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Abstract

DNA exonucleases, enzymes that hydrolyze phosphodiester bonds in DNA from a free end, play 

important cellular roles in DNA repair, genetic recombination and mutation avoidance in all 

organisms. This article reviews the structure, biochemistry and biological functions of the 17 

exonucleases currently identified in the bacterium Escherichia coli. These include the 

exonucleases associated with DNA polymerases I (polA), II (polB) and III (dnaQ/mutD), 

Exonucleases I (xonA/sbcB), III (xthA), IV, VII (xseAB), IX (xni/xgdG) and X (exoX), the 

RecBCD, RecJ, and RecE exonucleases, SbcCD endo/exonuclease, the DNA exonuclease 

activities of RNase T (rnt) and Endonuclease IV (nfo) and TatD. These enzymes are diverse in 

terms of substrate specificity and biochemical properties and have specialized biological roles. 

Most of these enzymes fall into structural families with characteristic sequence motifs, and 

members of many of these families can be found in all domains of life.
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INTRODUCTION TO DNA EXONUCLEASES

Nucleases are enzymes that hydrolyze phosphodiester bonds of nucleic acids. Early in the 

classification of nuclease activity, a distinction was made whether such enzymes cleaved 

internally in the chain (“endonucleases”) or from the end in a step-wise manner 

(“exonucleases”), borrowing a system analogous to that for proteases. In practice, a nuclease 

can be tested for its requirement for an end by comparing linear vs. circular DNA substrates, 

with exonucleases cleaving the former but not the latter. This classification has been 

complicated by the fact that certain nucleases require an end to initiate degradation, but 

cleave DNA internally to yield oligonucleotide products. By the practical definition, these 

are exonucleases; formally, they are endonucleases—the field has used the term “endo/

exonucleases” to refer to this class of nucleases. Some endonucleases that will cleave 

circular DNA also possess intrinsic exonuclease activity, hydrolyzing linear substrates in a 

stepwise fashion (for example Exonuclease III/Endonuclease II and Endonuclease IV) and 

are therefore both true exonucleases and true endonucleases.
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This article will focus on DNA exonucleases from E. coli, including the endo/exonucleases, 

and their roles in DNA metabolism. For information about endonucleases and their 

activities, the reader is directed to the articles on DNA repair. Prior to the discussion of the 

biochemistry, structure and function individual E. coli exonucleases, I will introduce some 

concepts and terminology regarding the discovery and classification of exonucleases from E. 

coli.

Discovery of Exonucleases

In the current literature, there are 17 exonucleases identified in E. coli (Table 1). These 

exonucleases were discovered by several means. Beginning in the early 1960s, efforts were 

made to purify exonuclease activities biochemically and to categorize their properties. As 

the nucleases were discovered, they were identified by numbers (Exonuclease I, II etc.). The 

genes corresponding to these were, in some cases, found by reverse genetics and named 

corresponding to the activity name (xon for exonuclease one, xth for exonuclease three, etc.). 

Some of these nuclease activities are associated with subunits of DNA polymerases: for 

example, Exonuclease II is the 3′ to 5′ proofreading activity of DNA polymerase I (the 

product of the polA gene); Exonuclease VI is associated with the 5′ to 3′ exonuclease of the 

same enzyme. Other activities were initially identified for their genetic function as in 

specific biological pathways and later discovered to be exonucleases. These are often named 

for the phenotypic properties they affect, for example the RecBCD and RecJ nuclease, 

involved in recombination, and SbcB and SbcCD nuclease, playing antirecombinational 

roles, named for “suppressor of RecBCD. In the post-genomic era, a number of nuclease 

activities have been identified from predictions based on sequence similarity to known 

exonucleases (Exonucleases IX and X).

Biochemical properties of exonucleases

Exonucleases can be further distinguished by substrate specificity, reaction products and 

other enzymatic properties. Some enzymes show strong specificity; others are more 

ambivalent. Most of the exonucleases that degrade DNA will not degrade RNA, although 

there are examples of enzymes with dual specificity (e. g. RNase T found later to have 

robust DNase activity). Many double-strand DNA (dsDNA) specific exonucleases will only 

degrade one of the two strands of the duplex and therefore show a distinct polarity of 

degradation (3′ to 5′ or 5′ to 3′). Most single-strand DNA (ssDNA) specific-exonucleases 

also exhibit polarity of digestion. Some dsDNA exonucleases require 5′ phosphates; others 

will degrade molecules with 5′ OH ends.

Exonucleases are classified by the products of the reaction (mononucleotides vs. 

oligonucleotides) and whether released products contain 5′ or 3′ phosphate residues. Some 

exonucleases will bind substrate and execute a series of hydrolysis events before 

dissociation; this is termed “processivity”, which can be quantified by substrate competition 

experiments that assay how many nucleotides are released per a single binding event. 

Processivity in the many thousands of nucleotides is not uncommon. On the other hand, 

other exonucleases are “distributive” and release only a single nucleotide for each binding.
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Structural families and exonuclease mechanism

In their function as hydrolases, exonucleases bind metal cation cofactors that assist catalysis. 

Most E. coli enzymes employ Mg2+ in this role. These metal ions are coordinated by 

conserved aspartate, glutamate or histidine residues that define certain structural families of 

evolutionarily related enzymes. Most of these families can be found in all three domains of 

life, archaea, eubacteria and eukaryotes. Except for the metal-binding, architectural residues, 

the overall sequence conservation among nucleases in these families is weak. Although it is 

possible to assign an unknown function to a structural family by iterative sequence searches, 

note that this is not predictive of substrate specificity or other enzymatic properties, nor even 

of nuclease activity. Indeed, as is described below, nuclease superfamilies include non-

nuclease members such as phosphatases.

The largest structural family, with 8 members in E. coli, are the 3′ to 5′ exonucleases in the 

DEDD family, named for conserved aspartate and glutamate residues in the active site; this 

family has also been termed the DnaQ superfamily (134) (Figure 1A). This family is highly 

diverged and found in all domains of life, with little sequence conservation except the metal 

binding sites. In this family within E. coli and Salmonella are the proofreading exonuclease 

activity of DNA polymerase III, encoded by the DnaQ, epsilon subunit, and the exonuclease 

domain of DNA polymerases I and II. Exonuclease I, X and RNase T are likewise in this 

family, as is RNase D and oligoribonuclease (ORN).

The 3′ exonuclease domain of DNA polymerase I was one of the first DNA exonuclease 

structures determined by X-ray crystallography. The exonuclease site was surprisingly 

distant from the polymerase site and appeared to interact with single-strand DNA. Two 

metal cations were revealed in the active site (14, 15), establishing a new paradigm for 

phosphodiester bond hydrolysis. One metal was deduced to promote formation of the 

attacking hydroxide ion that will hydrolyze the phosphodiester bond; the other stabilizes the 

pentacoordinated transition state and/or oxyanion leaving-group. The amino acid residues 

interacting with the two metal ions are those seen conserved in this family, which serve to 

establish the architecture of the attacking water molecule, single-strand DNA substrate and 

metal ions.

Although the primary sequences of this family are highly diverged, their overall topologies 

and structures are quite similar (Figure 1B). There are X-ray crystallographic structures for 

DnaQ (103), ExoI (22), RNase T (292), RNase D (291) ORN (39), Polymerases I (14, 15) 

and II (Brunzell, PDB ID1q8i, unpublished). The common structural feature can be 

incorporated in a variety of quaternary arrangements: this group includes monomeric 

proteins (ExoI, RNaseD, the Pol I, Pol II exonucleases), homodimers (RNase T, ORN, 

ExoX) as well as members of larger complexes (DnaQ).

A second superfamily of nucleases includes two of E. coli’s exonucleases (RecB of the 

RecBCD nuclease and Exonuclease VIII) in addition to bacteriophage lambda exonuclease, 

Mrr-like restriction endonucleases and the archaeal Holliday junction resolvase from 

Pyrococcus furiosus. Note that this group includes true endonucleases, true exonucleases 

and endo/exonucleases as well as structure-specific enzymes. This family is defined by three 

motifs, with conserved glutamate and aspartate residues, defining the “endonuclease fold” 
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(10). This fold is also found in defunct, inactive nucleases such as RecC, where it may play 

a structural role (210).

A number of exonucleases share structure with phosphatases and comprise a larger family of 

phosphoesterases. This includes RecJ, a member of the DHH family (for a conserved motif 

in the protein). The DHH family, which includes the polyphosphatase PPX1, is found in all 

three domains of life (9, 204, 239). This group particularly expanded in the archaeal species, 

which harbor multiple members, including Methanococcus jannashii with six DHH family 

members and Archaeoglobus fulgidus with seven. Likewise, SbcCD, a coiled coil protein 

with endonuclease and exonuclease activity is related to a family of repair enzymes such as 

the eukaryotic Rad50/Mre11 and T4 bacteriophage gp46/47. SbcD, the nuclease subunit, 

shares conserved residues (DXH-(25)-GDXXD-(-25)-GNHD) with a family of serine/

threonine phosphatases, including lambda phosphatase (226, 284). In both nucleases and 

phosphatases, the conserved motifs of these phosphoesterases define metal binding sites 

involved in catalysis or substrate binding.

