
LSRN: A PARALLEL ITERATIVE SOLVER FOR STRONGLY
OVER- OR UNDERDETERMINED SYSTEMS*

Xiangrui Meng†, Michael A. Saunders‡, and Michael W. Mahoney§

†ICME, Stanford University, Stanford, CA 94305 (mengxr@stanford.edu).

‡Systems Optimization Laboratory, Department of Management Science and Engineering,
Stanford University, Stanford, CA 94305 (saunders@stanford.edu).

§Department of Mathematics, Stanford University, Stanford, CA 94305
(mmahoney@cs.stanford.edu)

Abstract

We describe a parallel iterative least squares solver named LSRN that is based on random normal

projection. LSRN computes the min-length solution to minx∈ℝn ‖Ax − b‖2, where A ∈ ℝm × n with

m ≫ n or m ≪ n, and where A may be rank-deficient. Tikhonov regularization may also be

included. Since A is involved only in matrix-matrix and matrix-vector multiplications, it can be a

dense or sparse matrix or a linear operator, and LSRN automatically speeds up when A is sparse or

a fast linear operator. The preconditioning phase consists of a random normal projection, which is

embarrassingly parallel, and a singular value decomposition of size ⌈γ min(m, n)⌉ × min(m, n),

where γ is moderately larger than 1, e.g., γ = 2. We prove that the preconditioned system is well-

conditioned, with a strong concentration result on the extreme singular values, and hence that the

number of iterations is fully predictable when we apply LSQR or the Chebyshev semi-iterative

method. As we demonstrate, the Chebyshev method is particularly efficient for solving large

problems on clusters with high communication cost. Numerical results show that on a shared-

memory machine, LSRN is very competitive with LAPACK’s DGELSD and a fast randomized

least squares solver called Blendenpik on large dense problems, and it outperforms the least

squares solver from SuiteSparseQR on sparse problems without sparsity patterns that can be

exploited to reduce fill-in. Further experiments show that LSRN scales well on an Amazon Elastic

Compute Cloud cluster.

Keywords

linear least squares; over determined system; underdetermined system; rank-deficient; minimum-
length solution; LAPACK; sparse matrix; iterative method; preconditioning; LSQR; Chebyshev
semi-iterative method; Tikhonov regularization; ridge regression; parallel computing; random
projection; random sampling; random matrix; randomized algorithm

*http://www.siam.org/journals/sisc/36-2/86658.html

HHS Public Access
Author manuscript
SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

Published in final edited form as:
SIAM J Sci Comput. 2014 ; 36(2): C95–C118. doi:10.1137/120866580.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.siam.org/journals/sisc/36-2/86658.html

1. Introduction

Randomized algorithms have become indispensable in many areas of computer science, with

applications ranging from complexity theory to combinatorial optimization, cryptography,

and machine learning. Randomization has also been used in numerical linear algebra (for

instance, the initial vector in the power iteration is chosen at random so that almost surely it

has a nonzero component along the direction of the dominant eigenvector), yet most well-

developed matrix algorithms, e.g., matrix factorizations and linear solvers, are deterministic.

In recent years, however, motivated by large data problems, very nontrivial randomized

algorithms for very large matrix problems have drawn considerable attention from

researchers, originally in theoretical computer science and subsequently in numerical linear

algebra and scientific computing. By randomized algorithms, we refer, in particular, to

random sampling and random projection algorithms [8, 23, 9, 22, 2]. For a comprehensive

overview of these developments, see the review of Mahoney [18], and for an excellent

overview of numerical aspects of coupling randomization with classical low-rank matrix

factorization methods, see the review of Halko, Martinsson, and Tropp [14].

We are interested in high-precision solving of linear least squares (LS) problems that are

strongly over- or underdetermined and possibly rank-deficient. In particular, given a matrix

A ∈ ℝm × n and a vector b ∈ ℝm, where m ≫ n or m ≪ n and we do not assume that A has

full rank, we wish to develop randomized algorithms to accurately solve the problem

(1.1)

If we let r = rank(A) ≤ min(m, n), then recall that if r < n (the LS problem is

underdetermined or rank-deficient), then (1.1) has an infinite number of minimizers. In that

case, the set of all minimizers is convex and hence has a unique element having minimum

length. On the other hand, if r = n so that the problem has full rank, there exists only one

minimizer to (1.1), and hence it must have the minimum length. In either case, we denote

this unique min-length solution to (1.1) by x*, and we are interested in computing x* in this

work. That is,

(1.2)

LS problems of this form have a long history, traced back to Gauss, and they arise in

numerous applications. The demand for faster LS solvers will continue to grow in light of

new data applications and as problem scales become larger and larger.

