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ABSTRACT: Epidemiologic and health impact studies are inhibited by
the paucity of global, long-term measurements of the chemical
composition of fine particulate matter. We inferred PM2.5 chemical
composition at 0.1° × 0.1° spatial resolution for 2004−2008 by
combining aerosol optical depth retrieved from the MODIS and MISR
satellite instruments, with coincident profile and composition
information from the GEOS-Chem global chemical transport model.
Evaluation of the satellite-model PM2.5 composition data set with North
American in situ measurements indicated significant spatial agreement
for secondary inorganic aerosol, particulate organic mass, black carbon,
mineral dust, and sea salt. We found that global population-weighted
PM2.5 concentrations were dominated by particulate organic mass (11.9
± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and
mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5
concentrations exceeded 30 μg/m3 over East China. Sensitivity
simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as
from fossil fuel combustion sources (17 μg/m3). These estimates offer information about global population exposure to the
chemical components and sources of PM2.5.

■ INTRODUCTION

A large body of evidence has established that short-term human
exposure to various chemical constituents of particulate matter
(PM) with aerodynamic diameter less than 2.5 μm (PM2.5) is
associated with adverse health effects including increased
hospital admissions (e.g., refs 1−3), cardiovascular, respiratory,
and all-cause mortality (e.g., refs 4−8). However, the health
impacts of long-term exposure to PM2.5 chemical components
are less well understood, in contrast to the well-established
relationship of the total PM2.5 mass with adverse health effects
(e.g., refs 9−11). Epidemiologic and health impact assessments
of PM2.5 composition have been impeded by the paucity of long-

term measurements of PM2.5 composition. Spatial mapping of
aerosol composition could help in elucidating the health impacts
of fine particulate matter components.
Satellite remote sensing for surface air quality has developed

rapidly over the past decade.12,13 Aerosol optical depth (AOD),
an optical measure of the column integrated aerosol abundance
in the atmosphere, can now be reliably retrieved from satellite
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remote sensing over land. Several studies have demonstrated
close relationships between AOD and PM2.5 (e.g., refs 14−16) to
the point that AOD is being used for operational air quality
forecasting.17,18 However, the relation of AOD with PM2.5 is
complex,19 and, despite progress in retrieving aerosol composi-
tion from satellite,20,21 current satellite instrumentation provides
incomplete information on the chemical composition of PM2.5.

13

Chemical transport models (CTMs) also have developed
markedly over the past decade. Current CTMs are capable of
simulating the atmospheric distribution of aerosols and of
calculating the local, coincident relationship of satellite AOD
with ground-level PM2.5 concentration at a regional22 and
global23 scale. CTMs also offer the capability to simulate the
major chemical components of PM2.5 including secondary
inorganic aerosol (sulfate, nitrate, and ammonium), primary
and secondary organic aerosol, black carbon, mineral dust, sea
salt, and aerosol water. These model developments offer
information about the relation of AOD with ground-level
PM2.5 and its chemical composition. CTMs are also being used to
quantify the contributions of specific emission sources to PM2.5

to inform mitigation strategies (e.g., refs 24 and 25).
Scientific understanding of PM2.5 chemical composition has

been closely coupled with advances in measurements. For
example, several in situ monitoring networks across the U.S. and
Canada routinely measure the major components of PM2.5 (e.g.,
refs 26 and 27). Numerous studies combined these in situ data to
study the spatial and temporal variation of PM2.5 chemical
composition (e.g., refs 28−30). Other established networks are

the European Monitoring and Evaluation Programme (EMEP;
http://www.emep.int/) and the Acid Deposition Monitoring
Network in East Asia (EANET; http://www.eanet.cc/) which
measure some components of PM2.5. Research measurements
offer additional valuable data. These in situ measurements are too
sparse to fully represent population exposure across the world.
However, they provide an opportunity to evaluate PM2.5
composition inferred from satellite remote sensing and modeling
(hereafter, satellite-model).
We combined satellite-derived AOD with global modeling of

coincident aerosol vertical profile and composition to produce a
global long-term (2004−2008) mean ambient outdoor satellite-
model PM2.5 composition data set at a spatial resolution of 0.1° ×
0.1°. We evaluated this data set with in situ measurements across
North America and where available in the rest of the world. We
combined model sensitivity simulations with satellite-derived
AOD to estimate three major emission sources of total PM2.5
mass. We subsequently estimated the population-weighted
concentrations of ambient PM2.5 chemical components and its
major emission sources.

