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� Abstract
We present a model-based clustering method, SWIFT (Scalable Weighted Iterative
Flow-clustering Technique), for digesting high-dimensional large-sized datasets
obtained via modern flow cytometry into more compact representations that are well-
suited for further automated or manual analysis. Key attributes of the method include
the following: (a) the analysis is conducted in the multidimensional space retaining the
semantics of the data, (b) an iterative weighted sampling procedure is utilized to main-
tain modest computational complexity and to retain discrimination of extremely small
subpopulations (hundreds of cells from datasets containing tens of millions), and (c) a
splitting and merging procedure is incorporated in the algorithm to preserve distin-
guishability between biologically distinct populations, while still providing a significant
compaction relative to the original data. This article presents a detailed algorithmic
description of SWIFT, outlining the application-driven motivations for the different
design choices, a discussion of computational complexity of the different steps, and
results obtained with SWIFT for synthetic data and relatively simple experimental data
that allow validation of the desirable attributes. A companion paper (Part 2) highlights
the use of SWIFT, in combination with additional computational tools, for more chal-
lenging biological problems. VC 2014 The Authors. Published by Wiley Periodicals Inc.†

� Key terms
automated multivariate clustering; rare subpopulation detection; Gaussian mixture
models; weighted sampling; ground truth data

INTRODUCTION

FLOW cytometry (FC) has become an essential technique for interrogating individ-

ual cell attributes with a wide range of clinical and biological applications (1–4). The

goals of FC analysis are to identify groups of cells that express similar physical and

functional properties and to make biological inferences by comparing cell popula-

tions across multiple datasets. The massive size and dimensionality of modern FC

data pose significant challenges for data analysis (�106 cells, >35 dimensions in

some instruments). FC data have traditionally been analyzed manually by visualizing

the data in bivariate projections. This manual analysis is subjective, time consuming,

can be inaccurate in case of overlapping populations, and scales poorly with increas-

ing number of dimensions. Moreover, many discriminating features present in the

high-dimensional data may not be distinguishable in 2D projections. As a result,

automated multivariate clustering has become highly desirable for objective

and reproducible assessment of high dimensional FC data. Recently several methods

have been proposed, which can be broadly classified into two categories: (a) nonpro-
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babilistic hard clustering (5–8) and (b) probabilistic soft clus-

tering (9–14). Hard clustering, which assigns each cell to one

of the possible clusters, is likely more familiar to users of man-

ual gating and is also essential for cell sorting. Soft probabilis-

tic clustering on the other hand determines, for each cell, a

probability assignment distribution over the full set of clus-

ters, thereby allowing for overlapping clusters.

Analysis of FC data seeks to identify biologically meaningful

cell subpopulations1 from per cell measurements of antigen

expression correlates measured via a set of flurophore tags. Typi-

cal datasets exhibit a high dynamic range for the number of

events in each subpopulation, i.e., within a dataset, there are sub-

populations with a large percentage (10% or higher) of the total

events and subpopulations with a small percentage of the total

events (0.1% or lower). The small subpopulations are often bio-

logically significant and therefore important to resolve. Distin-

guishing these small subpopulations is challenging because, in

the measurement space, they often consist of observations that

form skewed, non-Gaussian distributions that appear merged as

“shoulders” of larger subpopulations with which they overlap.

To meet these challenges, we propose a soft mixture-

model based framework “SWIFT” (Scalable Weighted Iterative

Flow-clustering Technique), which scales to large FC datasets

while preserving the capability of identifying small clusters

representing rare subpopulations. SWIFT differs algorithmi-

cally from prior methods in four main aspects: (a) the mixture

modeling is performed in a scalable framework enabled by

weighted sampling and incremental fitting, allowing SWIFT

to handle significantly larger datasets than alternative mixture

model implementations; (b) the weighted sampling is explic-

itly designed to allow resolution of small potentially overlap-

ping subpopulations in the presence of a high dynamic range

of cluster sizes; (c) the algorithm includes a splitting and

merging procedure that yields a final mixture model where

each component is unimodal but not necessarily Gaussian;

and (d) the determination of the number of clusters K is per-

formed as an integral part of the algorithm via the intuitively

appealing heuristic of unimodality. Parts of the SWIFT frame-

work have been previously presented in their preliminary form

in (15). Recently, the detection of rare cell subpopulations has

also been independently addressed in Ref. (14) using a hierarchi-

cal Dirichlet process model to solve the dual problems of finding

rare events potentially masked by nearby large populations and

to provide alignment of cell subsets over multiple data samples.

Compared with (14) SWIFT achieves better resolution of rare

populations (data presented in companion manuscript (16)).

Also, the weighted iterative sampling and incremental fitting

algorithmic approach in SWIFT strategy scales better to large

datasets allowing the algorithm to operate on conventional work-

stations instead of requiring specialized GPU hardware. SWIFT

is available for download at http://www.ece.rochester.edu/proj-

ects/siplab/Software/SWIFT.html.

PROBLEM FORMULATION

To describe our methodology in precise terms, we con-

sider the following mathematical formulation for our prob-

lem: N independent events, each belonging to one of several

classes that are unknown a priori, generate a corresponding

set of N, d-dimensional observations x1; x2; . . . ; xN 2 Rd . We

will assume column vectors as our default notational conven-

tion so that each xi is a d 3 1 vector. Given the d 3 N input

dataset X 5 [x1, x2, . . ., xN], we wish to estimate the number

of distinct classes and the class for each of the N events. We

refer to the estimated classes as clusters and denote by K the

total number of clusters.