In this paper, we describe an LS solver called LSRN for these strongly over- or

underdetermined, and possibly rank-deficient, systems. LSRN uses random normal

projections to compute a preconditioner matrix such that the preconditioned system is

provably extremely well-conditioned. Importantly for large-scale applications, the

preconditioning process is embarrassingly parallel, and it automatically speeds up with

sparse matrices and fast linear operators. LSQR [21] or the Chebyshev semi-iterative (CS)

method [12] can be used at the iterative step to compute the min-length solution within just a

Meng et al. Page 2

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

few iterations. We show that the latter method is preferred on clusters with high

communication cost.

Because of its provably good conditioning properties, LSRN has a fully predictable run-time

performance, just like direct solvers, and it scales well in parallel environments. On large

dense systems, LSRN is competitive with LAPACK’s DGELSD for strongly overdetermined

problems, and it is much faster for strongly underdetermined problems, although solvers

using fast random projections, like Blendenpik [2], are still slightly faster in both cases. On

sparse systems without sparsity patterns that can be exploited to reduce fill-in (such as

matrices with random structure), LSRN runs significantly faster than competing solvers, for

both the strongly over- or underdetermined cases.

In section 2 we describe existing deterministic LS solvers and recent randomized algorithms

for the LS problem. In section 3 we show how to do preconditioning correctly for rank-

deficient LS problems, and in section 4 we introduce LSRN and discuss its properties.

Section 5 describes how LSRN can handle Tikhonov regularization for both over- and

underdetermined systems, and in section 6 we provide a detailed empirical evaluation

illustrating the behavior of LSRN.

2. Least squares solvers

In this section we discuss related approaches, including deterministic direct and iterative

methods as well as recently developed randomized methods, for computing solutions to LS

problems, and we discuss how our results fit into this broader context.

2.1. Deterministic methods

It is well known that x* in (1.2) can be computed using the singular value decomposition

(SVD) of A. Let A = UΣVT be the compact SVD, where U ∈ ℝm × r, Σ ∈ ℝr × r, and V ∈

ℝn × r, i.e., only singular vectors corresponding to the nonzero singular values are calculated.

We have x* = V Σ−1UTb. The matrix V Σ−1UT is the Moore–Penrose pseudoinverse of A,

denoted by A†, which is defined and unique for any matrix. Hence we can simply write x* =

A†b. The SVD approach is accurate and robust to rank-deficiency.

Another way to solve (1.2) is using a complete orthogonal factorization of A. If we can find

orthonormal matrices Q ∈ ℝm × r and Z ∈ ℝn × r, and a matrix T ∈ ℝr × r, such that A =

QTZT, then the min-length solution is given by x* = ZT−1QTb. We can treat SVD as a

special case of complete orthogonal factorization. In practice, complete orthogonal

factorization is usually computed via rank-revealing QR factorizations, making T a

triangular matrix. The QR approach is less expensive than SVD, but it is slightly less robust

at determining the rank of A.

A third way to solve (1.2) is by computing the min-length solution to the normal equation

ATAx = ATb, namely

(2.1)

Meng et al. Page 3

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

It is easy to verify the correctness of (2.1) by replacing A by its compact SVD UΣVT. If r =

min(m, n), a Cholesky factorization of either ATA (if m ≥ n) or AAT (if m ≤ n) solves (2.1)

nicely. If r < min(m, n), we need the eigensystem of ATA or AAT to compute x*. The normal

equation approach is the least expensive of the three direct approaches, but it is also the least

accurate, especially on ill-conditioned problems. See Chapter 5 of Golub and Van Loan [11]

for a detailed analysis.

Instead of these direct methods, we can use iterative methods to solve (1.1). If all the iterates

{x(k)} are in range(AT) and if {x(k)} converges to a minimizer, it must be the minimizer

having minimum length, i.e., the solution to (1.2). This is the case when we use a Krylov

subspace method starting with a zero vector. For example, the conjugate gradient (CG)

method on the normal equation leads to the min-length solution (see Paige and Saunders

[20]). In practice, CGLS [16] or LSQR [21] are preferable because they are equivalent to

applying CG to the normal equation in exact arithmetic but they are numerically more

stable. Other Krylov subspace methods such as the CS method [12] and LSMR [10] can

solve (1.1) as well.

Importantly, however, it is in general hard to predict the number of iterations for CG-like

methods. The convergence rate is affected by the condition number of ATA. A classical

result [17, p. 187] states that

(2.2)

where ‖z‖ATA = zTATAz = ‖Az‖2 for any z ∈ ℝn, and where κ(ATA) is the condition number of

ATA under the 2-norm. Estimating κ(ATA) is generally as hard as solving the LS problem

itself, and in practice the bound does not hold in any case unless reorthogonalization is used.