■ MATERIALS AND METHODS

Processing Satellite AOD Observations. We began with
AOD retrievals from the two Moderate Resolution Imaging
Spectroradiometer (MODIS) instruments onboard the Terra
and Aqua satellites and the Multiangle Imaging Spectroradi-
ometer (MISR) instrument onboard Terra. Aerosol retrievals
(collection 5) from each MODIS instrument provide near-daily

Figure 1. Mean ratio of PM2.5 composition to AOD for 2004−2008. PM2.5 composition is represented as dry mass. Abbreviations are Secondary
Inorganic Aerosol (SIA; the sum of SO4

2−, NO3
− ,and NH4

+), Organic Mass (OM), and Black Carbon (BC). Gray denotes water. The top-left panel
contains the boundaries of the three nested GEOS-Chem regions.
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global coverage of cloud-free regions at a resolution of 10 km ×
10 km.31 The MISR retrieval algorithm (version 22) uses
multiangle, multispectral observations to provide aerosol optical
properties at a spatial resolution of 18 km × 18 km and global
coverage of cloud-free regions within 9 days.21 The operational
MODIS and MISR retrievals together provide more reliable
global AOD than from either instrument alone.23

Following van Donkelaar et al.,23 we collected daily AOD
retrievals of these three satellite sensors from 2004 to 2008 and
regridded them separately onto a resolution of 0.1° × 0.1°. We
then divided the world into nine regions with distinct surface
type based on the MODIS BRDF/Albedo product (MOD43,
Collection 5,32). We used the available ground-based sun
photometer AOD measurements (Aerosol Robotic Network,
AERONET,33) over these regions to identify the average
monthly bias of satellite AOD for each region. We retained the
daily satellite AOD observations with a local monthly bias less
than± (20% or 0.1). We included two textural filters for MODIS
AOD to reduce cloud contamination by excluding data with no
adjacent retrievals and grids with AOD and coefficient of
variation greater than 0.5.34,35 These three different (MODIS/
Terra, MODIS/Aqua, MISR/Terra) AOD data sets at 0.1° ×
0.1° resolution are the major observational inputs for this study.
Inferring PM2.5 Chemical Composition from AOD. Our

approach to infer the 24-h average ground-level dry PM2.5
concentrations of each chemical component, i from the observed
aerosol optical depth, AODSat, involved a chemical transport
model (GEOS-Chem) to calculate that relationship

= ×component
component

AOD
AODi

i

Sat
CTM

CTM
Sat

(1)

Themajor PM2.5 components included sulfate (SO4
2−), nitrate

(NO3
−), ammonium (NH4

+), total secondary inorganic aerosol
(SIA, sum of SO4

2−, NO3
−, and NH4

+ ions), particulate organic
mass (OM), black carbon (BC), mineral dust, and sea salt. The
subscript CTM indicates values from a chemical transport model.
The simulated conversion factor, defined as the ratio of
components to AOD, relates the observed AOD to the
ground-level PM2.5 components. The approach of distributing
the observed AOD across simulated aerosol composition has
similarity to AOD assimilation methods (e.g., ref 36).
We used the GEOS-Chem global CTM (http://geos-chem.

org) to calculate the local conversion factors coincident with each
satellite observation. The GEOS-Chem model simulates the
temporal and three-dimensional spatial distributions of various
aerosol components and gases using assimilated meteorology
and emission inventories as major inputs [details in the
Supporting Information (SI)]. We conducted a global simulation
at 2° × 2.5° spatial resolution and three nested regional
simulations at 0.5° × 0.667° resolution from 2004 to 2008 using
assimilated meteorological data from the Goddard Earth
Observing System (GEOS-5) at the NASA Global Modeling
Assimilation Office (GMAO). The global simulation outputs are
overwritten with nested regional simulations over North
America, Europe, and East Asia. The top left panel of Figure 1
provides the boundaries of these regions. These nested
simulations improve over the 2° × 2.5° resolution used by van
Donkelaar et al.23 The PM2.5 dry mass composition of the lowest
layer of the model centered at 70 m above ground was taken to
represent the ground-level concentration. We averaged the
simulated AOD between 1000 and 1200 h local solar time to
correspond with Terra overpass and 1300 and 1500 h local solar

time to correspond with Aqua overpass. We calculated the daily
local Terra and Aqua conversion factors as the ratio of 24 h
average PM2.5 components to the corresponding AOD at satellite
overpass period.
We applied eq 1 to produce PM2.5 components from individual