In the FC context, the events correspond to distinct trig-

gering of FC measurements, usually caused by individual

cells,2 and the classes correspond to biologically meaningful

cell subpopulations. For FC measurements, it is common for a

given region of the d-dimensional observation space to con-

tain a significant number of observations from different sub-

populations. With some abuse of terminology, in such cases,

we say that the corresponding subpopulations, or classes,

overlap. Because of the overlaps between classes, it is appro-

priate to assign soft memberships, i.e., allow an event to

belong to each of the K clusters with associated probabilities

(or from an alternative perspective, to allow fractional mem-

berships in each of the K clusters). Thus, our goal is to deter-

mine a membership probability matrix X5fxijg, where xij

represents the probability that event i belongs to cluster j, for

1� i�N and 1� j�K, and
P

j xij51 for all 1� i�N.

A natural way to model the data in this setting is as a K-

component mixture model. Specifically, we assume the given

dataset X represents N independent observations of a d-

dimensional random variable X, that follows a K-component

finite mixture model, whose probability density is given by:
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1A subpopulation represents a set of events that is apparently

homogeneous at the resolution of the FC experiment under

consideration.

2Occasionally, the events may represent doublets composed of

amalgamations of two cells each or debris from dead cells.
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pðxjHÞ5
XK

j51

pj fjðxjHjÞ; (1)

where fjðxjHjÞ is the probability density function of the j-th

mixture component having parameters Hj and mixing coeffi-

cient pj (pj > 0 and
PK

j51 pj51). Our goal is to estimate the

parameter vector H5½pj ;Hj �Kj51 such that H maximizes the

likelihood of the given data X and also the density function

fjðxjHjÞ in some parametric form. Once the mixture model

parameter vector H is estimated, soft clustering can be per-

formed by estimating the posterior membership probabil-

ities using Bayes’ rule, viz.,

xij5
pj fjðxijHjÞXK

l51
pl flðxijHlÞ

: (2)

The finite mixture model therefore provides a framework

for performing soft clustering in a principled manner, as has

been done for a variety of problems (17, 18).

SWIFT ALGORITHM

Pragmatic considerations of complexity for the mas-

sive datasets encountered in FC motivated our choice of

functional form for fjðxjHjÞ. Parameter estimation can be

performed much more efficiently for Gaussian mixture

models (GMMs) than for alternative models such as mix-

tures of skewed Gaussians or skewed t-distributions that

allow a greater flexibility for modeling naturally occurring

(e.g., FC) distributions, for a given number of compo-

nents K. However, the value of K is, in truth, arbitrary

and cannot be determined apart from external heuristic

considerations. Because a wide class of distributions can

be closely approximated by using sums of Gaussians (19,

20), we address non-Gaussianity of common FC data by

using a larger number of Gaussians (KG>K) and allowing

multiple Gaussians to represent a single non-Gaussian

cluster.

In SWIFT, the probability density of X is approximated

by fitting a KG component (KG �K) GMM, and each density

component fj in Eq. (1) corresponds to a combination of one

or more of these Gaussian components. Formally, the proba-

bility density pðxjHÞ is approximated as:

pðxjHÞ ¼
XK

j¼1

pj fjðxjHjÞ ¼
XKG
l¼1

alglðxjll ;RlÞ; (3)

where

glðxjll ;RlÞ5
1

ð2pÞd=2jRl j1=2
exp 2

1

2
ðx2llÞ

T Rl
21ðx2llÞ

� �

is the multivariate Gaussian distribution with mean

ml, covariance matrix Rl, and mixing coefficient al. We seek

to estimate the parameter vector of the GMM,

HG5½al ; ll ;Rl �KGl51. After obtaining HG, we combine Gaussian

mixture components (gl) to represent the mixture compo-

nents fj of the general mixture model. Specifically, if the j-th

mixture component fj is a combination of the lj Gaussians

with indices fI ðjÞ1 ; . . . ; I
ðjÞ
lj
g, we obtain the parameters

Figure 1. The SWIFT algorithm: (a) Overall workflow and (b) Weighted iterative sampling.

Original Article

410 SWIFT Flow Cytometry Clustering – Part 1



H5½pj ;Hj �Kj51, such that pj5
Plj

m51 a
I
ðjÞ
m

, and Hj5flI
ðjÞ
m
;

R
I
ðjÞ
m
glj

m51. Observe that the model in Eq. (3) represents a finite

mixture model (17), where each individual mixture compo-

nent is a combination of several Gaussian components.

The number KG of Gaussians in Eq. (3) should be deter-

mined so as to provide an adequate approximation to the

observed distributions. Specifically, it should provide enough

resolution to identify rare subpopulations commonly of inter-

est in FC data analysis, where it is often desirable to resolve

subpopulations including 0.1% or fewer of the total events in

a “background” of other larger subpopulations accounting for

10% or more of the total events. Intuitively, we expect that

multimodal distributions do not correspond to a single

subpopulation.

All these considerations motivated the SWIFT algorithm,

which consists of three main phases shown schematically in Fig-

ure 1a: an initial GMM fitting using K0 components; a modal-

ity based splitting stage that splits multimodal clusters and

results in KG �K0 Gaussian components in Eq. (3); and the

final modality-preserving merging stage resulting in the K�KG
component general (not necessarily Gaussian) mixture model

of Eq. (1), allowing representation of subpopulations with

skewed but unimodal distributions as individual clusters. The

individual phases are described in detail in the following

subsections.

Scalable GMM Fitting Using Expectation

Maximization

Traditionally, parameter estimation for GMMs is done

using the Expectation Maximization (EM) algorithm (21),

but the EM algorithm is computationally expensive for large

FC datasets (e.g. N � 106 events, KG �102 Gaussian compo-

nents, and d> 20 dimensions). Each EM iteration requires

OðNKGd2Þ operations, and is therefore prohibitively slow.