Biological role of exonucleases

Exonucleases play key cellular roles in mutation avoidance and genome stability, DNA 

repair and recombination, which will be discussed as each exonuclease is introduced below. 

Although no two exonucleases in E. coli are exactly alike in their properties, the biological 

roles of exonucleases are often obscured by functional redundancy. This is especially a 

problem with the single-strand DNA-specific exonucleases, with some phenotypes not 

apparent until four members are knocked out.

E. COLI EXONUCLEASES: PROPERTIES, STRUCTURE AND FUNCTION

The proofreading exonucleases associated with DNA polymerases I, II and III

Three of E. coli DNA polymerases have associated 3′ to 5′ exonuclease activities. In DNA 

polymerases I and II, the exonuclease activity resides on a domain within the polymerase 

subunit; in DNA Polymerase III, the exonuclease is encoded by a separate subunit, epsilon, 

the product of the dnaQ (mutD) gene. These associated 3′ to 5′ activities increase the fidelity 

of DNA synthesis (reviewed in (137)).

DNA polymerase III (Pol III) performs the bulk of DNA replication of E. coli. The 

holoenzyme it is composed of 10 distinct subunits, including the polymerase core, 

processivity clamp and clamp loader complex (see module 4.4.2). The DNA polymerase III 

core (176, 179, 218) consists of three subunits: 130 kD alpha, encoded by dnaE, in which 

the polymerase activity resides, 27 kD epsilon, encoded by dnaQ/mutD gene with the 3′ to 5′ 

exonuclease activity and the small 9 kD theta protein, encoded by the holE gene. The holE 

gene is non-essential (229) and the role of the theta in the complex is still incompletely 

understood, although theta does appear to stabilize the epsilon subunit in vitro and in vivo 

(237, 240). The DnaQ protein consists of two domains connected by a flexible linker: the N-

terminal domain possesses the exonuclease activity and the C-terminal domain interacts with 

alpha and theta (197). The structure of the DnaQ exonuclease domain shows similarity with 

other members of the DEDD superfamily (103). The alpha and epsilon subunits interact not 

only physically but also mutually stimulate each other’s activities in vitro (175, 237).
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Mutations isolated in the dnaQ gene, such as the classic dnaQ49 and mutD5 “mutator” 

alleles, cause a greatly elevated spontaneous mutation rate due to increased replication errors 

and saturation of mismatch repair capabilities (217). The dnaQ49 allele, which causes 

temperature-sensitivity on rich salt-free media (110) appears to affect the interaction with 

alpha and theta (117), whereas these interactions are preserved in mutD5. Mutations in two 

of the metal-binding carboxylates, dnaQ926, in the first conserved motif of the exonuclease 

active site, produces a strain that is essentially inviable due to the catastrophic accumulation 

of mutations (so-called “error catastrophe”). This strain survives only in combination with 

compensating antimutator alleles in the alpha, dnaE-encoded, polymerase subunit or with 

overproducers of the MutL mismatch repair protein (85).

The DNA Polymerase I (Pol I) 3′ to 5′ exonuclease activity, was purified as Exonuclease II 

from E. coli and later found to reside within the same 103 kD protein as the polymerase 

activity (148). Polymerase I is the most abundant DNA polymerase in E. coli (at 

approximately 400/cell) and is the polymerase believed to mature Okazaki fragments 

produced by Polymerase III-mediated lagging strand synthesis, including the removal of the 

RNA primer. Two domains in Polymerase I can be separated by proteolysis (126): a small 

N-terminal fragment containing the 5′ to 3′ exonuclease activity (see below) and the large C-

terminal fragment (also known as the Klenow fragment) which possesses both polymerase 

and 3′ to 5′ exonuclease activities. The 3′ to 5′ exonuclease activity of DNA polymerase I 

bound to single-strand DNA was one of the first exonucleases to be characterized 

structurally ((14, 15), see discussion above). The polymerase and 3′ to 5′ active sites are 

quite distant at 35 Angstroms. The exonuclease binds to 3′ single-strand DNA, and 3 

nucleotides are displaced from the polymerase active site. Two metal ions occupy the active 

site, coordinated by conserved residues that comprise the motifs that define the DEDD/

DnaQ superfamily (16, 69).

Although by analogy to other proofreading activities associated with DNA polymerases, the 

3′ exonuclease in Polymerase I should contribute to replication fidelity, this has been 

difficult to establish genetically. Inactivation of the Pol I 3′ exonuclease causes a modest, 2–

4 fold increase in specific lacZ reversion rates. This is apparent in an orientation-specific 

manner, confirming the expectation that Pol I errors arise primarily on the lagging strand 

(177). In this study, deficiency in the 3′ exonuclease of Pol I did not strongly enhance the 

mutator phenotype conferred by defects in the Polymerase III holoenzyme, suggesting that 

Pol I does not readily replace Pol III in the processing of misincorporation errors.

DNA Polymerase II (Pol II) of E. coli also possesses an associated 3′ proofreading 

exonucleases. The polB gene is induced seven-fold by DNA damage via the SOS response 

(20), although is found at levels comparable to Polymerase III (about 30–50 molecules per 

cell) in uninduced cells (203). Of the three SOS DNA polymerases (Polymerases II, IV and 

V), the 90 kD Polymerase II is the only one with an intrinsic proofreading exonuclease. Pol 

II has a low rate of misincorporation in vitro and the loss of the proofreading activities 

elevates mutations 13–240-fold (29). In vitro, Polymerase II can polymerize DNA opposite 

abasic sites (21) and is required for efficient replication restart in UV-irradiated E. coli 

(206). Pol II is also involved in error-prone bypass of acetylaminofluorene lesions in vivo 

(191). In vivo, in the absence of mismatch repair and in the presence of an antimutator allele 

Lovett Page 5

EcoSal Plus. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of DNA polymerase III (dnaE915), inactivation of Polymerase II’s exonuclease activity 

increases mutagenesis, as assayed by mutation to rifampicin resistance in rpoB; this is 

especially apparent at one specific G to A mutational hotspot (205). Mutations in F′ lacZ 

that occur during lactose selection (so-called “adaptive mutations”) are also elevated by 

inactivation of Pol II proofreading (87). Loss of Pol II proofreading has a synergistic effect 

on mutation rates in combination with mutator Pol III alleles in dnaQ and dnaE, indicating 

that Polymerase II proofreading can process mispairs created by Polymerase III during 

chromosomal replication (12). The spectrum of mutations in rpoB exhibited by polB mutants 

also supports the idea that there is polymerase switching between Pol III and Pol II during 

DNA replication, in which Pol II plays a largely antimutagenic role (60).

The 5′ exo/endonuclease activity of DNA polymerase I

A second hydrolase activity, associated with DNA polymerase I, specific for 5′ ends, was 

discovered by two groups (72, 127) and was known initially as Exonuclease VI. Proteolysis 

showed this activity resides in the small N-terminal domain of the protein, separated from 

the large fragment (also known as the Klenow fragment (126)) containing the 3′ exonuclease 

and polymerase activity of enzyme (221, 222). The 5′ nuclease activity is distributive (247), 

and limited relative to 3′ exonuclease (221, 222). The 5′ exonuclease, coupled to the DNA 

polymerase activity, affords Pol I its “nick translation” activity, wherein 5′ to 3′ 

polymerization at a nick is accompanied by 5′ to 3′ digestion of the DNA ahead of the 

polymerase (149). Mutations in the 5′ to 3′ exonuclease produce lethality under certain 

growth conditions but not those in the DNA polymerase or 3′ to 5′ exonuclease activities 

(reviewed in (149)).

The 5′ exonuclease activity of Pol I from Thermus aquaticus and E. coli is not a simple 

exonuclease but rather a structure-specific endonuclease activity, which cleaves the junction 

between a 5′ single-strand and duplex (172, 173). In the intact enzyme, polymerase activity I 

at a nick could displace DNA ahead of the enzyme, resulting in a 5′ flap that is then cleaved 

by the 5′ endo/exonuclease. The nuclease activity, although endonucleolytic in nature, 

requires a free 5′ end to thread through the enzyme (173). This “flappase” activity is rather 

inefficient on long 5′ ssDNA tails, assuring that is specific to the types of substrates 

encountered during its role in Okazaki fragment maturation during DNA replication (see 

below). Both Taq and Eco Pol I cleave between the two paired bases closest to the 5′ end 

(173, 270) and Taq Pol I cleavage is most efficient when a primer strand is juxtaposed to the 

flap as would be presented during Okazaki fragment processing. DNA polymerase I binds to 

the beta processivity clamp (163), but the consequences of this interaction on 5′ cleavage 

activity is not yet reported.

The 5′ exonuclease has motifs characteristic of a large group of nucleases found in 

prokaryotes and eukaryotes, the Rad2/XPG family and is structurally and functionally 

equivalent to the DNase IV/Fen-1 (“Flap endonuclease 1”) enzyme of mammals (156, 211), 

RAD27/RTH1 of yeast (231) and bacteriophage T4 RNase H (187) and T5 5′ exonuclease 

(32). The structure of Taq DNA polymerase I (Figure 2A) indicated three metal binding sites 

with two of these in close proximity (125). The residues that define these two sites are 

highly conserved (99) and when mutated are defective in cleavage activity (269). Evident in 
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the structures of this class of enzymes is the presence of a helical arch in the protein that 

creates a hole that can accommodate single-strand but not double-strand DNA (32).