Thus, the computational cost of CG-like methods remains unpredictable in general, except

when ATA is very well-conditioned and the condition number can be well estimated.

2.2. Randomized methods

In 2007, Drineas et al. [9] introduced two randomized algorithms for the LS problem, each

of which computes an approximate solution x̂ in (mn log(n/ε) + n3/ε) time such that ‖Ax̂ −

b‖2 ≤ (1 + ε)‖Ax* − b‖2 given ε > 0. Both of these algorithms apply a randomized Hadamard

transform to the columns of A thereby generating a problem of smaller size, one using

uniformly random sampling and the other using a sparse random projection. They proved

that, in both cases, the solution to the smaller problem leads to relative-error approximations

of the original problem. The algorithms are suitable when low accuracy is acceptable, but

the ε dependence quickly becomes the bottleneck otherwise. Using those algorithms as

preconditioners was also mentioned in [9]. This work laid the ground for later algorithms

and implementations.

Later, in 2008, Rokhlin and Tygert [22] described a related randomized algorithm for

overdetermined systems. They used a randomized transform named SRFT that consists of m

random Givens rotations, a random diagonal scaling, a discrete Fourier transform, and a

Meng et al. Page 4

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

random sampling of rows. They considered using their method as a preconditioning method

for CG-like methods. They proved that if the sample size is greater than 4n2, the condition

number of the preconditioned system is bounded above by a constant, with high probability.

This leads to a total running time of ((log n + log(1/ε))mn + n4). However, sampling this

many rows in practice would adversely affect the running time of their solver. They

illustrated examples for which sampling 4n rows sufficed, which reduces the running time to

((log n + log(1/ε))mn + n3), but they did not provide a rigorous proof.

Then, in 2010, Avron, Maymounkov, and Toledo [2] implemented a high-precision LS

solver, called Blendenpik, and compared it to LAPACK’s DGELS and to LSQR without

preconditioning. Blendenpik uses a Walsh–Hadamard transform, a discrete cosine

transform, or a discrete Hartley transform for blending the rows/columns, followed by a

random sampling, to generate a problem of smaller size. The R factor from the QR

factorization of the smaller matrix is used as the preconditioner for LSQR. Based on their

analysis, the condition number of the preconditioned system depends on the coherence or

statistical leverage scores of A, i.e., the maximal row norm of U, where U is an orthonormal

basis of range(A). We note that a solver for underdetermined problems is also included in

the Blendenpik package.

In 2011, Coakley, Rokhlin, and Tygert [3] described an algorithm that is also based on

random normal projections. It computes the orthogonal projection of any vector b onto the

null space of A or onto the row space of A via a preconditioned normal equation. The

algorithm solves the overdetermined LS problem as an intermediate step. They show that the

normal equation is well-conditioned and hence the solution is reliable. Unfortunately, no

implementation was provided. For an overdetermined problem of size m × n, the algorithm

requires applying A or AT 3n + 6 times, while LSRN needs approximately 2n + 200 matrix-

vector multiplications under the default setting. Asymptotically, LSRN will become faster as

n increases beyond several hundred. See section 4.4 for further complexity analysis of LSRN.

Moreover, if this algorithm is applied to (though not originally designed for) approximately

rank-deficient problems, it becomes less reliable than LSRN in determining the effective

rank. See sections 4.3 and 6.4 for theoretical analysis and empirical evaluation, respectively.

2.3. Relationship with our contributions

All the approaches mentioned in section 2.2 assume that A has full rank, and for those based

on iterative solvers, none provides a small constant upper bound on the condition number of

the preconditioned system with (n) sample size that is independent of the coherence. For

LSRN, Theorem 3.2 ensures that the min-length solution is preserved, independent of the

rank, and Theorems 4.4 and 4.5 provide bounds on the condition number and number of

iterations, independent of the spectrum and the coherence of A. In addition to handling rank-

deficiency well, LSRN can even take advantage of it, resulting in a smaller condition number

and fewer iterations.

Some prior work on the LS problem has explored “fast” randomized transforms that run in

roughly (mn log m) time on a dense matrix A, while the random normal projection we use

in LSRN takes (mn2) time. Although this could be an issue for some applications, the use of

Meng et al. Page 5

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

random normal projections comes with several advantages. First, if A is a sparse matrix or a

linear operator, which is common in large-scale applications, then the FFT-based fast

transforms are no longer “fast.” Second, the random normal projection is easy to implement

using threads or MPI, and it scales well in parallel environments. Third, the strong symmetry

of the standard normal distribution helps give the strong high probability bounds on the

condition number in terms of sample size. These bounds depend on nothing but s/r, where s

is the sample size. For example, if s = 4r, Theorem 4.4 ensures that, with high probability,

the condition number of the preconditioned system is less than 3.