AOD observations from the two MODIS and the MISR
instruments from 2004 to 2008. We accounted for incomplete
sampling by scaling the monthly data with the ratio of monthly
mean simulated composition sampled continuously versus
sampled coincidently with satellite observations. We capped
the variation from the monthly mean simulated composition at
the species-dependent uncertainties calculated by van Donkelaar
et al.37 This cap represents a level of confidence in the simulation
and avoids unrealistic conditions that can arise from the
correlation of sensor sampling with PM2.5 composition. We
required 20 successful satellite observations for each 0.1° grid box
per five-year monthly mean; otherwise monthly mean simulated
composition was used as occurred for 0.5% of the global
population. We averaged the monthly data to obtain the long-
term mean satellite-model combined PM2.5 composition.
We evaluated the satellite-model estimate with PM2.5

composition measurements from networks over North America,
Europe, East Asia, and elsewhere with annually representative
composition measurements from publications as described in the
SI.
The uncertainty associated with the satellite-model PM2.5

composition arises from bias in the satellite AOD retrieval,
from simulating the PM2.5/AOD ratio, from the simulated PM2.5
fractional composition, and from incomplete sampling. We
represented the uncertainty in the satellite AOD retrieval bias as
the maximum of either an absolute AOD of 0.1 or a relative value
of 20%, since AERONET was used to identify and exclude
regions and time periods with larger expected bias. We estimated
the uncertainty in the model vertical profile bias as the annual
mean difference in the PM2.5/AOD ratio if observations from the
CALIOP satellite instrument38 were used to adjust the ratio
following van Donkelaar et al.37 We assessed the bias in the
simulated PM2.5 fractional composition for each component
(ratio of PM2.5 components to total PM2.5 mass) by comparison
with available in situ observations. Uncertainty due to incomplete
sampling was estimated as the difference between the long-term
mean simulated PM2.5 composition sampled continuously versus
coincidently with the satellite observations. We assumed 100%
sampling error for grids without satellite observations. The
estimated uncertainty from a quadrature sum of these
uncertainty terms may be underestimated since the errors
contain systematic components, can be asymmetric, and can be
correlated with each other and with PM2.5 composition. Thus, we
added the median global PM2.5 composition to the quadrature
sum to better represent the unresolved contributions to total
uncertainty especially in the regions with low values of PM2.5
composition.

Estimating the PM2.5 Emission Sources. PM2.5 constitu-
ents arise from different emission source sectors such as fossil fuel
combustion, biofuel combustion, and biomass burning. Fossil
fuel combustion includes burning of coal, oil, and gas from
vehicular and industrial sources. Biofuel combustion includes
burning of wood and crop residue for domestic cooking and
heating. Biomass burning includes both natural open fires and
anthropogenic activities such as land cleaning and burning in
fields. Quantitative determination of these sectoral contributions
to PM2.5 can inform mitigation strategies.
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We therefore estimated the sectoral sources of total PM2.5
using sensitivity simulations to exclude specific emission sectors.
For this, we performed three global simulations for a year (2005)
by excluding fossil fuel combustion, biofuel combustion, and
biomass burning sources, respectively. We scaled the PM2.5
relative variation from sensitivity simulations (compared with a
base simulation) to the sum of satellite-model PM2.5 composition
estimate. We calculated sectoral contributions of PM2.5 at 35%
relative humidity to conform with PM2.5 measurement standards.
We calculated the regional population exposure for the GBD

regions (Global Diseases, Injuries, and Risk Factors 2010 study;

the top panel of Figure 4 shows the 21 GBD regions) using the
population data at 0.1 resolution for 2005 described in Brauer et
al.39 and the satellite-model PM2.5 composition and emission
sources.

■ RESULTS AND DISCUSSION

SI Figure S1 contains a map of the long-term (2004−2008)mean
AOD from the MODIS and MISR satellite instruments.
Enhancements exist over anthropogenic pollution sources of
South and East Asia, over mineral dust source regions of the

Figure 2. PM2.5 composition from satellite-model and in situ observations across North America. PM2.5 composition is represented as dry mass.
Abbreviations are Secondary Inorganic Aerosol (SIA; the sum of SO4

2−, NO3
−, and NH4

+), Organic Mass (OM), and Black Carbon (BC). Gray denotes
water or missing in situ measurement data. Scatter plots are in SI Figure S2.
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Sahara, and over biomass burning regions of South America,
Central Africa, and Equatorial and Southeast Asia.
Figure 1 shows the long-term (2004−2008) mean GEOS-