Mutants in the 5′ exonuclease activity of Pol I, polAex1− (133) were originally isolated as 

hyper-recombinational and subsequently found to be mildly sensitive to UV and methyl 

methanesulfonate (MMS) and temperature-sensitive for growth on rich medium. In this 

mutant, polymerase activity is normal and the 5′ to 3′ exonuclease activity is specifically 

reduced. Okazaki fragment maturation is delayed in these mutants (252), suggesting a role 

for PolI in removal of RNA primers and formation of ligatable DNA chains (Figure 2B). 

Supporting the idea that the PolA 5′ exonuclease is the functional equivalent of the 

eukaryotic FEN1/RAD27 function, the N-terminal domain of polA can partially complement 

rad27 mutants of Saccharomyces cerevisiae (238) and the yeast gene can partially 

complement polA107Ex-mutants (196).

The polA gene, under certain growth conditions, can be completely deleted but such mutants 

are lethal in combination with those in the xni/xgdG gene, a paralogous gene to the 5′ 

exonuclease domain of polymerase I (91), see below.

Mutants in the 5′ exonuclease of DNA polymerase I are also sensitive to peroxide (19). The 

5′ exonuclease activity has also been implicated in the repair of daughter strand gaps that are 

formed after UV irradiation, a process known as “post-replication repair”. Gap-filling is 

defective in polA546, defective in 5′ to 3′ exonuclease activity (225).

Deficiency in the 5′ exonuclease of DNA polymerase I causes an increase in certain types of 

mutation (185, 190), as was established first for its yeast counterpart, RAD27 (RTH1). This 

includes expansions of simple sequence repeats (116), expansions of CTG/CAG 

trinucleotide repeats (89) and duplication mutations at short sequence repeats (250). 

Displacement of 5′ DNA ends by DNA polymerase during Okazaki fragment maturation, 

coupled with the failure to be cleaved by the 5′ flappase activity and ligation to the growing 

chain can lead to the observed duplication mutations.

Exonuclease I

Exonuclease I (ExoI) was the first exonuclease to be purified and characterized from E. coli 

(146, 147); it was identified as a Mg2+-dependent 3′ to 5′ exonuclease, digesting DNA to 

mononucleotides. It has potent activity, degrading up to 10,000 nucleotides/min and is 

strongly specific for ssDNA. ExoI dissociates upon encountering dsDNA (25). It is active as 

a 55 kD monomer (200). ExoI is a member of the DnaQ superfamily and its structure (22) is 

highly similar to the 3′ to 5′ exonucleases active site of the Klenow fragment of DNA 

polymerase I. ExoI is not widespread in bacterial genomes; it appears to be restricted to the 

gamma-proteobacteria.

Exonuclease I is a processive exonuclease (247). Its structure indicates an extended binding 

site encompassing 12 residues (22, 23) and appears have the potential to encircle its 

substrate, a simple way to achieve processivity (Figure 3). The active site is contained in a 

deep positively charged groove in the structure that is wide enough only to contain ssDNA, 

explaining its strong specificity for single-strands.
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The single-strand DNA binding protein, SSB, stimulates digestion of DNA by ExoI (169, 

214), partly by removal of substrate secondary structure that would impede the enzyme, but 

also by recruitment through specific physical interactions (169, 215). ExoI binds to the C-

terminal domain of SSB, the site of its interactions with a number of DNA metabolic 

enzymes (169). A peptide derived from the C terminal domain of SSB binds to ExoI through 

interactions in the pocket between its exonuclease and SH3-like domain (169).

ExoI is a part of a network of replication and repair proteins interacting with SSB (27), 

which includes RecJ exonuclease, Topoisomerase I, RecO recombination protein, RecG and 

RecQ helicases. Preparations of SSB are notoriously contaminated with trace amounts of 

ExoI. This led to the discovery that ExoI can stimulate RecA-mediated DNA strand 

exchange between linear duplex and circular single-strand molecules, when the 5′ ends are 

heterologous (13, 132). ExoI processively digests the displaced 3′ strand from the linear 

duplex and drives the reaction forward by degradation of the competitor strand for pairing. 

(RecJ exonuclease, with opposite polarity to ExoI, has similar properties, see below.) The 

recruitment of ExoI, and other repair factors, to gaps in DNA through interactions with SSB 

may constitute a tool-kit for gap-repair.

Mutations in structural gene for exonuclease I, sbcB, were originally isolated by their ability 

to suppress UV-sensitivity and recombination deficiency of recBC mutant strains (named for 

suppressor of recBC)(139, 141). The suppressor is attributed to the accumulation of long 3′ 

ssDNA tails (that would normally be degraded by ExoI) that permit the alternative 

recombination pathway, the RecFOR pathway, to operate. In these strains, co-suppressor 

mutations in the endo/exonuclease SbcCD have accumulated and contribute to suppressor 

phenotype (see below). Null mutations in the gene for Exo I (alternatively named “xonA”) 

were isolated by loss of nuclease activity directly and are not as effective for suppression of 

recBCD (139, 248, 271). SbcB-type alleles have been found to retain ability to bind 3′ ends 

and protect from degradation (248); presumably they act as better suppressors that XonA-

type alleles by blocking the access of other exonucleases to 3′ ssDNA ends. Supporting this 

idea, an sbcB allele mimics phenotypes of double mutants in Exonuclease I and VII (258).

In addition to this antirecombinational activity, ExoI can promote recombination by the 

RecBCD pathway, by “end-blunting” (248, 249), trimming 3′ ends to provide blunt ends 

required for RecBCD digestion and RecA loading. It has also been implicated in 

postsynaptic DNA processing of recombination intermediates (90, 256).

The absence of ExoI also promotes a number of mutations and genetic rearrangements 

including frameshifts in repetitive sequence runs (261), mutations templated by synthesis in 

a quasi-palindrome (81, 258), deletions at short direct repeats (2, 28, 84), and RecA-

independent recombination reactions between short regions of homology (82). These can be 

explained by the ability of ExoI to scavenge displaced 3′ ssDNA ends that are intermediates 

of misalignment reactions that lead to mutations or genetic rearrangements. ExoI is one of 

the four exonucleases that promote mismatch repair (26, 50, 256). In many of the functions 

of exonuclease I listed above, the enzyme is often redundant with other exonucleases, 

including RecJ, Exonuclease VII, Exonuclease X, and SbcCD (see below).
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Exonuclease III

Exonuclease III (ExoIII) was identified as an exonuclease activity associated with a 

phosphatase (208, 209). Exonuclease III is a Mg2+-dependent 3′ to 5′ exonuclease on 

dsDNA, releasing 5′ phosphomononucleotides as degradation products. The enzyme will not 

degrade ssDNA. ExoIII will degrade only one strand of the duplex in the 3′ to 5′ direction 

such that extensive ssDNA-tailed molecules or fully ssDNA is produced. Exonuclease III 

does not require a dsDNA blunt end and will degrade from a nick on a circular molecule in 

the 3′ to 5′ direction, producing single-strand gaps. ExoIII is a distributive enzyme, 

dissociating frequently during the course of digestion (247).

ExoIII will remove a 3′ phosphate in a Mg2+-dependent manner, releasing inorganic 

orthophosphate. It will remove other 3′ residues damaged by radiation or oxidation, such as 

3′ phosphoglycolate, 3′ phosphoaldehyde and urea N-glycosides (68, 106, 138, 183, 193). 

Exonuclease III also possesses endonuclease activity on apurinic/apyrimidinic DNA (265), 

an activity originally purified as “endonuclease II”. The incision at abasic sites is 5′ to the 

abasic residue. ExoIII is the most abundant abasic endonuclease in E. coli, accounting for 

80% of the activity (266). ExoIII also possesses RNase H activity, degrading the RNA 

residues of a RNA:DNA hybrid molecule (266). Each of these activities is believed to be 

manifest from a single active site. ExoIII is therefore a key enzyme for the repair of 

depurination events caused by spontaneous cleavage of the N-glycosidic bond (158) and for 

repair of the abasic sites that are the intermediates in the base excision repair (BER) 

pathways of damaged nucleotide bases.

Exonuclease III orthologs are found in many organisms including mammals (67). The 

crystal structure of E. coli Exonuclease III (Figure 4A) shows a single metal ion active site 

with catalytic aspartate and histidine residues, suggested to be the single site for all the 

activities of the enzyme (184). Conserved residues among ExoIII and other AP 

endonucleases cluster in this region and the overall structure of the protein is similar to 

DNase I and E. coli RNase H.