Moreover, FC datasets tend to show high dynamic ranges in

subpopulation sizes. The EM algorithm often fails to isolate

such small overlapping subpopulations, because of slow

convergence rate. SWIFT’s weighted iterative sampling

addresses these twin challenges by scaling the EM algorithm

to large datasets, while allowing better detection of small

subpopulations. The parameter estimates are refined by per-

forming a few iterations of the Incremental EM (IEM) (22)

algorithm on the entire dataset X . An optional scalable

ensemble clustering step improves the robustness of cluster-

ing in a scalable manner. To make the description self-

contained, we present a brief overview of the EM and the

IEM algorithms in the context of GMM fitting in the Sup-

porting Information (Section A).

Weighted iterative sampling based EM. Algorithm 1 and

Figure 1b summarize the weighted iterative sampling based

EM procedure used in SWIFT. Motivation and key steps are

highlighted next. An intuitive way to reduce computational

complexity for large datasets is to work on a smaller sub-

sample S drawn from the dataset X . When the mixing coef-

ficients (aj) exhibit a high dynamic range, a uniform

random sample drawn from the dataset usually represents

the large subpopulations with reasonable fidelity but is

inadequate for resolving rare populations, for which param-

eter estimation is markedly poor when operating on a uni-

form subsample.

We start with a uniform random sample S containing

n n� N observations drawn from X . First, a K0 compo-

nent GMM is fitted to S. Next, we fix the parameters of

the p (a user defined parameter) most populous Gaussians

and reselect a sample of n observations from X , drawn

according to a weighted distribution, where the probability

of selecting a data point equals the probability that the

data point does not belong to the already fixed clusters.

Specifically, let F be the set of Gaussian components whose

parameters have already been fixed and cij
3 be the poste-

rior probability that xi belongs to the jth Gaussian compo-

nent. Then, in the next iteration, we resample according to

a weighted distribution where the probability of selecting

each point xi is 12
P

l2F cil . The EM algorithm is applied

on the new sample with random reinitialization of the

Gaussian components that are not fixed yet (the means are

set to randomly chosen observations from the new sam-

ple). In each E-step, we estimate posterior probabilities

(cij) for all K0 Gaussian components. In the M-step we re-

estimate parameters of the remaining components exclud-

ing the already fixed ones. After each M-step, the mixing

coefficients aj ; j 2 F are normalized such that they add up

to ð12
P

l2F alÞ. As the algorithm proceeds, larger clusters

get fixed and the weighted resampling favors selection of

observations from smaller clusters, thereby improving the

chances of discovering smaller subpopulations. The resam-

pling and model-fitting steps alternate until all the cluster

parameters are fixed. A visual demonstration of the

weighted sampling method is shown in Figure 2. It can be

seen (see Supporting Information, Section B) that under

idealized conditions when observed data are indeed drawn

from a GMM and the parameters and posteriors for the fixed

clusters are correctly estimated, the weighted iterative sam-

pling algorithm proposed here exhibits the correct behavior.

The samples obtained with the weighted resampling are

equivalent to samples that would be drawn from a mixture

model consisting of only the clusters that are not fixed (so

far), where the mixing coefficients remain proportional to

their values in the original mixture but are re-normalized

to meet the unit sum constraint. Furthermore, in the pres-

ence of the large dynamic range for the mixing coeffi-

cients, the weighted iterative sampling mitigates problems

with convergence in the vicinity of the true parameters (Sup-

porting Information, Section B). The weighted iterative

sampling significantly reduces the computational complex-

ity of each iteration of EM from OðNK0d2Þ to OðnK0d2Þ,
where n is the sample size (n� N).

3At each iteration step, the posterior probability cij is obtained for

the current GMM by a computation directly analogous to the computa-

tion of xij in Eq. (2).
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Figure 2. Weighted iterative sampling based Gaussian mixture model (GMM) clustering for better estimation of smaller subpopulations.

Intermediate results along different stages of the algorithm and the final result are shown highlighting how smaller subpopulations are

emphasized in the weighted iterative sampling process. [Color figure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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Input: X ;K0; n; p

X : sequence of N data vectors fXðiÞgN

i51

K0: Number of initial Gaussian mixture components

n: Sample size

p: Number of components to fix at a time

Output: HK0
: Parameters of the initial Gaussian mixture

model (GMM)

1. Obtain set S of n random samples drawn from X .

2. Estimate GMM parameters HS using EM on S.

3. Estimate posterior probabilities cij via an E-step on X using

parameters HS .

4 Let F be the set of Gaussian components whose parameters

have been fixed. Initialize F 1.

5. repeat

6. Determine F1 5 {The p most populous Gaussian compo-

nents 2 Fg for the current model HS .

7. Fix the parameters of components 2 F1. Set F F [ F1.

8. Resample a set of n observations S from X with a

weighted distribution where each observation is selected

with probability ð12
P

l2F cilÞ.
9. Apply modified EM algorithm on S that does not update

the parameters of already fixed components. In the M

step, update only components 2 F.

10. Normalize the mixing probabilities aj ; j 2 F, computed

in the M step to ð12
P

l2F alÞ.
11. Perform a single E-step on X to recalculate the

posteriors cij.

12. Until all the components are fixed.

13. HK0

0  parameters of all the (K0) Gaussian components

2 F.

14. Perform a few (incremental) EM iterations on X with

HK0

0 as initial parameters.

15. HK0
 parameters estimated in the previous step.

Algorithm 1. Weighted iterative sampling based EM in SWIFT

Incremental EM iterations. Upon completion of the

weighted iterative sampling based EM procedure for GMM fit-

ting, SWIFT performs a few (typically 10) EM iterations on the

entire dataset to improve the fit taking the entire data into

account. However, even a few iterations on the entire dataset X
can be computationally expensive, particularly in terms of

memory requirements; the posterior probability distribution C
5fcijg; 1 � i � N ; 1 � j � K0 requires OðN3K0Þ storage,

which can be prohibitive for large datasets. Therefore, we use

memory-efficient IEM (22) (Supporting Information, Section

A) for the iterations performed over the entire dataset. The

IEM algorithm divides data into multiple blocks and performs

a partial E-step, one block at a time. For each block, the partial

E-step estimates the sufficient statistics for the associated block,

which are used in the subsequent M-step for updating parame-

ters. IEM is memory-efficient, because it processes only one

block of data at a time. Moreover, IEM can exploit information

from each data block earlier (without waiting for the entire

data scan), and thus can improve the speed of convergence for

large datasets (23) when each block is sufficiently large.