Chem simulated ratio of PM2.5 components to AOD. The ratio
represents the relative importance of various PM2.5 components
to the total AOD over different regions of the globe. The mass/
AOD ratio is high over regions with relatively large abundance of
that PM2.5 component near the ground. Nonhygroscopic
components (e.g., mineral dust) exhibit high conversion factors
due to the low contribution of aerosol water to AOD. The high
mass/AOD ratios for secondary inorganic PM2.5, OM, and
mineral dust indicate that these components are the dominant
contributors to global AOD over land. Secondary inorganic
PM2.5 dominates over industrial regions. Particulate organic mass
from biomass burning is the primary contributor to AOD over
the Amazon, Central Africa, Northern India, and Oceania.
Mineral dust is the primary contributor to AOD over deserts.
Black carbon is a small component of AOD but is more apparent
in local hotspots. Sea salt generally has the lowest conversion
factor over land.
Figure 2 shows the satellite-model and in situ observations of

North American PM2.5 composition. The in situ observation of a
large sulfate burden in the East is well reproduced in the satellite-
model product. Nitrate and ammonium are enhanced south of
the Great Lakes where intense agriculture sources of ammonia
and weak sulfur sources contribute to excess ammonia gas that is
available for forming ammonium nitrate. The Californian nitrate
enhancements are under-predicted reflecting difficulties in

representing this heterogeneous region.40,41 Together these
secondary inorganic ions comprise a major fraction of the total
PM2.5 in the Eastern U.S., reaching concentrations of
approximately 10 μg/m3. The spatial pattern of particulate
organic mass over the southeastern U.S. is generally captured in
the satellite-model product. Black carbon concentrations exhibit
hotspots in industrial regions; performance elsewhere is more
variable given the stochastic nature of fires. Fine-mode dust and
fine sea salt emissions are weak contributors to PM2.5 mass
throughout the continent with typical mass concentrations below
1 μg/m3. The primary exception is for mineral dust over deserts
in the southwest.
SI Figure S2 shows scatter plots of satellite-model PM2.5

components with North American in situ observations, and SI
Table S1 contains detailed comparison statistics of in situ with
either the satellite-model or pure GEOS-Chem PM2.5
composition. The correlation between satellite-model sulfate
and ground monitors is high (r = 0.95, slope = 0.89).
Concentrations are also well predicted for nitrate (r = 0.68,
slope = 1.01) and ammonium (r = 0.89, slope = 0.98). The
performance for OM is weaker (r = 0.45, slope = 1.17) likely due
to the difficulty in simulating secondary organic aerosol and fires
and due to sporadic measurements of stochastic fire events. Black
carbon, mineral dust, and sea salt have modest agreement with in
situ measurements with correlations of 0.56, 0.58, and 0.62,
respectively. The bias for all components is within 35%. The in
situ observations are similarly correlated with the satellite-model
product and the GEOS-Chem simulation, with noteworthy

Figure 3. Satellite-model global long-term mean (2004−2008) PM2.5 composition. PM2.5 composition is represented as dry mass. Abbreviations are
Secondary Inorganic Aerosol (SIA; the sum of SO4

2−, NO3
− ,andNH4

+), OrganicMass (OM), and Black Carbon (BC). Gray denotes water. Values from
in situ observations are overlaid as colored circles. SI Table S1 contains the detailed comparison statistics.
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improvements in the slope versus the GEOS-Chem simulation
for secondary inorganic ions.
Figure 3 shows the global satellite-model estimate of long-term

mean PM2.5 composition where the filled circles represent the
location and value of the in situ observations used to evaluate the
data set outside of North America. Detailed statistics are given in
SI Table S1. Secondary inorganic aerosol concentrations over
East China exceed 30 μg/m3. About half of the simulated
secondary inorganic aerosol is sulfate which is consistent with in
situ measurements.42 The Indo-Gangetic Plain, China, and
biomass burning regions of South America and Central Africa are
highlighted in the OM map. Previous studies have also noted
pronounced OM in these regions.43,44 Hotspots of black carbon
are most apparent in China and the Indo-Gangetic Plain where in
situ measurements also indicate enhancements.44,45 Mineral dust
is the largest contributor to PM2.5 over the desert regions of
North Africa, Middle East, and Central Asia with concentrations
greater than 50 μg/m3 over broad regions. The satellite-model
product exhibits high correlations for secondary inorganic
aerosol (r = 0.93) and its components, with slopes within 20%
of unity. Carbonaceous aerosols are again less well represented;
sparse in situ monitors may play a role for fires. The satellite-
model product outperforms the pure model simulation for all
components (e.g., for secondary inorganic aerosols the slope
improved from 0.64 to 0.91; for organic matter the correlation
improved from 0.61 to 0.67).
Table 1 summarizes the global and regional statistics of