Mutants in exonuclease III, xthA (or xth), were isolated by direct microassay screens of E. 

coli lysates (181) and shown to co-defective in endonuclease II activity (272). Mutants in 

xthA were defective in repair of strand breaks produced by gamma-irradiation (219) and in 

base excision repair, a process whose intermediate is abasic sites. Mutants in dUTPase, (dut) 

that incorporate large amounts of uracil into DNA are inviable in the presence of additional 

mutations in exonuclease III; this inviability can be relieved by a mutation in uracil N-

glycosylase (ung), that convert uracil residues to abasic sites (245). Mutants in xthA are 

hypersensitive to hydrogen peroxide (66) and near -UV light (213). Exonuclease III is 

controlled by the stationary phase and general stress response sigma factor, RpoS (212), and 

is required for the resistance to peroxide that is induced as cells begin to enter to stationary 

phase. Exonuclease III is also required for resistance to chain-terminating residue, 3′ 

azidothymidine, and is most likely the enzyme that removes this blocked 3′ residue in vivo 

(Cooper and Lovett, unpublished).
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The exonuclease activity of Endonuclease IV

Endonuclease IV (EndoIV) is a Zn2+-dependent apurinic endonuclease, cleaving DNA at 

abasic sites (153, 159). Exonuclease III, also a potent AP endonuclease, accounts for about 

80% of the cleavage activity, whereas EndoIV constitutes the bulk of the remaining activity 

(59, 266). Unlike ExoIII, EndoIV can also incise 5′ to oxidized residues such as 5-

hydroxyuracil, 5,6-dihydrothymine and 2,6-diamino-4-hydroxy-5-N 

methylformamidopyrimidine (“Fapy”) residues (114). In a process known as “nucleotide 

incision repair” (NIR), this incision would allow DNA polymerase I to displace and cleave a 

flap with the damaged residue. Although it had been reported to have negligible exonuclease 

activity, EndoIV does indeed possess an intrinsic 3′ to 5′ exonuclease activity, in addition to 

its endonuclease activity, detected for both E. coli and Thermotoga maritima enzymes (124). 

Substrates with recessed 3′ ends were found to be preferred substrates for its exonuclease, 

which is highly sensitive to ionic strength, metal ions, EDTA and reducing agents (124) 

expaining why early attempts to assay exonuclease may have failed. This activity can 

process nicks to gaps but is reduced when the 5′ residue is an abasic deoxyribose, as would 

be produced by EndoIV AP endonuclease activity (95). Endo IV can release 3′ phosphates 

and phosphoglycoaldehydes with a Km of 50–100 nM (152).

The crystal structure of Endonuclease IV (Figure 4B) indicates the presence of three Zn2+ 

atoms, which generate the attacking nucleophile by deprotonation of water, stabilize the 

transition state and the leaving group (111, 115). Mutational analysis shows that incision and 

exonuclease depend on common residues (95). This exonuclease activity, as that of ExoIII, 

mostly likely plays a role in the removal of 3′ blocking lesions in bacterial cells, including 3′ 

phosphates and phosphoglycolates (152). Although EndoIV plays a secondary role to ExoIII 

in the processing of hydrogen peroxide-induced lesions, Endonuclease IV appears to be the 

primary processor of 3′ lesions induced by bleomycin treatment (151), tert-butyl 

hydroperoxide, and nitric oxides (59, 151, 195).

Mutants in nfo, the gene for EndoIV, are sensitive to alkyating agents such as MMS, 

mitomycin C, and to the oxidants tert-butyl hydroperoxide and bleomycin. The sensitivity to 

tertbutyl hydroperoxide and bleomycin is more severe than that demonstrated by mutants in 

Exonuclease III (xthA) suggesting some specialization of EndoIV for the processing of free 

radical lesions. In combination with mutations in xthA, an nfo mutation further enhances the 

killing by hydrogen peroxides, MMS and gamma rays (59). Endonuclease IV is induced by 

superoxide generators such as paraquat, plumbagin, menadione and phenazine methosulfate; 

induction was more extensive in sodAB mutants lacking superoxide dismutase (33). The nfo 

gene is regulated as part of the SoxRS-dependent response to superoxide stress (3, 97, 251).

Exonuclease IV

Exonuclease IV activity has been described in one paper (118) and the gene encoding this 

activity has never been identified. Exonuclease IV was characterized by its stronger activity 

on short DNA oligonucleotides than on native or denatured DNA of longer length. Its 

products were 5′ phosphorylated mononucleotides.
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One likely possibility is that Exonuclease IV is identical to oligoribonuclease (ORN), the 

product of the orn gene, an Mg2+-dependent 3′ to 5′ RNA exonuclease with preference for 

short oligonucleotides of 5 nucleotides or less in length (63, 275, 281, 286). ORN is a 

member of the DEDD DnaQ superfamily of 3′ exonucleases, which includes Exonucleases I, 

X, RNase T, RNase D and the proofreading exonucleases of DNA polymerases I, II and III. 

The orn gene is essential for viability of E. coli (92) and is presumed to be required for 

mRNA decay and nucleotide recycling. ORN is functional as a dimer (281), similar to 

RNase T (155) and Exonuclease X (Viswanathan and Lovett, unpublished). Activity on 

DNA has not been reported, but ORN, like RNase T, may degrade both RNA and DNA 

oligomers. The likelihood that ORN is DNA Exonuclease IV is encouraged by the fact that 

E. coli ORN will hydrolyze a 5′ nitrophenol ester of thymidine (deoxyribose) 

monophosphate (274) and the human homolog of ORN, Sfn, degrades both RNA and DNA 

oligonucleotides (192).

RecBCD (Exonuclease V)

The RecBCD nuclease, originally termed Exonuclease V, is a multifunctional enzyme 

combining ATP-dependent DNA helicase activity with Mg2+-dependent endonuclease 

activity (see review (76)). It is a heterotrimer composed of two large subunits, RecB (134 

kD) and RecC (129 kD) and one small subunit, RecD (67 kD). RecBCD requires a blunt end 

to initiate unwinding and degradation (123, 201, 244) and in the presence of Mg2+ and ATP 

is an extraordinarily potent exonuclease, degrading hundreds to thousand of bases per 

second. Products of digestion are oligonucleotides and RecBCD digests both strands of the 

duplex. In limiting Mg2+ conditions, the nuclease activity is suppressed and the enzyme acts 

primarily as a helicase, nicking the DNA occasionally. The nuclease active site is present in 

the C-terminal domain of RecB that catalyzes cleavage of both strands (264, 276, 277) and 

both the RecB and RecD subunits act as motors to translocate the complex on ssDNA (77, 

78, 234, 242). In the absence of the RecD subunit, the nuclease activity is diminished; the 

RecBC complex retains weak helicase activity, although it is less processive (136, 198).

Considerable interest in RecBCD concerns its ability to react to specific octomeric DNA 

sequences, known as Chi sites, which alter the properties of the enzyme in vitro and in vivo. 

When the enzyme encounters Chi (5′ GCTGGTGG 3′), its helicase activity becomes 

attenuated, the strandedness of its nuclease activity is altered and a RecA-loading function is 

revealed. DNA is unwound by two helicase motors, in the RecB and RecD subunits, 

operating on the 5′ and 3′ ended strands, respectively (77, 242). Initially, when RecBCD 

loads on a linear duplex molecule, the RecD motor translocates faster than the RecB motor, 

which extrudes a loop from the complex as the enzyme moves along DNA. Forward 

progress of the complex is arrested when the RecC subunit recognizes the Chi site; the RecD 

motor slows or disengages and a slow-moving complex is powered predominately by the 

RecB subunit (232, 233). Interaction with Chi switches the dispensation of the DNA strands 

relative to the nuclease active site in RecB (6, 79, 80). In the absence of Chi, the nuclease 

activity is directed predominantly to the 3′ ended strand, whereas after Chi recognition, the 

5′ ending strand is targeted. After Chi recognition, the product of the reaction is a 3′ single-

strand tailed duplex molecule. Encountering of Chi also causes RecBCD to load RecA onto 

the emergent 3′ single strand (7). The RecB subunit C-terminal domain, which by itself 
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makes stable complexes with RecA, is required for RecA loading (5, 43, 235) and this 

activity is essential for recombination in vivo (11).

The nuclease domain of RecB is a member of structurally related endonucleases, including 

restriction enzymes (EcoRV and PvuII), the Vsr endonuclease involved in very short patch 

excision repair, lambda bacteriophage exonuclease, Pyrococcus Holliday junction resolvase 

and eukaryotic DNA2 protein (10). The RecB and RecD subunits possess motifs 

characteristic of Superfamily 1 (SF1) helicase proteins (228).

The structure of E. coli heterotrimeric RecBCD complex with partially unwound duplex 

oligonucleotide (Figure 5A) provided key insights in the complex behavior of the enzyme 

(227). The RecC protein contributes a number of architectural features including two 

channels for the 5′ and 3′ unwound DNA strands and a pin structure, which appears to split 

the duplex at the entrance to the two channels. The RecB and RecD subunits are disposed to 

provide motors to feed the 3′ and 5′ strands, respectively, to a single nuclease activity site in 

the rear of the complex, with a single Ca2+ ion bound. Residues that contribute to Chi 

recognition in RecC cluster in the 3′ channel preceding the nuclease domain. The RecC 

subunit itself surprising resembles a defunct SF1 family helicase, and is proposed to use 

these features as a Chi-scanning activity. Presumably, an encounter with a Chi-containing 3′ 

strand causes it to be bound in the Chi-scanner region, preventing its access to the nuclease 

site; this allows the 5′ strand to contact the nuclease site more freely (Figure 5B). RecC also 

possesses a defunct nuclease domain, similar to the active nuclease domain in RecB; this is 

proposed to act as a hoop into which the 5′ single-strand is fed (210).