Multimodality Splitting

The initial GMM fitting may produce clusters that have

several density maxima in the d-dimensional observation

space. FC experts usually interpret each mode as a distinct

subpopulation. Therefore, SWIFT splits such multimodal

clusters into unimodal subclusters. Algorithm 2 summarizes

this multimodality splitting procedure. Let V i be the set of

observations associated with the ith Gaussian cluster.

SWIFT estimates one-dimensional kernel density functions

for each of the d observation dimensions and d principal

components of V i , where the optimal smoothing parameter

for the kernel density estimation procedure is determined in

a data-dependent manner using the normal optimal

smoothing method (24). A cluster is identified as multimo-

dal if any of the kernel density functions has more than one

local maximum. If the i-th initial cluster is identified as

multimodal, SWIFT fits a Ki component GMM to V i, where

Ki is the smallest number of components such that each fit-

ted subcomponent corresponds to a unimodal set of obser-

vations. To estimate Ki, SWIFT initiates GMM fitting with a

value of Ki 5 2, and increases Ki  Ki 1 1 until each of the

fitted subcomponents is unimodal. After performing split-

ting for all the initial multimodal clusters, we get a KG com-

ponent GMM with refined parameters HKG , where

KG5
PK0

i51 Ki .

For small clusters, many small spurious modes often

result because of the fact that there are not enough observa-

tions to allow for reliable density estimation. Therefore,

modes that are tsmall times smaller than the largest mode, for a

chosen threshold tsmall are ignored in estimating modality.

Furthermore, each multimodal cluster is split into no more

than Kmax components. The upper bound Kmax is useful for

the background clusters that are too diverse and sparse and

require a large number of components in order to render each

component unimodal.4

In the GMM fitting procedure in SWIFT, we also identify

some clusters as “background clusters” through an automatic

background detection technique that extends the method

described in Ref. (9). Background clusters are identified by

their low density and high volume, where the volume of a

cluster is approximated by the determinant of its covariance

matrix, and its density is estimated as the ratio of its popula-

tion size to its volume (9). SWIFT identifies a cluster as

“background” if its density is less than the overall data density,

and the cluster volume is larger than mean cluster volume.5

The sparse background clusters are typically multimodal in

many dimensions. Depending on the biological study, a user

may or may not want to split these background clusters. Biol-

ogists interested in major populations do not need to analyze

4Based on empirical experiments on our datasets, we typically set

Kmax 5 40 and tsmall 5 20.
5Volume for a cluster (or entire dataset) is estimated as the deter-

minant of the covariance of points in the cluster (entire data set).
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background clusters. However, in some biological studies

(e.g., stem cells, peptide stimulation, etc.), it is crucial to iden-

tify biologically significant small subpopulations (less than

100 observations, out of a total in the millions) that are

assigned to background cluster(s). In such situations, these

rare populations can be resolved by splitting the background

cluster(s)—an option that can be enabled in SWIFT via a

user-defined input parameter. Often background clusters do

not have enough population sizes for reliable GMM fitting. To

solve this problem, SWIFT performs an oversampling by rep-

licating the observations in the background cluster with a

small random perturbation and then performs splitting. This

oversampling and background splitting operation is effective

for finding rare subpopulations in large FC datasets.

The multimodality splitting stage is the most computa-

tionally expensive step in the current SWIFT implementation.

Let N i
max be the number of data points in the most populous

multimodal cluster, Kmax be the upper bound on the number

of resulting split clusters from a single multimodal cluster, Km

be the number of such multimodal clusters, d be the number

of dimensions, and Tmax be the maximum number of EM iter-

ations allowed. Then the worst case computational complexity

of the modality splitting stage is OðKmN i
maxK 2

maxd2TmaxÞ.

Input: X ;HK0
;Kmax

X : Input dataset

HK0
: parameters of the initial K0 component Gaussian mix-

ture model

Kmax: upper bound on maximum number of Gaussians fit to

an initial cluster

Output: HG;KG
HG: parameters of the refined Gaussian mixture model

KG: refined number of Gaussians

1. KG  0

2. for i 5 1 to K0 do

3. V i  set of observations in X associated with the ith ini-

tial Gaussian cluster.

4. Ki 1

5. if isMultiModalðV iÞ then

6 repeat

7. Ki Ki 1 1

8. H
0

i  EMðV i;KiÞ
9. until Ki�Kmax or all the subclusters of V i are unimodal

10. end

11. KG  KG1 Ki;

12. Update the parameters HG according to H
0

i ;

13. end

14. Return final parameters HG and final number of clusters

KG.

Algorithm 2. Multimodality splitting in SWIFT

LDA-Based Agglomerative Merging

The final step of SWIFT merges together Gaussian mixture

components obtained from the GMM fitting and multimodal-

ity splitting stages, allowing representation of subpopulations

with skewed but unimodal distributions. Merging mixture

components to represent skewed subpopulations is well-

established in the clustering literature (9, 11, 12, 20, 25, 26). We

propose a novel agglomerative merging algorithm based on

Fisher linear discriminant analysis (LDA) (27) that outperforms

previously proposed entropy-based merging method (26), in

terms of both speed and accuracy (Supporting Information Fig.