This last property about the condition number of the preconditioned system makes the

number of iterations and thus the running time of LSRN fully predictable, as for a direct

method. It also enables use of the CS method, which needs only one level-1 and two level-2

BLAS operations per iteration, and is particularly suitable for clusters with high

communication cost because it does not have vector inner products that require

synchronization between nodes. Although the CS method has the same theoretical upper

bound on the convergence rate as CG-like methods, it requires accurate bounds on the

singular values in order to work efficiently. Such bounds are generally hard to come by,

limiting the popularity of the CS method in practice, but they are provided for the

preconditioned system by our Theorem 4.4, and we do achieve high efficiency in our

experiments.

3. Preconditioning for linear least squares

In light of (2.2), much effort has been made to transform a linear system into an equivalent

system with reduced condition number. This preconditioning, for a square linear system Bx

= d of full rank, usually takes one of the following forms:

Clearly, the preconditioned system is consistent with the original system, i.e., has the same

x* as the unique solution, if the preconditioners M and N are nonsingular.

For the general LS problem (1.2), more care should be taken so that the preconditioned

system will have the same min-length solution as the original. For example, if we apply left

preconditioning to the LS problem minx ‖Ax − b‖2, the preconditioned system becomes minx

‖MTAx − MTb‖2, and its min-length solution is given by

Similarly, the min-length solution to the right preconditioned system is given by

Meng et al. Page 6

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The following lemma states the necessary and sufficient conditions for A† = N(AN)† or A† =

(MTA)†MT to hold. Note that these conditions holding certainly implies that and

, respectively.

Lemma 3.1. Given A ∈ ℝm × n, N ∈ ℝn × p, and M ∈ ℝm × q, we have

1. A† = N(AN)† if and only if range(NNTAT) = range(AT).

2. A† = (MTA)† MT if and only if range(MMTA) = range(A).

Proof. Let r = rank(A) and UΣVT be A’s compact SVD as in section 2.1, with A† = V Σ−1UT.

Before continuing our proof, we reference the following facts about the pseudoinverse:

1. B† = BT(BBT)† for any matrix B.

2. For any matrices B and C such that BC is defined, (BC)† = C†B† if (i) BTB = I or

(ii) CCT = I or (iii) B has full column rank and C has full row rank.

Let us now prove the “if” part of the first statement. If range(NNTAT) = range(AT) =

range(V), we can find a matrix Z with full row rank such that NNTAT = V Z. Then,

Conversely, if N(AN)† = A†, we know that range(N(AN)†) = range(A†) = range(V) and hence

range(V) ⊆ range(N). Then we can decompose N as , where Vc is

orthonormal, VTVc = 0, and has full row rank. Then,

Meng et al. Page 7

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Multiplying by on the left and UΣ on the right, we get ZcZ† = 0, which is equivalent to

ZcZT = 0. Therefore,

where we used the facts that Z has full row rank and hence ZZT is nonsingular, Σ is

nonsingular, and U has full column rank.

To prove the second statement, let us take B = AT. By the first statement, we know B† =

M(BM)† if and only if range(MMTBT) = range(BT), which is equivalent to saying A† =

(MTA)†MT if and only if range(MMTA) = range(A).

Although Lemma 3.1 gives the necessary and sufficient condition, it does not serve as a

practical guide for preconditioning LS problems. In this work, we are more interested in a

sufficient condition that can help us build preconditioners. To that end, we provide the

following theorem.

Theorem 3.2. Given A ∈ ℝm × n, b ∈ ℝm, N ∈ ℝn × p, and M ∈ ℝm × q, let x* be the min-

length solution to the LS problem minx ‖Ax − b‖2, , where y* is the min-length

solution to miny ‖ANy − b‖2, and let be the min-length solution to minx ‖MTAx − MTb‖2.

Then,

 if range(N) = range(AT),

 if range(M) = range(A).

Proof. Let r = rank(A), and let UΣVT be A’s compact SVD. If range(N) = range(AT) =

range(V), we can write N as V Z, where Z has full row rank. Therefore,

By Lemma 3.1, A† = N(AN)† and hence . The second statement can be proved by

similar arguments.

4. Algorithm LSRN

In this section we present LSRN, an iterative solver for solving strongly over- or

underdetermined systems based on “random normal projection.” To construct a

preconditioner we apply a transformation matrix whose entries are independent random

variables drawn from the standard normal distribution. We prove that the preconditioned

system is almost surely consistent with the original system, i.e., both have the same min-

Meng et al. Page 8

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

length solution. At least as importantly, we prove that the spectrum of the preconditioned

system is independent of the spectrum of the original system, and we provide a strong

concentration result on the extreme singular values of the preconditioned system. This

concentration result enables us to predict the number of iterations for CG-like methods, and

it also enables the use of the CS method, which requires an accurate bound on the singular

values to work efficiently. We also present an error analysis for approximately rank-

deficient problems.