In vivo, one of the roles of the RecBCD nuclease is to defend against viral infection and 

replication. Bacteriophage with linear genomes or which possess linear ends during their 

replication (such as during rolling-circle replication) commonly overcome RecBCD 

digestion by encoding a specific inhibitor of RecBCD (the most well-studied of which is the 

Gam protein of bacteriophage lambda (188). RecBCD also inhibits rolling circle replication 

of bacteriophage or plasmids that lack Chi sequences. The presence of Chi sequences 

promotes the accumulation of high molecular weight DNA, linear concatemers whose ends 

are protected by RecA (61, 279).

Chi sequences are over-represented in the E. coli genome in one orientation relative to the 

progression of the replication fork (8, 18) and occur about once every 4 kb. The probability 

that RecBCD will recognize a single Chi element is about 30% in vitro (80, 243); in vivo, 

multiple Chi sites can additively protect linear DNA from degradation in a RecA-dependent 

fashion (143). Chi sequences not only aid in the protection of DNA but also stimulate 

homologous recombination in their vicinity (144). RecBCD-dependent recombination is 

proposed to repair spontaneous double strand breaks that occur in chromosomes during 

replication (129, 142). Cultures of mutants in recBC have lower viabilities; only about 30% 

of the population will form visible colonies (30).

RecBCD is required for double-strand break repair and recombination that arises from ds-

ended substrates, such as those presented during conjugation and generalized transduction. 

(See (199)). Mutants in recB or recC have 100–1000 fold reduced inheritance of genetic 
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markers after congugation or transduction (112). Mutants in the third subunit, recD, do not 

show reduction in recombination (4, 17)--in fact, they are hyper-recombinational--adding to 

confusion about the role of this subunit in the function of the complex. In recD mutants in 

which the nuclease activity of RecBCD is lost (4, 17), recombination becomes dependent on 

alternative 5′ to 3′ exonucleases such as RecJ exonuclease or exonuclease VII (71, 161, 

167). Loss of RecJ, ExoI and ExoVII causes lethality in recD strains (70). In recD mutants, 

recombination still requires function of recB and recC (167) presumably to unwind DNA 

and to load RecA on the emerging ssDNA. In the absence of RecD subunit, RecBC loads 

RecA constitutively, even in the absence of Chi sequences (42).

RecJ exonuclease

The properties of RecJ exonuclease are similar to Exonuclease I, with reverse polarity: it 

degrades ssDNA in a 5′ to 3′ polarity in a reaction that requires Mg2+ (166). It is a 

processive monomeric exonuclease of 60 kD, degrading DNA to mononucleotides at a 

maximal rate of several thousand nucleotides/min (104, 166) and a Kd of 10 nM. RecJ does 

not require a terminal 5′ phosphate and will digest equally well DNA terminating in 5′ OH. 

RecJ has no activity on blunt dsDNA and requires at least 6 unpaired bases to bind and to 

initiate degradation (104). Once bound to a ssDNA -tailed molecule, RecJ can digest into a 

dsDNA region to a limited extent but most often terminates digestion at the ds/ssDNA 

boundary (104). As with ExoI, SSB stimulates the ability of RecJ to bind and to digest DNA 

(104). Although interactions between E. coli RecJ and SSB proteins have not been yet 

demonstrated, the heterologous T4 gp32 ssDNA binding protein did not stimulate nuclease 

activity, suggesting a specific interaction is responsible for stimulation. Direct interaction 

between Haemophilus influenzae RecJ and SSB has been established, between the catalytic 

core domain of RecJ and the C-terminal domain of SSB (224).

RecJ is the best studied member of the DHH family of phosphoesterases (9, 239) and RecJ 

orthologs are found in virtually all bacterial genomes with the notable exception of 

Mycoplasmas and Mycobacteria. Initially five (9)) and later seven motifs (204, 239) were 

found to define this class and mutational studies have verified the essentiality of residues in 

the seven motifs for nuclease activity in vitro and biological function in vivo (239). Motif 5 

of seven (204), (not identified in the earlier five-motif comparison (9)), with conserved 

asparagine, appears to be present specifically in nuclease members of this family. The 

structure of a C-terminally truncated Thermus themophilus RecJ shows a C-shaped 

molecule, with a narrow cleft into which ssDNA but not dsDNA can access the metal ion 

active site at the wall of this cleft (273). Only one Mn2+ ion was found in the structure, but 

the location of conserved aspartate residues in its vicinity suggest the possibility of a second 

metal binding site, with the metal recruited or stabilized by DNA binding. Indeed, the recent 

structure of the fully intact Tth RecJ (263), with four domains shows two metal-ions (Figure 

3). Domain III, partially lacking in the earlier structure, has similarity to the OB-fold, 

explaining the higher affinity of the intact enzyme for ssDNA (263). The O-structure of the 

enzyme, with the hole bounded by Domain I (containing the active site metal ions), Domain 

II (with nuclease-specific motif 5 residues at its periphery) and OB-fold Domain III would 

allow it completely encircle DNA, accounting for the processivity of RecJ.
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RecJ was identified as a gene required for the so-called “RecFOR” and “RecE” pathways of 

recombination (94, 109, 165), pathways that operate independently of the RecBCD nuclease. 

Both RecBCD-independent pathways employ many of the same functions (RecFOR, RecJ, 

RecQ and RuvABC). The RecFOR pathway is believed to be specialized for recombination 

at gaps in DNA (230). Although normally inefficient in catalyzing recombination from 

double-strand ends in E. coli, increasing the levels of 3′ DNA ends by inactivation of 3′ 

exonucleases, ExoI and SbcCD, or increasing expression of 3′ end-generating RecE/ExoVIII 

makes it more active on dsDNA substrates. (Note that in most other bacterial species, which 

naturally lack ExoI, the RecFOR pathway may operate more efficiently on dsDNA 

substrates for recombination.) In the genetic backgrounds recBC sbcBC (eliminating ExoI 

and SbcCD) or recBC sbcA (activating expression of RecET), deficiency in recJ leads to a 

1000–10,000-fold reduction in conjugational recombination; recJ deficiency also eliminates 

the residual recombination seen in recBC mutants with a concomitant loss of cell viability 

(165). In wild-type cells, recJ is required for recombination of plasmid alleles via a pathway 

that also includes RecFOR (130). The interpretation of these genetic properties suggest that 

RecJ provides presynaptic DNA processing activity equivalent to RecBCD, for production 

of recombinogenic ssDNA. In wild-type strains, RecBCD is specialized for degradation 

from a linear end; RecJ is specialized for degradation from a single-strand gap. In 

combination with a helicase like RecQ, RecJ can lengthen ssDNA gapped regions or 

produce 3′ ssDNA tailed recombinogenic molecules from double-strand ends, in a manner 

comparable to the RecBCD nuclease. In a reconstituted in vitro system containing RecA and 

RecOR, RecJ provides the nuclease activity to permit recombination between homologous 

dsDNA linear and dsDNA supercoiled circular molecules; RecF and SSB are nonessential, 

although stimulatory to the reaction (105). Inclusion of RecQ stimulates RecJ’s 

exonucleolytic processing but destablizes heteroduplex production formation. Unlike 

RecBCD, RecJ does not possess RecA loading activity, which is contributed by the RecFOR 

proteins for both the RecFOR and RecE pathways of recombination.

RecJ is required, along with ExoI, for efficient recombination via the RecBCD pathway, 

with the double mutant reduced about 10-fold for Hfr conjugal inheritance in E. coli (261), a 

30-fold reduction in Salmonella for transduction with limiting homologies (180) and 

approximately 4-fold reduction for lambda recombination (207) in E. coli. Like ExoI, it may 

also promote recombination by the RecBCD pathway by presynaptic end-blunting (248, 

249) and by post-synaptic stabilization of joint heteroduplex molecules (90, 261). In vitro, 

RecJ can accelerate RecA-promoted branch migration, by removal of the competing strand 

for pairing, and can help RecA bypass regions of nonhomology in strand exchange (53).

After UV irradiation, the combined action of RecJ exonuclease and RecQ helicase activities 

can result in degradation of nascent DNA. This is more pronounced in mutants of RecA (40) 

and its loading factors RecFOR, which fail to protect gapped regions of the chromosome 

(56). Both RecJ and RecQ are required for rapid recovery of DNA synthesis following UV-

irradiation and prevent potentially mutagenic bypass by error-prone polymerases (54). This 

degradation may also help to prevent replication fork reversal (55).

As a ssDNA-specific exonuclease, RecJ shares overlapping functions with other such 

enzymes including Exonucleases I, VII and X. Any one of these four enzymes that can 
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catalyze the excision reaction during mismatch repair of replication errors (26, 50, 256). 