S7 and Table S1). The algorithm is explicitly motivated by the

need to maintain distinct unimodal clusters in the observed

datasets as distinct subpopulations. For a pair of clusters associ-

ated with two GMM components, LDA allows us to compute

the one-dimensional projection of the d-dimensional data for

which the separation between the clusters is maximized. Clus-

ters for which the LDA projection is unimodal are also unimo-

dal in the d-dimensional space and can therefore be merged

without compromising unimodality. This intuition is the basis

of the method that we adopt for merging, which is described

next.

The GMM estimation procedure combined with the

modality based splitting process yields a set of KG Gaussian

mixture components. For i 5 1, 2, . . ., KG, denoting the ith

Gaussian (mixture component) by gi, we associate with it a

corresponding cluster X i, comprising the subset of the

observed data X that the mixture model identifies as belong-

ing to gi. Our LDA merging algorithm successively merges

pairs of Gaussians until no further merging is possible while

maintaining unimodality of associated cluster data points. For

each pair of Gaussians ðgi; gjÞ, the symmetric KL divergence

defined as

Ds gi; gj

� �
5

1

2
Tr R21

i Rj1R21
j Ri

h i

1
1

2
ðli2ljÞ

T R21
i 1R21

j

h i
ðli2ljÞ2d (4)

is computed and the pairs are considered for merging in

ascending order of the pairwise symmetric KL divergence. For

a pair of Gaussians ðgi; gjÞ under consideration, by using LDA

on the corresponding pair of clusters ðX i;X jÞ, we determine a

unit norm d 3 1 vector w	 for which separation between the

clusters is maximized (on average) in the one-dimensional

linear projections w	T xi and w	T xj of d-dimensional observa-

tions xi in X i and xj in X j . Specifically, w	 maximizes the

ratio of the squared-difference of projected means to the sum

of individual cluster variances (27). For each element xij in

the combined set X ij 5 X i [ X j of observations from the two

clusters, a corresponding LDA projection yij5w	T xij is then

obtained. Modes (local maxima) in the 1D kernel density esti-

mate for sample projected data Yij5fyijg are then determined

to test for unimodality of the LDA projections for the com-

bined cluster. The combined cluster X ij is also tested for

unimodality along all its given dimensions and principal com-

ponents. The class-wise dispersions ri and rj of the projected

data Yi and Yj for the individual clusters are also evaluated

and their ratio rr5max ðri=rj ;rj=riÞ is computed. The pair

of Gaussians ðgi; gjÞ is merged if the three following conditions

are met: (a) the LDA projection Yij is unimodal, (b) X ij is
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unimodal along original data axes and principal component

directions, and (c) rr is less than a certain threshold sr (we set

sr53). The screening based on dispersion ratio helps us to

avoid merging a dense foreground cluster with a sparse back-

ground cluster. If a merge occurs, we proceed to the next iter-

ation of agglomerative merging after computing the

symmetric KL divergence of the merged cluster to other Gaus-

sians in the GMM.6 If on the other hand, a merge does not

occur because at least one of the three test conditions is vio-

lated, we move on to the next pair in the ascending symmetric

KL divergence order. The merging algorithm continues until

no such pairs can be found.

A sparse cluster may get subsumed by the tail of a dense

cluster and may not appear as a separate mode even if the

underlying distribution is multimodal. We avoid this pitfall by

performing the LDA-based modality check not only for the

actual observations of the two Gaussian clusters gi and gj, but

also for synthetic data points randomly sampled from the

Gaussians. By sampling an equal number of points from both

components, issues related to imbalanced cluster densities are

avoided.

A naive implementation of the proposed LDA merging

procedure requires OðK 3
GÞ LDA estimations in the worst

case, resulting in OððN i
maxd21d3ÞKG3Þ complexity, where

N i
max is the population size for the most populous cluster.

We reduce the number of LDA estimations very significantly

by filtering out Gaussian component pairs that have almost

no overlap, because pairs of Gaussian components whose

means differ by a large amount in relation to their standard

deviation (in the d-dimensional space) will be multimodal

in their LDA projection and need not be considered as pros-

pects for merging. Specifically, we approximate a Gaussian

component gj by a multidimensional ellipsoid with center mj

and dispersion 4Rj , and estimate (multidimensional) rec-

tangular bounding boxes for the ellipsoids. If the bounding

boxes for two Gaussians do not intersect, then their associ-

ated ellipsoids cannot intersect and the corresponding pairs

of Gaussians are considered non-overlapping. Determining

whether 2 rectangular boxes in d-dimensions intersect

requires only O(d) operations and is significantly faster than

directly determining whether two d-dimensional ellipsoids

intersect. A large number of candidate Gaussian pairs are

eliminated from consideration by this efficient bounding

box based filtering, and LDA estimation is required only for

the remaining pairs. Moreover, at each merging step the

LDA-based modality criterion needs to be recomputed only

for the merged cluster produced in the previous merging

step. Values for the other cluster pairs computed previously

are reused, saving computation. Algorithm 3 summarizes

the LDA based merging step used in SWIFT and Figure 3

presents a visualization of the operations in the algorithm

using a sample 2-D dataset.

Input: X ;HG
X : Input dataset

HG: parameters of the KG component Gaussian mixture model

Output: H;K
H: parameters of the combined mixture model

K: final number of clusters

1. Initialize: K 0  KG;H
0  HG

2. repeat

3. for i 5 1 to K0 do

4. Ei  the ellipsoid with center li, and dispersion 4Ri

5. end

6. Q  1
7. for each (i,j) such that 1 � i; j � K 0 do

8. Bi  the smallest bounding box covering Ei

9. Bj  the smallest bounding box covering Ej.

10. if intersectðBi;BjÞ then

11. Q  Q [ ði; jÞ
12. end

13. end

14. Estimate the pairwise symmetric KL divergence DKL5

fdijg; 1 � i; j � K 0 among the K 0 Gaussian components

in the current model H0.
// See text for full details of unimodality test. Following ver-

sion is abbreviated due to space constraints.