4.1. The algorithm

Algorithm 1 shows the detailed procedure of LSRN to compute the min-length solution to a

strongly overdetermined problem, and Algorithm 2 shows the detailed procedure for a

strongly underdetermined problem. We refer to these two algorithms together as LSRN. Note

that they only use the input matrix A for matrix-vector and matrix-matrix multiplications,

and thus A can be a dense matrix, a sparse matrix, or a linear operator. In the remainder of

this section we focus on analysis of the overdetermined case. We emphasize that analysis of

the underdetermined case is quite analogous.

Meng et al. Page 9

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 1

LSRN (computes x̂ ≈ A†b when m ≫ n).

1 Choose an oversampling factor γ > 1 and set s = ⌈γn⌉.

2 Generate G = randn(s, m), i.e., an s-by-m random matrix whose entries are independent random variables
following the standard normal distribution.

3 Compute Ã = GA.

4 Compute Ã’s compact SVD ŨΣ̃ṼT, where r = rank(Ã), Ũ ∈ ℝs × r, Σ̃ ∈ ℝr × r, Ṽ ∈ ℝn × r, and only Σ̃ and Ṽ
are needed.

5 Let N = ṼΣ̃−1.

6 Compute the min-length solution to miny ‖ANy − b‖2 using an iterative method.

Denote the solution by ŷ.

7 Return x ̂ = Nŷ.

4.2. Theoretical properties

The use of random normal projection offers LSRN some nice theoretical properties. We start

with consistency.

Theorem 4.1. In Algorithm 1, we have x̂ = A†b almost surely.

Proof. Let r = rank(A) and UΣVT be A’s compact SVD. We have

Meng et al. Page 10

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 2

LSRN (computes x̂ ≈ A†b when m ≪ n).

1 Choose an oversampling γ > 1 and set s = ⌈γm⌉.

2 Generate G = randn(n, s), i.e., an n-by-s random matrix whose entries are independent random variables
following the standard normal distribution.

3 Compute Ã = AG.

4 Compute Ã’s compact SVD ŨΣ̃ṼT, where r = rank(Ã), Ũ ∈ ℝn × r, Σ̃ ∈ ℝr × r, Ṽ ∈ ℝs × r, and only Ũ and Σ̃

are needed.

5 Let M = ŨΣ̃−1.

6 Compute the min-length solution to minx ‖MTAx − MTb‖2 using an iterative method, denoted by x̂.

7 Return x̂.

Define G1 = GU ∈ ℝs × r. Since G’s entries are independent random variables following the

standard normal distribution and U is orthonormal, G1’s entries are also independent random

variables following the standard normal distribution. Then given s ≥ γn > n ≥ r, we know G1

has full column rank r with probability 1. Therefore,

and hence by Theorem 3.2 we have x̂ = A†b almost surely.

A more interesting property of LSRN is that the spectrum (the set of singular values) of the

preconditioned system is solely associated with a random matrix of size s × r, independent

of the spectrum of the original system.

Lemma 4.2. In Algorithm 1, the spectrum of AN is the same as the spectrum of ,

independent of A’s spectrum.

Proof. Continue to use the notation from the proof of Theorem 4.1. Let be

G1’s compact SVD, where U1 ∈ ℝs × r, Σ1 ∈ ℝr × r, and V1 ∈ ℝr × r. Since range(Ũ) =

range(GA) = range(GU) = range(U1) and both Ũ and U1 are orthonormal matrices, there

exists an orthonormal matrix Q1 ∈ ℝr × r such that U1 = ŨQ1. As a result,

Multiplying by ŨT on the left-hand side of each, we get . Taking the

pseudoinverse gives . Thus,

which gives AN’s SVD. Therefore, AN’s singular values are , the same as

spectrum, but independent of A’s.

Meng et al. Page 11

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We know that G1 = GU is a random matrix whose entries are independent random variables

following the standard normal distribution. The spectrum of G1 is a well-studied problem in

random matrix theory, and in particular the properties of extreme singular values have been

studied. Thus, the following lemma is important for us. We use (·) to refer to the

probability that a given event occurs.

Lemma 4.3 (see Davidson and Szarek [4]). Consider an s × r random matrix G1 with s > r,

whose entries are independent random variables following the standard normal distribution.

Let the singular values be σ1 ≥ ⋯ ≥ σr. Then for any t > 0,

(4.1)

With the aid of Lemma 4.3, it is straightforward to obtain the concentration result of σ1(AN),

σr(AN), and κ(AN) as follows.