RecJ plays a redundant role with other single-strand DNA exonucleases for UV survival, 

particularly with fellow 5′ to 3′ ssdNA exonuclease ExoVII (248, 261). Either RecJ or ExoI 

are required to process lesions produced by gamma-irradiation to activate the regulatory 

SOS response to DNA damage (220). RecJ is also implicated, along with the other ssDNA 

exonucleases, in avoidance of a number of genetic rearrangements and recombination 

between short homologies. Over 90% of the deletions between short direct DNA repeats are 

aborted by the combined action of RecJ, ExoI and ExoX (84). Gene conversion between 80 

bp homologies, which occurs independent of RecA, is stimulated almost 1000-fold by the 

loss of both RecJ and ExoI. The mechanism of these recombinational events is not known 

but appears to be targeted to the replication fork, since recombination is more efficient with 

exogenous ssDNA that is complementary to the lagging-strand replication template relative 

to that of the leading strand (82). The quadruple RecJ, ExoI, ExoVII and ExoX mutant is 

cold-sensitive for growth and the lethality can be alleviated by blocks in the early steps in 

the mismatch repair pathway, suggesting that mismatch repair in the absence of ssDNA 

degradation is somehow toxic (26). The quadruple mutant also shows a massive increase in 

RecA-independent crossover recombination at very short homologies at permissive 

temperature, leading to the suggestion that the cold-sensitive lethality is caused by 

catastrophic genetic rearrangements that result from the abnormal accumulation of ssDNA 

in these cells (82).

The recJ gene is found in an operon downstream of the disulfide bond isomerase gene, dsbC 

(182). Mutations in dsbC (originally denoted xprA) have polar effects on recJ expression 

(164). Expression of the operon appear is activated by cell envelope stress, in a sigmaE-

dependent manner (98). RecJ levels are very low in the cell, estimated at 5 molecules per 

cell and expression is kept low by poor translation (100, 166).

SbcCD exo/endonuclease

The two subunit SbcCD nuclease is a combined ATPase/endo/exonuclease protein in a 

family that includes bacteriophage T4 gp46/47 nuclease and the eukaryotic Mre11 Rad50 

Xrs2/Nbs1 complex (57). The SbcC subunit is an SMC-like coiled coil protein with an 

intrinsic ATPase; the nuclease activity resides in the SbcD subunit (48, 49). In vitro, SbcCD 

is an ATP-independent single-strand DNA endonuclease and an ATP-dependent 3′ to 5′ 

exonuclease (45, 47, 48). SbcCD is a structure-specific nuclease, showing preference for 

hairpin secondary structures in DNA, which it cleaves in an ATP-dependent fashion close to 

the unpaired tip (48). SbcCD can also cleave 4-strand cruciforms and can open hairpin-

capped ends.

In vivo, SbcCD will cleave at secondary structures formed by inverted repeats, or 

palindromic DNA sequences, producing double-strand breaks (83). These breaks can be 

repaired by recombination between sister chromosomes (83) or by single-strand annealing at 

homologies flanking the break (28). SbcCD is also required to repair breaks made by 

restriction endonuclease activity (58) and its exonuclease activity may process the ends of 

broken chromosomes. In addition, its SMC character may bind and coordinate the two ends 

of broken DNA molecules to assist in their repair. SbcCD can remove a streptavidin/biotin 
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moiety at a 5′ end and may therefore remove, by its endonuclease activity, covalently 

attached or tightly bound proteins that interfere with end processing (46). SbcCD’s 3′ 

exonuclease activity may digest 3′ tailed substrates in vivo, explaining its discovery as a 

function inhibitory to the RecFOR-mediated recombination of double-strand ended 

substrates (160). Mutations in SbcCD produce synergistic UV-sensitivity in combination 

with other ssDNA-specific exonucleases, particularly with the 3′ to 5′ exonucleases, ExoI 

and ExoVII (248). Loss of SbcCD and Exonuclease I blocks the “reckless” DNA 

degradation and anucleate cell formation provoked by RecBCD in UV-irradiated recA 

recombination mutants (278). This confirms that Exonuclease I and SbcCD can remove 

single-stranded tails (“end-blunting”) on DNA in vivo to permit RecBCD loading and 

subsequent DNA degradation.

SbcCD expression increases as cells starve and enter the stationary phase of growth and is at 

least partially under RpoS regulation, although this may be indirect (62). The SMC-like 

SbcC proteins localize to the replication fork as visualized as a GFP fusion, whereas the 

SbcD nuclease subunits appear evenly distributed through the cytoplasm (62).

Exonuclease VII

Exonuclease VII (ExoVII) possesses two subunits, a large catalytic subunit (XseA) at 53 kD 

and a smaller subunit (XseB) at 10 kD, with the stoichometry 1: 4 (254). The genes in E. 

coli are encoded by unlinked loci, xseA and xseB (253); in other bacteria, the genes are 

found in a single operon. Catalytic activity is found in the large subunit, whereas the small 

subunits are believed to regulate the activity of the enzyme. Exonuclease VII activity is 

strongly single-strand DNA-specific and possesses dual polarity, degrading both 3′ and 5′ 

ends, in a processive reaction (37, 38). It can digest DNA containing thymine-dimers. It can 

degrade a 3′ end as short as 4 nucleotides, and can digest into the duplex region, probably 

the result of its processivity and “breathing” of the duplex to form single-stranded termini. 

The products of the reaction are oligonucleotides, primarily 4–12 nucleotides in length (37), 

indicating an endonucleolytic mechanism, although the enzyme is classified as an 

exonuclease for its requirement for a free ssDNA end. ExoVII is the only DNA exonuclease 

activity from E. coli that does not require exogenous Mg2+ ion; it is active even in 8 mM 

EDTA (38). Because of the seeming absence of metal ion requirement and stimulation by 

phosphate, it is possible that ExoVII is a phosphorylase rather than a hydrolase enzyme, 

with phosphate rather than water attacking the phosphodiester bond. However, the 

Thermotoga enzyme does require Mg2+ and conserved aspartate residues, reminiscent of a 

metal binding site (145) and found invariant among xseA orthologs, including E. coli. 

Presumably, the E. coli enzyme is purified with a very tightly bound metal ion and is a true 

hydrolase. In contrast to ExoI and RecJ, ExoVII is inhibited by SSB (Cooper and Lovett, 

unpublished results).

Exonuclease VII is a very well conserved enzyme and xseA orthologs are found in almost 

every bacterial genome, as well as a few archaeal species. (Because of their small size and 

lack of catalytic activity, xseB orthologs are more difficult to identify.) Despite its 

prevalence, Exonuclease VII is the one of the most poorly understood exonucleases of E. 

coli. A number of residues in both subunits are conserved and are similar to the charged 
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residue motifs found conserved in other hydrolytic metal-dependent exonucleases. The N-

terminal domain of ExoVII resembles the OB fold, characteristic of single-strand nucleic 

acid binding proteins (145). There is no crystal structure for XseA to provide clues about the 

mechanism; a XseB structure can be found (Protein Data Bank, PDB ID:1VP7 “Crystal 

structure of Exodeoxyribonuclease VII small subunit from Bordetella pertussis at 2.40 A 

resolution”, Joint Center for Structural Genomics) resembling a “paper clip” of alpha 

helices. The sedimentation coefficient and Stokes radius of the enzyme suggests an 

elongated structure (38). It is not clear how the XseB subunits interact with the larger XseA 

catalytic subunit, nor is it known how they regulate the activity of the enzyme.

Mutants in exonuclease VII are hyper-recombinational and weakly sensitive to nalidixic acid 

and UV irradiation (36). For UV irradiation, exonuclease VII deficiency is strongly 

synergistic with recJ (261). It has been suggested that ExoVII may participate in the 

mechanism of “long-patch excision repair” of UV damage, suggested to be recombinational 

in nature (51). Specifically, a role for RecJ and/or ExoVII in widening gaps caused by UV 

blocks to DNA synthesis on the lagging strand been suggested, which would promote 

nucleation of RecA and recombinational gap filling repair (261). In contrast with the 

redundant role of ExoVII and RecJ for repair, there is no normal requirement for ExoVII in 

homologous recombination measured after conjugation (36, 261). This may be because 

recombinational substrates are SSB-bound; ExoVII is inhibited by SSB (Cooper and Lovett, 

unpublished results), whereas RecJ is not (104). Mutants in exonuclease VII are hyper-

recombinational (36), perhaps due to the accumulation of lesions normally repaired by 

ExoVII. Mutations in xseA modestly enhance the temperature-sensitivity promoted by 5′ 

exonuclease-deficient alleles of Polymerase I, polA480 and polA546 (35), suggesting a 

potential role in processing displaced ends during Okazaki fragment maturation.

ExoVII is one of the four ssDNA exonucleases that can mediate mismatch repair in E. coli 

(26, 256). ExoVII seems to abort frameshift and template-switch mutations in a manner 

partially redundant with 3′ exonuclease, ExoI (81, 258, 261). By itself, deficiency in 

Exonuclease VII stimulates frameshift mutations 6–7 fold; in combination with ExoI 

frameshift mutations are stimulated 12–30 fold. Stimulation is seen for both +1 and −1 

frameshift mutations. Some of this effect may be due to constitutive SOS induction and 

induction of mutagenic polymerase, DinB, in these strains, since accumulation of −1 

frameshifts is alleviated by mutations that block SOS induction such as lexAind− and recA 

and by dinB (107). However, DinB is highly selective for effects on −1 frameshifts (262) 

and the ExoI and ExoVII effects are equally strong on assays detecting +1 frameshifts (261), 

suggesting an additional effect on mutagenesis.

