocol and can be readily adapted to other ex-
perimental choices.

The field of nucleic acid structure probing is rapidly evolv-
ing, with the maturation of recent techniques and the emer-
gence of more complex ones that enhance scope to in vivo
and TW studies. We believe that these advances should be
accompanied by matching progress and refinement in infor-
matics infrastructure, to aid in accelerating their optimization
and adoption by the research community and to improve
their robustness and fidelity. Alternatively, clever new ex-
periments may resolve numerous issues, with the recent
SHAPE-MaP (Siegfried et al. 2014) establishing exciting pro-
gress in this direction. In SHAPE-MaP, modified sites are en-
coded by incorporation of noncomplementary nucleotides
in cDNA synthesis, where detection by sequencing amounts
to careful and elaborate alignment and mismatch identifica-
tion. Two additional libraries are needed to control for back-
ground and for sequence context effects on adduct detection
likelihood. This new experimental paradigm eliminates the
directionality inherent in the reviewed methods, thus vastly
simplifying analysis by reducing it to site-by-site inference.
This in turn eliminates some key issues we discussed, in par-
ticular those involving the relationship between priming
and modification dynamics. SHAPE-MaP signal appears to
exhibit dependencies on the hit rate, RT mutation rates (nat-
ural and adduct-induced), sequencing errors (which are plat-
form-specific), alignment and read selection strategies, and
coverage. Some of these dependencies may not be trivial,
and it could be valuable to use our conceptual framework
to gain more insight into this promising technique. Further-
more, the simplification of data analysis suggests that in-
house in silico optimization of such experiments may be
readily feasible for experimentalists.

The anticipated stream of ribonomic big data also high-
lights the importance of data-informed computational

structure analysis, and indeed, much recent progress has
been made in this domain (see, e.g., Deigan et al. 2008;
Quarrier et al. 2010; Ding et al. 2012; Hajdin et al. 2013;
Eddy 2014). It is of interest to quantify effects of data varia-
tion on structure prediction, for example, by concatenating
such algorithms to our workflow, and further identifying
which ones are more robust with respect to technical data
variation.

MATERIALS AND METHODS

Model of SHAPE/DMS chemistry

Since the principles of SHAPE, DMS, and other chemistries are sim-
ilar from a modeling perspective (Weeks 2010), a SHAPE model is
representative of several techniques. We consider an RNA sequence
whose nucleotides (or sites) are numbered 1–n by their distance
from the 3′ end, where a cDNA primer binds to initiate its extension
by RT. In the (+) channel of a SHAPE experiment, the RNA is treat-
ed with an electrophile that reacts with conformationally flexible
nucleotides to form 2′-O-adducts (see Fig. 1). Each molecule may
be exposed to varying numbers of electrophile molecules, where
each exposure may result in a site’s modification (i.e., adduct forma-
tion). We model the number of times an RNA molecule reacts
with electrophile molecules as a Poisson process of unknown hit
rate c > 0, that is,

Prob(imodifications) = cie−c

i!
.

The site of adduct formation is determined by a probability dis-
tribution, denotedΘ = (θ1,…,θn). One can think of this formulation
as expressing a competition between n sites over an electrophile
molecule, where θk is site k’s relative attraction power. We call Θ
the normalized relative SHAPE reactivity profile, or in short, nor-
malized profile, and we use it as a baseline for comparison of mea-
surements taken across varying experimental conditions.

In our model, the number of modifications at site k is also
Poisson-distributed, with hit rate rk = cθk≥ 0, i.e., we have

Prob(imodifications at site k) = (cuk)ie−cuk

i!
= rike

−rk

i!
.