population exposure to ambient PM2.5 composition. Our
estimates suggest that particulate organic mass is the dominant
form of ambient PM2.5 with a global population-weighted
concentration of 12 μg/m3. Other major contributors to global
population-weighted PM2.5 mass are secondary inorganic
components (11 μg/m3) and mineral dust (11 μg/m3). The
secondary inorganic components are dominated by sulfate (6.2

μg/m3), followed by ammonium (2.7 μg/m3) and nitrate (2.2
μg/m3). On a regional scale, secondary inorganic PM2.5
concentrations are noteworthy in East Asia (28 μg/m3) and
South Asia (11 μg/m3). The mean ambient particulate organic
mass concentration is 22 μg/m3 in both South Asia and East Asia.
Mineral dust concentrations exceed 20 μg/m3 in West Africa,
North Africa, Middle East, and Central Asia. These PM2.5 values
are higher than previous work18,23 arising from our use of satellite
AOD for all fine mode fraction values and increased carbona-
ceous aerosol emissions over East Asia as described in the SI.
SI Figure S3 shows the total estimated absolute uncertainty of

the satellite-model PM2.5 composition as determined by
propagation of error. For many species, the primary source of
uncertainty arose from the simulated PM2.5 fractional composi-
tion with corresponding values for sulfate (27%), nitrate (38%),
ammonium (29%), SIA (29%), OM (45%), BC (36%), dust
(52%), and sea salt (122%). In regions of low AOD (below 0.1),
uncertainty in the satellite AOD retrieval can exceed 100%.
Uncertainty due to model vertical profile bias was 10%−30% in
most regions with exceptions in convective regions (SI Figure
S4). However, uncertainty on a monthly basis could be even
higher due to seasonal differences in vertical mixing.46 Sampling
uncertainty was below 30% throughout low latitudes except for
seasonally convective regions with cloud cover that prohibits
observations (SI Figure S5). Decreases in observation frequency
at high latitudes increased uncertainty from incomplete sampling
especially for nitrate and carbonaceous components that have
large seasonal variation. The global population-weighted mean
uncertainty for sulfate (2.8 μg/m3), nitrate (1.2 μg/m3),
ammonium (1.2 μg/m3), secondary inorganic PM2.5 (5.0 μg/
m3), organic mass (7.3 μg/m3), black carbon (1.2 μg/m3),
mineral dust (7.9 μg/m3), and sea salt (0.8 μg/m3) ranged from
∼45% of the population-weighted concentrations for many
species (Table 1) to ∼142% for sea salt.

Table 1. Population-Weighted Regional PM2.5 Composition and Three Major Emission Sources Contributing to PM2.5
a

PM2.5 composition (μg/m3) PM2.5 emission (μg/m3)

region SO4
2− NO3

− NH4
+ SIA OM BC dust seasalt fossil fuel biofuel biomass population (%)