Similar effects are seen for a mutational hotspot in thyA in which mutations are templated by 

synthesis within an inverted repeat structure (81, 258). Loss of ExoVII stimulates these 

events about 7-fold, which is enhanced to 40-fold by the additional loss of ExoI. These 

effects have been explained by the role for the exonucleases in scavenging displaced 3′ ends 

that result from stalled replication. In the absence of degradation, these strands misalign, 

causing the template-switch that leads to mutation in the presence of an inverted DNA 

repeat nearby.
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Expression of xseA in E. coli appears to be repressed by cAMP response protein, CRP, 

during nutritional downshifts (113) and may be regulated by the macrophage response 

transcriptional regulator, SlyA, in Salmonella (236). Interestingly, in Neisseria meningitidis, 

xseB is up-regulated when the bacterium encounters human host cells, leading to an increase 

in resistance to UV light and alkylating agents (186).

Exonuclease VIII/RecE

Exonuclease VIII is encoded by the recE gene of the cryptic lambdoid Rac prophage of E. 

coli K-12. It possesses processive Mg2+-dependent 5′ to 3′ exonuclease activity on dsDNA 

(119, 120, 140) and is the functional equivalent of the lambda exonuclease (“Exo”, Red 

alpha) required for bacteriophage recombination. RecE is a much larger protein than lambda 

Exo (866 compared to 226 amino acids), although the exonuclease activity appears to reside 

in its approximately 300 amino acid C-terminal domain (34, 41, 170, 189). RecE belongs to 

an evolutionary-related extended group of nucleases, including restriction endonucleases, 

RecB and lambda exonuclease (10, 34). Although there is little overall sequence similarity, 

RecB, lambda Exo and RecE share similar residues in their active sites (Figure 6B), with 

RecE more closely related to RecB than to lambda Exo. Unlike lambda Exo, which requires 

a 5′ phosphate for its exonuclease activity, RecE exonuclease is not affected by the absence 

of a 5′ phosphate (120). Like lambda exonuclease, RecE is highly processive, degrading the 

5′ strand dsDNA to mononucleotides (120), with a catalytic rate of 19 nucleotide/second and 

a Kd of 70 nM (282). RecE has no activity on ssDNA nor on dsDNA circles (120, 140).

The crystal structure of RecE C-terminal domain shows it to be a tetrameric toroid (Figure 

6A), with a central cavity large enough to surround dsDNA substrate at its front and a 

ssDNA product at its rear (280). This structure nicely explains RecE’s processivity on linear 

dsDNA substrates and lack of endonuclease activity. Similar to lambda Exo, which 

associates with the recombination annealing protein, Red beta, RecE protein functions in 

conjunction with the RecT annealing protein (44, 101, 102, 194). Both functions are 

required for recombination (44), even if the DNA was pre-resected (189). Specific protein 

interactions exist between these pairs and the heterologous pairs (Red alpha/RecT; 

RecE/Red beta) do not support recombination (189). This interaction allows coupling of 

RecE degradation of the 5′ strand to the loading of RecT on the resulting ssDNA tail to 

promote annealing of complementary strands (101) or strand invasion of a homologous 

DNA duplex (102). RecET-orthologs can be seen in many bacteriophage genomes; the 

Gifsy-1 prophage of Salmonella enterica serovar typhimurium LT2 strains contains RecET 

orthologs (150).

RecE was discovered by its ability to restore recombination function to Red mutants of 

lambda or to E. coli cells deficient in the RecBCD nuclease (141, 246). The recE and recT 

genes can restore function to lambda by recombination between the cryptic prophage and a 

Red− mutant lambda genome, producing a phage known as “lambda reverse” (96, 285). The 

Rac prophage has been lost in certain E. coli K-12 lineages, (e. g. AB1157) (121, 122). 

Although the recET genes are not normally expressed, zygotic induction of the genes 

transferred by conjugation into E. coli lacking the Rac prophage can suppress the 

recombination deficiency of recBCD mutants, explaining the prophage’s name (Rac for 
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“Recombination Activation”) (168). Mutations in the Rac prophage known as sbcA 

(“suppressor of recBC”), produce a stable suppression of recombination deficiency of recBC 

mutants by driving constitutive expression of the RecET genes (41, 88, 94, 121, 131, 140, 

246, 268). RecET will promote RecA-independent recombination of plasmids and lambda 

bacteriophage (86, 93, 241); for chromosomal recombination measured after conjugation, 

the RecET pathway requires additional recombination functions including RecA, RecFOR, 

RecJ and RecQ (94, 165, 171, 174). Interest in the RecET and lambda Red pathways has 

been revived because of their ability to catalyze recombination between short homologies 

and their practical use in bacterial genetic engineering (“recombineering” or “ET cloning”) 

(reviewed in (52, 255, 283)). The RecET pathway is a recombination system capable of 

repairing of broken dsDNA molecules by recombinational, two-ended repair (128, 241) with 

a homologous partner.

Exonuclease IX

Exonuclease IX (ExoIX) is encoded by the ygdG gene and possess sequence similarity to the 

5′ exonuclease domain of DNA polymerase I (216). Despite its name, exonuclease activity 

has yet to be demonstrated for the E. coli protein. The reported 3′ to 5′ exonuclease activity 

of the protein (223) appears to be a consequence of Exonuclease III contamination of the 

preparation (108). Although the Staphylococcus aureus orthologous protein, Sau FEN, has 

flap endonuclease and 5′ exonuclease activity, the E. coli ExoIX enzyme does not (1). 

Because the E. coli protein lacks the conserved residues of the proposed metal binding site II 

(1), it may not possess cleavage activity or may required additional factors. E. 

coliExonuclease IX protein binds single-strand DNA binding protein, SSB and to the 

histone-like protein H-NS (1), suggesting a potential role in DNA metabolism.

Mutations in xni (ygdG), the structural gene for exonuclease IX, are synthetically lethal with 

those in polymerase I (91), implicating the protein in Okazaki fragment maturation. 

Mutations in xni do not have any detected synthetic phenotypes on recombination, UV or 

oxidative damage repair in combination with mutations in other single-strand exonucleases, 

ExoI, ExoVII, ExoX or RecJ (162).

Exonuclease X

Exonuclease X was discovered as an open reading frame with predicted similarity to the 

DnaQ family of 3′ to 5′ exonucleases. Purification and characterization of the 25 kD protein 

demonstrated it possessed Mg2+-dependent 3′ to 5′ exonuclease activity on both single-

strand and dsDNA substrates, with a preference for the former (260). Despite the fact that 

the enzyme is distributive, it has a fairly rapid catalytic rate of 1400 nt/min/monomer on 

ssDNA. The Kd of the protein for ssDNA is 2 nM, confirming a very strong affinity for 

ssDNA. RNA does not act as a competitive inhibitor of the exonuclease activity, suggesting 

the protein is specific for DNA substrates.

Exonuclease X is a member of the DnaQ or DEDD superfamily and is most homologous to 

the proofreading activity of PolC from gram-positive bacteria and to the mammalian TREX1 

protein implicated in autoimmune disorders, with which it shares many mechanistic features 

(157). ExoX purifies as a homodimer, similar to RNase T, another member of the family 
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(Viswanathan and Lovett, unpublished). There is no crystal structure of the protein, although 

structures for TREX1 may provide some insights (24, 65).

A mutant in Exonuclease X had little phenotype on its own but effects can be seen in 

combination with other ssDNA exonucleases. Loss of ExoX with ExoI in recD mutants of 

E. coli causes a 100-fold decrease in recombinants detected after conjugation, suggesting a 

role in recombination secondary to ExoI, revealed when the nuclease activity of RecBCD is 

impaired (70). ExoX, in combination with RecJ and ExoI, plays a role in promoting genetic 

stability by aborting deletion between tandem repeated sequences. In the absence of these 

three exonucleases, deletion rate between adjacent 100 bp repeats is elevated about 20-fold 

(84). The quadruple mutant in RecJ, ExoI, ExoVII and ExoX is UV-sensitive, cold-sensitive 

for growth and exhibits a modest mutator phenotype, epistatic to MutS, suggesting a 

deficiency in mismatch repair (26). Confirming this, cell extracts from RecJ ExoI VII X 

mutant are devoid of mismatch repair capacity (256). Consistent with the known polarity of 

these enzymes, either RecJ or Exo VII can support mismatch repair from a nick 5′ from the 

mismatch whereas ExoI, ExoX and, to a lesser extent, ExoVII can support repair from 3′ 

direction (50, 256). The ssExo mutants are sensitive to 2-aminopurine, which increases the 

load of mismatches in the cell; this sensitivity can be suppressed by mutations blocking 

earlier steps in mismatch repair, including MutL, MutS or UvrD (26). This finding and the 

relatively weak mutator phenotype have been attributed to the notion that attempts at 

mismatch correction in the absence of exonucleases is lethal.