Theorem 4.4. In Algorithm 1, for any , we have

(4.2)

and

(4.3)

Proof. Set in Lemma 4.3.

In order to estimate the number of iterations for CG-like methods, we can now combine

(2.2) and (4.3).

Theorem 4.5. In exact arithmetic, given a tolerance ε > 0, a CG-like method applied to the

preconditioned system miny ‖ANy − b‖2 with y(0) = 0 converges within

 iterations in the sense that

(4.4)

holds with probability at least 1 − 2e−α2s/2 for any , where ŷCG is the

approximate solution returned by the CG-like solver and y* = (AN)†b. Let x̂CG = NŷCG be

the approximate solution to the original problem. Since x* = Ny*, (4.4) is equivalent to

(4.5)

or in terms of residuals,

Meng et al. Page 12

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(4.6)

where r̂CG = b − Ax̂CG and r* = b − Ax*. Notice that AT r* = 0. Equation (4.6) implies

If n is large and thus s is large, we can set α very small but still make 1 − 2e−α2s/2 very close

to 1. Moreover, the bounds in (4.3) and (2.2) are not tight. These facts allow us to ignore α

in a practical setting when we solve a large-scale problem. For example, to reach precision ε

= 10−14, it is safe in practice to set the maximum number of iterations to

 for a numerically stable CG-like method, e.g.,

LSQR. We verify this claim in section 6.2.

In addition to allowing us to bound the number of iterations for CG-like methods, the result

given by (4.2) also allows us to use the CS method. This method needs only one level-1 and

two level-2 BLAS operations per iteration, and, importantly, because it does not have vector

inner products that require synchronization between nodes, this method is suitable for

clusters with high communication cost. It does need an explicit bound on the singular

values, but once that bound is tight, the CS method has the same theoretical upper bound on

the convergence rate as other CG-like methods. Unfortunately, in many cases, it is hard to

obtain such an accurate bound, which prevents the CS method from becoming popular in

practice. In our case, however, (4.2) provides a probabilistic bound with very high

confidence. Hence, we can employ the CS method without difficulty. For example, let n = r

= 1000 and choose s = 2000 and . By (4.2), we have σ1(AN) <

0.0994 and σr(AN) > 0.0126 with probability at least 0.99. Moreover, because (4.2) is not

tight, we may be able to use tighter bounds in practice to get a better convergence rate, while

still maintaining a failure rate of 0.01. For completeness, Algorithm 3 describes the CS

method we implemented for solving LS problems. For discussion of its variations, see

Gutknecht and Rollin [13].

Meng et al. Page 13

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 3

Chebyshev semi-iterative (CS) method (computes x ≈ A†b).

1 Given A ∈ ℝm × n, b ∈ ℝm, and a tolerance ε > 0, choose 0 < σL ≤ σU such that all nonzero singular values of

A are in [σL, σU] and let and .

2 Let x = 0, υ = 0, and r = b.

3

for do

4

5 υ ← βυ + ATr.

6 x ← x + αυ.

7 r ← r − αAυ.

8 end for

4.3. Approximate rank-deficiency

Our theory above assumes exact arithmetic. For rank-deficient problems stored with limited

precision, it is common for A to be approximately but not exactly rank-deficient, i.e., to have

small but not exactly zero singular values. A common practice for handling approximate

rank-deficiency is to set a threshold and treat as zero any singular values smaller than the

threshold. (This is called truncated SVD.) In LAPACK, the threshold is the largest singular

value of A multiplied by a user-supplied constant, called RCOND. Let A ∈ ℝm × n with m ≫

n be an approximately rank-k matrix that can be written as Ak + E, where k < n and Ak is the

best rank-k approximation to A. For simplicity, we assume that a constant c > 0 is known

such that σ1 ≥ σk ≫ cσ1 ≫ σk + 1 = ‖E‖2. If we take the truncated SVD approach, c can be

used to determine the effective rank of A, and the solution becomes . In LSRN, we

can perform a truncated SVD on Ã = GA, where the constant c is used to determine the

effective rank of Ã, denoted by k̃. The rest of the algorithm remains the same. In this section,

we present a sufficient condition for k̃ = k and analyze the approximation error of x̂, the

solution from LSRN. For simplicity, we assume exact arithmetic and exact solving of the

preconditioned system in our analysis. Recall that in LSRN we have

where G ∈ ℝs × m is a random normal projection. If γ = s/n is sufficiently large, e.g., 2.0, and

n is not too small, Lemma 4.3 implies that there exist 0 < q1 < q2 such that, with high

probability, G has full rank and

(4.7)

Meng et al. Page 14

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Theorem 4.6. If (4.7) holds, σk + 1 < cσ1q1/q2, and σk > cσ1 (1 + q2/q1), we have k̃ = k, so

that LSRN determines the effective rank of A correctly, and

Proof. Equation (4.7) implies

(4.8)