15. for each ði; jÞ 2 Q ordered by ascending value of dij do

16. X i  set of observations sampled from gi

17. X j  set of observations sampled from gj

18. ðYi;YjÞ  LDA (X i;X j)

19. ri  standard deviation of Yi; rj  standard devia-

tion of Yj

20. rr5max ðri=rj ;rj=riÞ
21. if isUnimodalðX i [ X jÞ and isUnimodalðYi [ YjÞ and

rr < sr then

22. Merge ðgi; gjÞ
23. H0  the updated model after merging ðgi; gjÞ
24. K 0  K 021

25. break;

26. end

27. end

28. until no more merging is possible

29. H H0;K  K 0

30. Return final parameters H and final number of clusters K.

Algorithm 3. LDA-based agglomerative merging in SWIFT

RESULTS

For proper evaluation and validation of any clustering algo-

rithm, one needs reliable ground truth data. To address this chal-

lenge, one can use either simulated data, or electronically mixed

data. In this article, we report on experiments for evaluating SWIFT

using both approaches. Detailed evaluation of SWIFT for a biologi-

cally relevant analysis is presented in the companion article (16).

Results on Simulated Data

In this section, using simulated mixtures of Gaussians,

we evaluate SWIFT’s scalability and capability for detecting

6KL divergences involving a merged cluster are approximated by

using Eq. (4) with the mean and variance for the merged cluster, i.e., by

using a Gaussian approximation for the merged cluster.
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rare populations, and compare these against the traditional

EM algorithm. The main reasons for using simulated data are

two-fold. First, we know full ground truth for simulated data

for each of the clusters. Second, the traditional EM algorithm

is prohibitively slow for actual large, high dimensional FC

datasets, making the direct comparison on actual FC data pro-

hibitively time consuming (or impossible to complete using

the computational hardware we use for SWIFT).

A synthetic mixture of two-dimensional Gaussians with 6-

components (shown in Fig. 4) was generated, where the mixing

coefficients of the Gaussian components were chosen as

13106; 7:53105; 1:93105; 53104; 13104, and 23103 to be

representative of situations with large dynamic range that are of

primary interest to us. For this dataset, GMM parameters were

estimated by using both the traditional EM algorithm and

SWIFT’s weighted iterative sampling based EM algorithm with

the number of Gaussians K0 set to 6 in both cases. The sample

size for the weighted sampling was chosen as n 5 20,000.

For quantitative evaluation of clustering accuracy, we

estimate the error by computing the symmetric Kullback–

Leibler (KL) divergence between each estimated Gaussian

parameter and the associated true Gaussian parameter,

where correspondence between the estimated and true

Gaussians is first determined by a weighted bipartite graph

matching (28) (also using symmetric KL divergence as

matching cost). For each cluster, the error in estimated

parameters is computed as the symmetric KL divergence

between the estimated parameters and the true parameters

for the matching Gaussian determined by the bi-partite

matching. An overall error is also computed as the sum of

the errors over all six clusters.

Since the EM algorithm only assures convergence to a local

optimum, we performed 10 repeated runs of EM with random

initializations, and chose the run with the maximum log-

likelihood. To ensure the estimations are statistically significant,

we performed the same experiment (EM fitting with 10

Figure 3. Cluster merging in SWIFT illustrated via a 2D example: (a) Four original skewed subpopulations, (b) Initial GMM fit, (c) Potential

pairs considered for merging, the bounding box filtering introduced for computational efficiency eliminates all pairs except (1, 2) and (5,

6), and (d) Resulting clusters after merging. Note that in the final result, the original skewed and non-Gaussian subpopulations are well-

represented via the merged clusters formed from combining initially fit Gaussians. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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repetitions) 10 times and then finally estimated the average

runtime, total error, and the error associated with the smallest

cluster.

The results are presented in Table 1 and are shown in

Figure 4 for a typical EM run. The weighted iterative sam-

pling based EM is nearly 18 times faster and estimates the

parameters of the smallest cluster with significantly greater

accuracy than the traditional EM algorithm, which performs

rather poorly. The poor performance of the traditional EM is

due to: (a) the slow convergence of EM in the presence of

overlapping and small clusters (see Supporting Information,

Section B), and (b) convergence of EM to poor local optima

depending on random initialization. The results clearly illus-

trate the advantages of the weighted iterative sampling for

large datasets with high dynamic range in mixing coeffi-

cients. The weighted iterative sampling also provides a sig-

nificant computational benefit. For a typical d 5 17

dimensional FC dataset with N 5 1.5 million events, a pure

IEM approach for the initial mixture modeling phase, with-

out the weighted iterative sampling in SWIFT and with an

IEM block size of 50,000, increases the computational time

by a factor of 10.53 and memory requirement by a factor of

1.8 (reported data are on an 8-core 2.4 GhZ Mac worksta-

tion) while providing results comparable with the traditional

EM where the smaller clusters are frequently overwhelmed

by larger clusters, though this can often be remedied by the

subsequent splitting and merging stages of SWIFT.

Although the above example explored a large dynamic

range, typical dynamic ranges for FC data are even larger. In

the above example, the smallest cluster had 2000 points out of

a total of 2 million, whereas actual FC datasets often have bio-

logically significant subpopulations with fewer than a hundred

cells in a sample of 2 million cells. We therefore also evaluated

the performance of the weighted iterative sampling based EM

as the size of the smallest cluster is further reduced; specifically,

we generated 5 mixtures, where the smallest cluster sizes are set

to 1500, 1000, 500, 200, and 100, respectively and the remain-

ing clusters were left unchanged from the previous example.