World 6.2 2.2 2.7 11.1 11.9 2.5 11.1 0.6 17.1 11.2 1.3 100.0
Asia Pacific, High Income 5.5 1.5 2.0 9.0 4.8 1.9 3.7 0.9 16.2 2.1 0.3 2.7
Asia, Central 3.2 0.6 1.3 5.1 3.7 0.5 21.3 0.1 7.2 6.5 0.3 1.3
Asia, East 14.5 6.6 7.0 28.0 21.7 5.7 11.7 0.5 45.8 20.2 0.3 21.2
Asia, South 6.9 1.1 2.8 10.8 21.6 3.9 14.3 0.5 15.8 24.1 0.6 22.9
Asia, South East 3.6 0.2 1.1 5.0 8.0 1.2 1.6 1.0 6.7 5.4 3.2 8.7
Australasia 0.7 0.1 0.2 1.0 0.8 0.1 1.1 1.0 1.1 0.2 0.2 0.4
Caribbean 1.2 0.2 0.2 1.6 1.0 0.2 4.8 1.7 1.8 0.1 0.2 0.5
Europe, Central 3.8 3.6 2.5 9.9 4.1 0.8 3.2 0.3 13.7 4.4 0.2 1.9
Europe, Eastern 2.9 2.3 1.7 6.9 2.9 0.4 2.8 0.2 9.0 2.8 0.3 3.3
Europe, Western 2.3 3.2 1.7 7.2 2.1 0.7 3.3 0.8 10.6 1.4 0.2 6.1
Latin America, Andean 2.1 0.0 0.6 2.7 3.2 0.2 0.1 0.5 2.8 0.6 2.9 0.8
Latin America, Central 3.1 0.4 1.0 4.4 2.5 0.5 1.6 0.7 5.2 0.4 1.4 3.4
Latin America, Southern 1.9 0.1 0.5 2.4 2.7 0.3 2.4 0.5 3.0 1.2 1.0 0.9
Latin America, Tropical 1.1 0.1 0.4 1.6 3.4 0.3 0.2 0.6 2.1 1.6 1.8 2.9
North Africa/Middle East 3.5 0.3 1.2 4.9 1.7 0.4 29.0 0.6 6.7 0.8 0.2 6.4
North America, High Income 2.9 1.3 1.3 5.6 3.9 0.9 0.7 0.4 10.2 0.5 0.2 5.0
Oceania 0.5 0.0 0.1 0.6 0.2 0.0 0.1 0.5 0.1 0.1 0.1 0.1
Sub-Saharan Africa, Central 1.6 0.0 0.5 2.1 14.8 0.8 4.9 0.3 1.3 3.9 14.4 1.3
Sub-Saharan Africa, East 1.1 0.1 0.3 1.4 4.6 0.5 9.2 0.6 1.0 3.7 2.7 4.8
Sub-Saharan Africa, Southern 1.9 0.1 0.6 2.6 3.4 0.3 0.7 0.6 3.2 0.9 2.8 1.0
Sub-Saharan Africa, West 1.5 0.1 0.5 2.1 5.1 0.4 45.7 0.3 2.4 2.5 5.4 4.4

aThe top panel of Figure 4 shows the borders of GBD (Global Diseases, Injuries, and Risk Factors 2010 study) regions. Abbreviations are Secondary
Inorganic Aerosol (SIA; the sum of SO4

2−, NO3
− ,and NH4

+), Organic Mass (OM), and Black Carbon (BC).
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Figure 4 shows the contributions to PM2.5 from fossil fuel
combustion, biofuel combustion, and biomass burning.

Enhanced anthropogenic sources are apparent over industrial
and populated regions. Biofuel sources over Asia reflect domestic
cooking and heating with nonfossil fuel sources. Biomass burning
dominates in Central Africa and the Amazon. Biogenic sources,
mineral dust, and sea salt constitute the remaining portion of
PM2.5. Table 1 contains the global and regional statistics of
population exposure to various source sectors of PM2.5.
Population-weighted PM2.5 is dominated by fossil fuel
combustion (17 μg/m3) followed by biofuel combustion (11
μg/m3) and biomass burning (1.3 μg/m3). PM2.5 is high from
emissions of fossil fuel combustion over East Asia (46 μg/m3),
biofuel combustion over South Asia (24 μg/m3) and East Asia
(20 μg/m3), and biomass burning over Central Africa (14 μg/
m3). Although these sensitivity simulations are uncertain, it is
noteworthy that outdoor PM2.5 from biofuel combustion is
comparable to that from fossil fuel combustion in South Asia.
This is in line with previous findings of high ambient PM2.5
exposure from biofuel burning47,48 and in addition to PM2.5
exposure from household air pollution.49

The chemical composition of ambient ground-level fine
particulate mass is of relevance for epidemiological and health
impact studies.50−53 To our knowledge, these estimates
developed from satellite AOD observations and CTM

simulations offer the first assessment of the long-term exposure
to all major PM2.5 chemical components throughout the world.
Multiple opportunities exist to improve the estimates. Advances
in satellite remote sensing54 could yield more observational
information on aerosol components. Future developments in the
modeling of aerosol composition such as organic mass are
needed. Other emerging sources of information on the sources of
aerosol precursors include satellite observations of trace gases55

such as NO2,
56 SO2,

57 and NH3.
58 Assimilation of these

components into a chemical transport model would provide
additional constraints on PM2.5 composition. Finer resolution
satellite retrievals and simulations would better resolve intra-
urban gradients. Tracemetals are an important PM2.5 component
that should be added as their simulation capability improves.
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