(4.9)

and hence σ1/q2 ≤ σ1(Ã) ≤ σ1/q1. Similarly, we have ‖GE‖2 = σ1(GE) ≤ σk + 1/q1. Let Ãk be

Ã’s best rank-k approximation and let be its SVD. We have

(4.10)

Note that range(Ak) ⊂ range(A). We have

where because G has full rank. Therefore,

(4.11)

Using the assumptions σk + 1 < cσ1 q1/q2 and σk > cσ1 (1 + q2/q1) and the bounds (4.8)–

(4.11), we get

and

Thus if we use c to determine the effective rank of Ã, the result would be k, the same as the

effective rank of A.

Following the LSRN algorithm, the preconditioner matrix is . Note that AN has

full rank because k = rank(N) ≥ rank(AN) ≥ rank(GAN) = rank(Ũk) = k. Therefore, LSRN’s

solution can be written as

Meng et al. Page 15

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For the matrix , we have the following bound on its kth singular value:

The distance between Ak and is also bounded:

For perturbation of a pseudoinverse, Wedin [25] shows that if rank(A) = rank(B), then

Applying this result, we get

Thus, x̂ is a good approximation to x* if σk + 1 = ‖E‖2 is sufficiently small.

Theorem 4.6 suggests that, to correctly determine the effective rank, we need σk and σk + 1

well-separated with respect to the distortion q2/q1 introduced by G. For LSRN, q2/q1 is

bounded by a small constant with high probability if we choose the oversampling factor γ to

be a moderately large constant, e.g., 2. We note that the distortion of the random normal

projection used in Coakley, Rokhlin, and Tygert [3] is around 1000, which reduces the

reliability of determining the effective rank of an approximately rank-deficient problem. We

verify this claim empirically in section 6.9.

Remark. Theorem 4.6 assumes that G has full rank and the subspace embedding property

(4.7). It is not necessary for G to be a random normal projection matrix. The result also

applies to other random projection matrices satisfying this condition, e.g., the randomized

discrete cosine transform used in Blendenpik [2].

4.4. Complexity

In this section, we discuss the complexity of LSRN. For space complexity, a careful

implementation of LSRN should only use (m + n2) RAM instead of (mn + n2), because we

can generate G and compute GA in blocks. Note that LSRN does not alter the input data. This

Meng et al. Page 16

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

is different from, for example, LAPACK’s DGELSD, which modifies the input data to store

right singular vectors. For DGELSD, we might need to create a copy of the input data,

which costs (mn) RAM.

Next, we analyze the time complexity of LSRN (Algorithm 1) in terms of floating-point

operations (flops). Note that we need only Σ̃ and Ṽ, but not Ũ or a full SVD of Ã in step 4 of

Algorithm 1. In step 6, we assume that the dominant cost per iteration is the cost of applying

AN and (AN)T. Then the total cost is given by

where lower-order terms are ignored. Here, flops(randn) is the average flop count to

generate a pseudorandom number from the standard normal distribution, while flops(Aυ)

and flops(ATu) are the flop counts for the respective matrix-vector products. If A is a dense

matrix, we have flops(Aυ) = flops(ATu) = 2mn. The total cost becomes

Comparing this with the SVD approach, which uses 2mn2 + 11n3 flops, we find LSRN

requires more flops, even if we only consider computing Ã and its SVD. However, the actual

running time is not fully characterized by the number of flops. It is also affected by how

efficiently the computers can do the computation. We empirically compare the running time

in section 6. If A is a sparse matrix, we generally have flops(Aυ) and flops(ATu) of order

(m). In this case, LSRN should run considerably faster than the SVD approach. Finally, if A

is an operator, it is hard to apply SVD, while LSRN still works without any modification. If

we set γ = 2 and ε = 10−14 and assume that n is sufficiently large, we know Niter ≈ 100 with

high probability by Theorem 4.5, and hence LSRN needs approximately 2n + 200 matrix-

vector multiplications.

One advantage of LSRN is that the stages of generating G and computing Ã = GA are

embarrassingly parallel. Thus, it is easy to implement LSRN in parallel. For example, on a

shared-memory machine using p cores, the total running time decreases to

(4.12)

where Trandn, Tmult, and Titer are the running times for the respective stages if LSRN runs on

a single core, is the running time of SVD using p cores, and communication cost

among threads is ignored. Hence, multithreaded LSRN has very good scalability with near-

linear speedup on strongly over- or underdetermined problems.