The results obtained are summarized in Table 2 and indicate

that SWIFT’s weighted iterative sampling works well until the

Figure 4. Comparison of weighted sampling based EM and the traditional EM algorithm on a synthetic mixture of 6 Gaussians: (a) Origi-

nal dataset, (b) GMM estimate from the weighted sampling based EM used in SWIFT, and (c) GMM estimate from traditional EM algo-

rithm. Note that smallest subpopulation is missed by the traditional EM algorithm but is represented with good accuracy by the weighted

sampling based EM used in SWIFT. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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point where the smallest cluster has 200 points out of a total of

2 million. Results incorporating the additional stages (split and

merge) in SWIFT also included within the table show that these

additional steps further improve SWIFT’s capability to detect

small clusters.

Results on Flow Cytometry Data

A key challenge in validation on actual FC data is the

scarcity of datasets with ground truth. Visual identification of

populations via manual gating is hardly a gold standard,

because of several limitations. First, gating is usually focused,

rather than exhaustive, and not suitable for validation of all

clusters. Second, the gating procedure cannot exploit high

dimensional features and is also less accurate in the presence

of cluster overlap. Third, the subjectivity of gating is well-

known to contribute to the variability of FC analysis results

(29). Therefore, an objective validation is desirable.

The Rochester Human Immunology Center generated a

pair of datasets for which ground truth labels can be applied:

one consisted of human peripheral blood cells, and the other

consisted of mouse splenocytes. Both human and mouse cells

were stained with the same set of fluorescently-labeled anti-

bodies (directed against homologous proteins in both species)

such that half of the antibodies were human-specific, and the

rest were mouse-specific. Human antigens in a human cell

bind only to the antihuman antibodies and express high signal

for a subset of human antibodies and low signal for all the

mouse antibodies. The mouse cells exhibit the opposite behav-

ior. FC data was acquired for both samples using an LSR II

cytometer (BD Immunocytometry Systems). The datasets are

made available on the FlowRepository server (30) for use by

other researchers for testing FC data analysis algorithms.

We electronically mixed these two datasets (total 544,000

observations and 21 dimensions), and created a series of

hybrid datasets containing both human and mouse cells,

where the label for each cell (either human or mouse) is

known because of the electronic mixing. SWIFT was used for

clustering each electronic mixture without using the human/

mouse label in the clustering process. An ideal clustering solu-

tion should resolve the distinction between human and mouse

groups and produce clusters that contain either only human

cells, or only mouse cells, but not both. We note here that the

dataset and the evaluation task are explicitly designed to allow

validation against known ground truth, which makes them

atypical of common FC analysis tasks. A companion article

(16) uses datasets and tasks that are typical of a substantial

field of immune response evaluation and provides informa-

tion on the validation of SWIFT’s ability to find rare clusters,

and also to find clusters that are biologically significant.

The initial Gaussian mixture model fitting was done with

K0 5 80 Gaussian components. After the initial clustering,

SWIFT’s multimodality splitting resulted in 148 Gaussians,

and its LDA-based agglomerative merging resulted in 122 final

clusters. Each of these 122 clusters was classified as either

human or mouse by a majority decision rule. Figure 5a shows

the actual number of human and mouse cells per cluster. Fig-

ure 5b shows the fractional proportion. Almost all the clusters

are well-resolved as either only human or only mouse.

To evaluate SWIFT’s rare population detection using sensi-

tivity analysis, we electronically mixed varying proportions of

human and mouse cells and observed how its performance varied

with decreasing proportion of human cells: 50%, 25%, 10%, 1%,

and 0.1%. By definition, precision5 TP
TP1FP

and recall5 TP
TP1FN

. In

this experiment, we benchmarked detection of the human clusters

as the proportion of human cells decreases. Therefore, the preci-

sion and recall can be equivalently redefined as:

Precision5
Humandetected \Humantrue

Humandetected

(5)

Recall5
Humandetected \Humantrue

Humantrue

(6)

The results (Table 3) show that SWIFT can resolve up

to 1% human cells with high precision and recall. For the

case of 0.1%, SWIFT correctly identified 2 human clusters

Table 2. Performance of the weighted iterative sampling based EM and the overall SWIFT (weighted sampling 1 split 1 merge) for small

cluster detection in a total population size of 2 million events.

WEIGHTED SAMPLING WEIGHTED SAMPLING 1 SPLIT1MERGE

SMALLEST CLUSTER SIZE AVG TOTAL ERROR SMALLEST CLUSTER ERROR AVG TOTAL ERROR SMALLEST CLUSTER ERROR

1500 0.0159 0.0019 0.1020 0.0003

1000 0.0128 0.0128 0.0198 0.0046

500 0.0220 0.0220 0.0751 0.0044

200 23.3622 23.3622 1.7141 1.4561

100 27.4113 27.0221 7.1430 6.7043

Listed error values correspond to symmetric KL divergences averaged over 10 independent runs. See text for details.

Table 1. Comparison of the weighted iterative sampling based EM

against the traditional EM for a synthetic two-dimensional Gaus-

sian mixture with mixing coefficients 13106, 7.53105, 1.93105,

53104, 13104, and 23103 chosen to be representative of the high

dynamic range encountered for rare population detection

WEIGHTED ITERATIVE

SAMPLING

TRADITIONAL

EM

Avg runtime (s) 134.1 2414.1

Avg cumulative error 0.0157 37.687

Avg errors for the

smallest cluster

0.0012 34.3397

Listed error values correspond to symmetric KL divergences

averaged over 10 independent runs. See text for details.
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with high recall, but the precision is relatively low

(68.40%) because these human clusters also included quite

a few mouse cells. For this dataset, we also compared

SWIFT against FLOCK (5). FLOCK also resolves this sim-

ple dataset but with greater overlap (results shown in Sup-

porting Information, Fig. S.12).