We therefore also consider the SHAPE reactivity profile R = (r1,
…, rn), which we estimate from sequencing data. R is a scaled ver-
sion of the normalized profile Θ (R = cΘ), hence the rk’s do not
form a probability distribution but rather sum to the hit rate
c = ∑n

k=1 rk. Scaling by c implies that R lumps the modification
intensity, or hit kinetics, into it while Θ is invariant to c. In practice,
this means that changes in reagent concentration modulate R
but not Θ, motivating us to use Θ for comparisons across modi-
fication conditions. In a control experiment, called (−) channel,
the primary source of sequencing data is RT’s imperfect proces-
sivity, resulting in its dropping off during transcription, potentially
at varying rates across the molecule. We define the drop-off
propensity at site k, γk, to be the conditional probability that
transcription terminates at site k, given that RT has reached this
site. The parameters Γ = (γ1,…,γn), 0≤ γk≤ 1 ∀k, characterize
RT’s natural drop off and are unknown and thus estimated jointly
with R from data.
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Statistical inference for SHAPE-Seq data

The products of the (+) and (−) channels are cDNA fragments of
varying lengths, whose one end maps to the priming site at the
3′ end (see Fig. 1). We call a fragment of length k, mapping to sites
0 to k− 1, a k-fragment (1≤ k≤ n + 1). When quantifying frag-
ments via NGS, we summarize the data by k-fragment counts, where
(X1,…, Xn+1) and (Y1,…, Yn+1) are counts from the (+) and (−)
channels, respectively. In previous work (Aviran et al. 2011a,b),
we used this model to derive probabilities of observing each poten-
tial outcome as functions of R and Γ:

Prob(k-fragment in (+) channel)

= [1− (1− gk)e−rk ]e
−
∑k−1

i=1

ri ∏k−1

i=1

(1− gi), (1)

Prob(k-fragment in (−) channel) = gk
∏k−1

i=1

(1− gi), (2)

(1≤ k≤ n + 1), where we set γn+1 = 1 and rn+1=∞. We used Equa-
tions 1 and 2 to formulate the likelihood of observing the data,
which we maximized to find the R and Γ values that best explain
them. This approach, known as maximum-likelihood estimation
(MLE), provides reactivity estimates:

r∗k = max 0, log 1− Yk∑n+1

i=k
Yi

⎛
⎝

⎞
⎠− log 1− Xk∑n+1

i=k Xi

( )⎧⎨
⎩

⎫⎬
⎭. (3)

We further showed in Aviran et al. (2011a) that these are often
well approximated by

r∗k ≈ max 0,
Xk∑n+1
i=k Xi

− Yk∑n+1
i=k Yi

{ }
, (4)

where a correction factor accounts for all RT termination events ob-
served at or upstream of site k (recall that sites are numbered from
3′ to 5′, to reflect fragment lengths). Equation 4 is more intuitive
and also applies to capillary-based signal correction (Aviran et al.
2011b), as recently implemented in analysis platforms (Karabiber
et al. 2013).

Models of random primer extension (RPE)

RPE diversifies the data, introducing variable start sites, i.e., a ( j,k)-
fragment now maps to sites j to k—1 in the RNA, with varying j and
k. We introduce n parameters,Δ = (δ1,…,δn), 0≤ δk≤ 1, which cap-
ture priming or cleavage affinities. The expressions below pertain to
random priming, but with slight adaptation they would model frag-
mentation. Here, δj is the probability that a hexamer binds sites j to
j + 5. Three factors trigger RT stops: natural drop off, modification,
or bound primer upstream of j + 5. In the (−) channel, only two fac-
tors take effect, yielding

M1 = Prob(( j, k)-fragment from primer)

= djdk
∏k−1

i=j+6

(1− di)(1− gi)

and

M2 = Prob(( j, k)-fragment from natural dropoff )

= dj(1− dk)gk
∏k−1

i=j+6

(1− di)(1− gi),

where Prob(( j,k)-fragment in (−) channel) =M1 +M2. This is the
probability of priming at j, not priming or dropping off anywhere
between j + 6 and k− 1, and dropping off at k either naturally or
due to a primer.
In the (+) channel, experimental considerations affect the model

since modification takes place prior to hexamer binding and may
or may not preclude it, or it may merely bias it. This is not yet
well understood and may be probe-dependent. DMS, for example,
interferes with the Watson–Crick base-pairing face of adenines
and cytosines, whereas SHAPE targets the backbone. Relevance
to fragmentation is also unclear since cleavage occurs between nu-
cleotides. Furthermore, hydroxyl radical probes of solvent accessi-
bility and tertiary structure do not face this issue as they substitute
modification for cleavage (Kielpinski and Vinther 2014), but they
naturally fit in our analysis framework. For these reasons, simulation
results reflect an assumption that modifications do not impede
binding, but we developed and implemented in software a model
describing mutually exclusive events. The chances of events are as
follows:

P1 = Prob((j, k)-fragment from primer)

= djdk
∏k−1

i=j+6

(1− di)(1− gi)(1− bi),

P2 = Prob((j, k)-fragment fromnatural dropoff)

= dj(1− dk)gk(1− bk)
∏k−1

i=j+6

(1− di)(1− gi)(1− bi),

P3 = Prob((j, k)-fragment frommodification)

= djbk

∏k−1

i=j+6

(1− di)(1− gi)(1− bi),

and Prob(( j,k)-fragment in (+) channel) = P1 + P2 + P3. Addition-
ally, our software implements a reactivity reconstruction scheme
described in Ding et al. (2014). Fragment-length range defaults to
25–500 nt.
Poisson-based dynamics. It is helpful to simplify analysis by mod-

eling modification and priming as two independent Poisson pro-
cesses, with rates λ1 and λ2 per nucleotide, respectively. Note that
this imposes equal rates per site, that is, uniform priming and equal
reactivities. Since Poisson-based waiting times are memoryless,
given an adduct at site k, the chances that the next event will be
an adduct or a primer are λ1/(λ1 + λ2), λ2/(λ1 + λ2), respectively;
hence, dynamics are governed by λ1/λ2. A more realistic model al-
lows varying rates per nucleotide, as modeled for SPE, thus breaking
the symmetry among sites. This means that some sites are mod-
ified more frequently than others, and that low-reactivity sites are
more likely to “see” a shadowing adduct downstream than highly re-
active ones.
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SHAPE data

To render simulations realistic, we used available SHAPE profiles,
which we normalized and set as the true structural signatures to
be fixed throughout simulations. For SPE, we focused on short
RNAs, since RT’s imperfect processivity results in loss of signal typ-
ically within a few hundreds of nucleotides, an effect that is expedit-
ed in high hit kinetics. For illustration purposes, we chose the 155-nt
long P546 domain of the bI3 group I intron, quantified via SHAPE-
CE (Deigan et al. 2008). It has an attractive property that it is
well-balanced such that reactivities of various magnitudes are spread
fairly evenly. Our simulations also rely on quantified RT natural
drop-off likelihoods, and despite being determined during analysis,
these auxiliary measures are not typically reported along with the
reactivities. We therefore fixed γk’s to be within 0.005–0.01, an av-
erage drop-off probability range we calculated from SHAPE-Seq
data (Mortimer et al. 2012). These values also align with SHAPE-
CE estimates (Wilkinson et al. 2008). For RPE, we considered very
long transcripts in order to faithfully emulate sparse reaction dy-
namics and realistic mRNA lengths and also to avoid end effects.
We mimicked a long transcript through concatenation of multiple
copies of a characterized short RNA.

Empirical MLE distribution

We empirically assessed the distribution of estimates per site
by drawing N = 105 independent samples (with replacement) of
4 × 106 reads from the distributions in Equations 1–2 and run-
ning them through MLE. The large sample size was chosen to
ensure that the sample variance, s2 = 1/(N − 1)∑N

i=1 (Q̂i −Q)2,
Q = 1/N

∑N
i=1 Q̂i, which we treat as if it were the true variance,

would be narrowly distributed around the true value. Since each

Binomial k-fragment distribution is nearly Gaussian for large read

numbers, we first adjusted N such that SD(s2k)/mk =
�����������
2/(N − 1)√

s2
k/mk is negligible at all sites, where μk and s

2
k are the mean and var-

iance of the Gaussian approximation at k. However, the distribution

of estimates is not necessarily Gaussian, in which case the above cal-

culation may not apply. To remedy a situation where the RSD is

higher than that under the Gaussian assumption, we increased N

by an additional two orders of magnitude, to obtain N = 105.
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