The mechanism of cold-lethality of the strain is not fully understood, but it can be relieved 

fully by mutations in the DNA helicase UvrD and partially by upstream mutations in the 

mismatch repair pathway, MutS, MutH and MutL (26). The displacement of ssDNA by 

UvrD, in part in response to mismatch correction, appears to be lethal in the absence of 

ssDNA exonucleases. It does not appear merely to be due to the induction of the SOS 

response since mutations in recA, lexA and sulA did not alleviate the lethality (Sutera and 

Lovett, unpublished results). The quadruple RecJ ExoI ExoVII ExoX mutant also exhibits 

extraordinarily high rates of recA-independent recombination at short sequence homologies, 

20–70 fold elevated relative to wild-type strains at 25 bp of homology (82). The cold-

sensitive phenomenon could be related to increased recombination rates, promoted by UvrD 

unwinding of DNA, contributing to a catastrophic destabilization of the genome.

RNase T (Exonuclease T)

RNase T was initially identified as a RNA exonuclease removing the terminal AMP residue 

of tRNA molecules (73–75); it also removes the two terminal residues during the maturation 

of 5S rRNA (154). The gene encoding RNase T was identified as a high-copy suppressor of 

the UV sensitivity in mutants of ssDNA exonucleases, RecJ ExoI and ExoVII (259), 

implicating a potential role as a DNA exonuclease. RNase T appeared to compensate 

specifically for ExoI in such strains, since it did not suppress recJ xseA double mutants. 

RNase T overexpression also appeared to support UV survival of strains deficient in 

nucleotide excision repair, uvrA or uvrC (259).

RNase T has robust exonuclease activity on long ssDNA substrates, degrading in a 3′ to 5′ 

polarity dependent on Mg2+ or Mn2+ (257). Only very weak degradation was observed on 
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dsDNA. Its Km for ssDNA was 5 nM in contrast to a reported Km for tRNA of 14 μM. 

Although its mechanism was nonprocessive, RNase T could extensively degrade ssDNA, as 

much as 30,000 bases on a single molecule (257), in comparison to its limited degradation of 

tRNA or rRNA (290). (For RNA, cytosine residues in particular appear to inhibit 

degradation (290)). Higher affinity for ssDNA over RNA was confirmed in a second study 

using oligonucleotide substrates ((289). RNase T will produce blunt ends from 3′ ssDNA 

overhangs, such as those produced by restriction endonucleases (289). It has been reported 

that like its RNase activity (155), RNase T’s DNase activity requires dimerization (289).

RNase T is a member of the DEDD DnaQ superfamily of 3′ exonucleases (135). Mutation in 

these conserved motifs are required for RNase activity (287). A crystal structure confirms 

the resemblance to proofreading 3′ exonucleases and to other members of this family such as 

ORN and RNase D (292). The catalytic and substrate binding residues are contributed by 

separate molecules at the dimer interface, explaining why dimer formation is essential for 

function (287, 288, 292).

TatD (Exonuclease XI?)

TatD, the fourth gene in the twin-arginine transport system operon (Tat) of E. coli, has been 

reported to have Mg2+-dependent DNase activity (267) and has been termed named 

“Exonuclease XI” in one study (31). Orthologs are found in all three domains of life, 

including organisms that lack the twin-arginine protein secretory pathway. E. coli possesses 

two paralogs to TatD, YjjV, and YcfH. TatD, but not the two paralogs, has been classified as 

a horizontally transferred gene of E. coli (64). The yeast Tat-D protein, expressed in E. coli, 

has been characterized as an endonuclease and exonuclease with a 3′ to 5′ polarity (202). It 

will cleave both single and double-strand DNA, with a preference for the latter, and has an 

acidic pH optimum (pH 5). Neither TatD nor its paralogs has any effect on the secretion of 

proteins by Tat pathway (267). However, another study found a role for TatD in quality 

control of FeS proteins that are translocated by the Tat pathway, promoting rapid turnover of 

misfolded substrates (178), a property difficult to reconcile with proposed nuclease activity 

of the protein. TatD mutants of E. coli have been reported to exhibit a two-fold increase in 

the number of constitutive RecA-GFP foci visualized in growing, a property shared by 

mutants of other 3′ exonucleases such as Exonucleases III, VII, and X (31).

SUMMARY AND CONCLUSIONS

E. coli possesses 15 proteins with verified exonuclease activity and two others, Exonuclease 

IX (YgdG) and TatD, that are suspected exonucleases because they are orthologous to 

known exonucleases. All but one activity (Exonuclease IV) have defined genetic basis and 

there is reason to believe that Exonuclease IV is the product of the orn gene. Many of these 

functions are vital to mutation avoidance, genome stability, DNA repair or genetic 

recombination. Some exonucleases are essential for viability (DnaQ, Pol I 5′ exo and ORN), 

whereas loss of others is lethal in combinations. The biochemical properties of these 

enzymes including polarity, processivity, substrate specificity and protein interactions are 

suited to their biological role. Some exonucleases appear to have redundant functions in 

vivo and phenotypes are not evident until multiple exonucleases are eliminated. There is 

Lovett Page 21

EcoSal Plus. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



structural information for most of the E. coli exonucleases or their orthologs in thermophilic 

eubacteria.

Most exonucleases fall into structural superfamilies with members in all domains of life, 

suggesting that these activities evolved quite early in the history of life and play important 

biological roles. The DEDD/DnaQ family has been especially prolific and E. coli possesses 

8 members of this family, including DNA proofreading exonucleases associated with DNA 

polymerases and stand-alone DNase, RNase or dual DNase/RNase activities. RecJ, 

Exonuclease III, Endonuclease IV and SbcCD appear to be ancient activities. Is E. coli 

especially blessed with exonucleases? It is difficult to say whether E. coli possesses more 

exonucleases than other bacterial species since systematic biochemical characterization of 

exonuclease activities has only taken place with E. coli. There are likely to be other 

exonucleases in bacteria that remain to be discovered and certainly new exonuclease 

activities in E. coli will be forthcoming.
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Figure 1. 
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A. E. coli’s DnaQ superfamily members. Shown are aligned amino acid sequences of 

exonuclease I, exonuclease X, oligoribonuclease, RNase D, RNase T, and the 3′ 

exonucleases of DNA polymerases I, II and III. Conserved acid residues are shown in bold 

and comprise metal coordination residues for those proteins with determined three-

dimensional structure. Numbers refer to amino acid residues not shown. B. Structure of 

three members of the DnaQ/DEDD superfamily: DnaQ, ExoI and Polymerase I 3′ 

exonuclease domain. Figure republished with permission from Hamdan et al. 2002.
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Figure 2. 
A. Structure of Taq DNA polymerase I, showing 5′ exonuclease domain in blue and cyan. 

Image from RCSB PDB (www.pdb.org), PDB ID: 1TAQ (Kim, Y., S. H. Eom, J. Wang, D. 

S. Lee, S. W. Suh, and T. A. Steitz. 1995. Crystal structure of Thermus aquaticus DNA 

polymerase. Nature 376:612–616). B. Okazaki maturation by Polymerase I. Polymerization 

at a gap causes displacement of lagging strand RNA primer (orange), which is cleaved by 5′ 

flap endonuclease activity.
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Figure 3. 
Structures of single-strand DNA specific exonucleases RecJ exonuclease and Exonuclease I 

(Images from RCSB PDB (www.pdb.org) ID: 2ZXP Wakamatsu, T., Y. Kitamura, Y. 

Kotera, N. Nakagawa, S. Kuramitsu, and R. Masui. 2010. Structure of RecJ exonuclease 

defines its specificity for single-stranded DNA. J Biol Chem 285:9762–9769 and PDB ID: 

1FXX Breyer, W. A., and B. W. Matthews. 2000. Structure of Escherichia coli exonuclease 

I suggests how processivity is achieved. Nat Struct Biol 7:1125–1128). RecJ digests ssDNA 

5′ to 3′ and ExoI 3′ to 5′. Both produce mononucleotide products.
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Figure 4. 
A. Structure of Exonuclease III (Image from RCSB PDB (www.pdb.org) PDB ID: 1AKO 

Mol, C. D., C. F. Kuo, M. M. Thayer, R. P. Cunningham, and J. A. Tainer. 1995. Structure 

and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374:381–

386). B. Structure of Endonuclease IV, showing 3 Zn2+ ions (PDB ID: 1QTW Hosfield, D. 

J., Y. Guan, B. J. Haas, R. P. Cunningham, and J. A. Tainer. 1999. Structure of the DNA 

repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic 

sites and three-metal-ion catalysis. Cell 98:397–408). C. Activities of Exonuclease III and 

Endonuclease IV: 3′ phosphatase, 3′ to 5′ exonuclease, AP (abasic) endonuclease.
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Figure 5. 
A. Structure of RecBCD complex with DNA. B. Activities of the enzyme, before and after 

Chi recognition. Figure reproduced with permission from Dillingham and Kowalczykowski 

2008.
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Figure 6. 
A. Structure of RecE (Image from RCSB PDB (www.pdb.org) PDB ID: 3H4R Zhang, J., X. 

Xing, A. B. Herr, and C. E. Bell. 2009. Crystal structure of E. coli RecE protein reveals a 

toroidal tetramer for processing double-stranded DNA breaks. Structure 17:690–702). B. 

Alignment of active site regions of RecE and RecB nucleases. C. 5′ to 3′ exonuclease 

activity of RecE on dsDNA.
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