DISCUSSION

SWIFT incorporates several novel components to address

the challenges arising in FC. All the three stages of SWIFT are

motivated by two major requirements: scalability to large

datasets and identification of rare populations. All major com-

ponents of SWIFT (weighted iterative sampling, the incre-

mental EM iterations, and efficient LDA-based merging) are

designed to be efficiently scalable to big datasets, providing a

significant improvement over the existing soft clustering

methods (9–12, 14). SWIFT identifies rare populations using

weighted iterative sampling and multimodality splitting. The

multimodality splitting stage serves a critical role for rare sub-

population identification. SWIFT can also represent skewed

clusters by LDA-based agglomerative merging, which reduces

the number of clusters while preserving the distinct unimodal

populations. The interplay between multimodality splitting

and merging results in a reasonable number of clusters, uses a

sensible heuristic (modality of clusters), and is more intuitive

as compared to the knee point in BIC or entropy plots previ-

ously used (10, 11). Finally, the soft clustering used in SWIFT

is useful for comprehending overlapping clusters (Supporting

Information, Section H) as compared with alternative hard

clustering methods such as k-means (31) or spectral clustering

(6). SWIFT is partly similar to flowPeaks (13) in that they

both rely on the unimodality criterion. However, flowPeaks

aims for major peaks only (no modality splitting stage), and

tends to miss small overlapping clusters. The significance of

modal regions in identifying interesting subpopulations has

also motivated curvHDR (32), where high curvature regions

are used to identify the modal regions, which are then

exploited for (partly) automating gating.

A recent article (14) describes an alternative approach

to rare population detection and provides a point of refer-

ence for comparing SWIFT against the current state of the

art in FC data analysis methods designed specifically for

rare population identification. In (14), FC data are mod-

eled as hierarchical Dirichlet process Gaussian mixture

model (HDPGMM) to solve the dual problems of finding

rare events potentially masked by nearby large populations

and to provide alignment of cell subsets over multiple data

samples. The HDPGMM is shown to identify biologically

relevant subpopulations occurring at frequencies in the

0.01–0.1% of the entire dataset and the method is shown

to be superior at finding rare populations as compared

with manual gating (using a panel of 10 people), FLAME

(12), FLOCK (33) (albeit indirectly), and flowClust (34).

These comparisons were done with 3 color (five-dimen-

sional) FCS 2.0 (FACSCalibur) dataset, having around

50,000 events. In our companion manuscript (16), we

demonstrate that SWIFT handles much larger datasets

(having tens of millions of events with 17 independent

dimensions) and identifies cell subpopulations at a

Table 3. Performance of SWIFT with varying proportion

of human and mouse cells

PERCENTAGE OF HUMAN

CELLS (%) PRECISION (%) RECALL (%)

HUMAN

CLUSTERS

50 99.59 99.93 49

25 99.62 99.83 33

10 99.43 95.90 21

1 91.82 99.34 11

0.1 68.40 99.48 2

Figure 5. Results from SWIFT clustering of the known-ground-

truth, electronically mixed, human-mouse dataset. SWIFT yields

122 clusters that clearly separate the human vs. mouse cells:

most clusters are comprised of entirely human or entirely mouse

cells. See text and caption for Supporting Information Fig. S.12

for details of the dataset. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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frequency as low as 1026 in 17-dimensional FC datasets of

up to 25 million events, which is significantly more sensi-

tive than the existing current state of the art. A direct

comparison of SWIFT against other existing FC data analy-

sis methods is stymied by the fact that most existing meth-

ods do not scale to the extremely large datasets we are

exploring, nor are these designed to detect rare populations

at the level of sensitivity targeted by SWIFT. These claims

are supported by benchmarking results on smaller datasets

that we report in the supporting information accompany-

ing our companion manuscript (16).

The weighted iterative sampling is one of the key contri-

butions of SWIFT. Most of the existing scalable EM variants

(35, 36) do not specifically address the challenge of rare popu-

lation detection. Moreover, some assumptions of these meth-

ods are quite restrictive. For example, the scalable EM (SEM)

(35) algorithm requires the covariance matrix to be diagonal,

and the multistage EM (36) assumes all the clusters to share

the same covariance matrix. These assumptions are too

restrictive for FC data. SWIFT provides sufficient flexibility by

allowing full covariance matrices for each individual Gaussian

and performs well in the presence of rare populations.

Although we implemented the weighted iterative sampling for

mixture of Gaussians only, the method is general enough and

can be extended to other soft clustering methods (e.g., mix-

ture of t distributions, mixture of skewed t distributions, fuzzy

c-means, etc.).

The LDA-based agglomerative merging combined with a

pruning process allows efficient and robust merging of Gaus-

sian mixture components. The efficiency of the LDA-based

agglomerative merging carries over to other applications

where the number of observations and the number of clusters

are much larger than the number of dimensions. Unlike the

entropy-based merging, our LDA criterion is insensitive to rel-

ative cluster population sizes (see Supporting Information,

Section E and Fig. S.7), and is guided by the modality

criterion.

CONCLUSION

This article presents the algorithm design for SWIFT

(Scalable Weighted Iterative Flow-clustering Technique).

SWIFT uses a three stage workflow consisting of iterative

weighted sampling, multimodality splitting, and unimodality-

preserving merging, to scale model-based clustering analysis

to the large high-dimensional datasets common in modern

FC, while retaining resolution of subpopulations with rather

small relative sizes—populations that are often biologically

significant. Evaluations over synthetic datasets demonstrate

that SWIFT offers improvements over conventional model-

based approaches in scaling to large datasets and in resolving

small populations. In the companion manuscript (16), SWIFT

is applied to a task typical in immune response evaluation and

both scaling to very large FC datasets (having tens of millions

of events) and capability to identify extremely rare popula-

tions (1 in 106 of the total events) are demonstrated. SWIFT is

available for download at http://www.ece.rochester.edu/proj-

ects/siplab/Software/SWIFT.html.
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