Alternatively, let us consider a cluster of size p using MPI, where each node stores a portion

of rows of A (with m ≫ n). Each node can generate random projections and do the

Meng et al. Page 17

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

multiplication independently; then an MPI_Reduce operation is needed to obtain Ã. Since n

is small, the SVD of Ã and the preconditioner N are computed on a single node and

distributed to all the other nodes via an MPI_Bcast operation. If LSQR is chosen as the

iterative solver, we need two MPI_Allreduce operations per iteration in order to apply AT

and to compute a vector norm, while if the CS method is chosen as the iterative solver, we

need only one MPI_Allreduce operation per iteration to apply AT. Note that all the MPI

operations that LSRN uses are collective. If we assume the cluster is homogeneous and has

perfect load balancing, the time complexity to perform a collective operation should be

(log p). Hence the total running time becomes

(4.13)

where C1 corresponds to the cost of computing Ã and broadcasting N, and C2 corresponds to

the cost of applying AT at each iteration. Therefore, the MPI implementation of LSRN still

has good scalability as long as Tsvd is not dominant, i.e., as long as Ã is not too big. In our

empirical evaluations typical values of n (or m for underdetermined problems) are around

1000, and thus this is the case.

5. Tikhonov regularization

We point out that it is easy to extend LSRN to handle certain types of Tikhonov

regularization, also known as ridge regression. Recall that Tikhonov regularization involves

solving the problem

(5.1)

where W ∈ ℝn × n controls the regularization term. In many cases, W is chosen as λIn for

some value of a regularization parameter λ > 0. It is easy to see that (5.1) is equivalent to the

following LS problem, without any regularization:

(5.2)

This is an overdetermined problem of size (m + n) × n. If m ≫ n, then we certainly have m +

n ≫ n. Therefore, if m ≫ n, we can directly apply LSRN to (5.2) in order to solve (5.1). On

the other hand, if m ≪ n, then although (5.2) is still overdetermined, it is “nearly square” in

the sense that m + n is only slightly larger than n. In this regime, random sampling methods

and random projection methods like LSRN do not perform well. In order to deal with this

regime, note that (5.1) is equivalent to

Meng et al. Page 18

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where r = b − Ax is the residual vector. (Note that we use r to denote the matrix rank in a

scalar context and the residual vector in a vector context.) By introducing z = Wx and

assuming that W is nonsingular, we can rewrite the above problem as

i.e., as when computing the min-length solution to

(5.3)

Note that (5.3) is an underdetermined problem of size m × (m + n). Hence, if m ≪ n, we

have m ≪ m + n, and we can use LSRN to compute the min-length solution to (5.3), denoted

by . The solution to the original problem (5.1) is then given by x* = W−1z*. Here, we

assume that W−1 is easy to apply (e.g., if W = λIn), so that AW−1 can be treated as an

operator. The equivalence between (5.1) and (5.3) was first established by Herman, Lent,

and Hurwitz [15].

In most applications of regression analysis, the optimal regularization parameter is unknown

and needs to be estimated, e.g., by cross-validation. This requires solving a sequence of LS

problems where only W differs. For overdetermined problems, we need to perform a random

normal projection on A only once. The marginal cost to solve for each W is the following: a

random normal projection on W, an SVD of size ⌈γn⌉ × n, and a predictable number of

iterations. Similar results hold for underdetermined problems when each W is a multiple of

the identity matrix.

6. Numerical experiments

We implemented our LS solver LSRN and compared it with competing solvers: DGELSD/

DGELSY from LAPACK [1], spqr_solve (SPQR) from SuiteSparseQR [5, 6], and

Blendenpik [2]. Table 1 summarizes the properties of those solvers. It is impossible to

compare LSRN with all of the LS solvers. We choose solvers from LAPACK and

SuiteSparseQR because they are the de facto standards for dense and sparse problems,

respectively. DGELSD takes the SVD approach, which is accurate and robust to rank-

deficiency. DGELSY takes the orthogonal factorization approach, which should be almost

as robust as the SVD approach but less expensive. SPQR uses multifrontal sparse QR

factorization. With the “min2norm” option, it computes min-length solutions to full-rank

underdetermined LS problems. However, it does not compute min-length solutions to rank-

deficient problems. Note that the widely used MATLAB’s backslash calls LAPACK for

dense problems and SuiteSparseQR for sparse problems.1 But it does not call the functions

that return min-length solutions to rank-deficient or underdetermined systems. We choose

Blendenpik out of several recently proposed randomized LS solvers, e.g., [22] and [3],

Meng et al. Page 19

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

because a high-performance implementation is publicly available and it is easy to adapt it to

use multithreads. Blendenpik assumes that A has full rank.

6.1. Implementation and system setup

The experiments were performed on either a local shared-memory machine or a virtual

cluster hosted on Amazon’s Elastic Compute Cloud (EC2). The shared-memory machine

has 12 Intel Xeon CPU cores at clock rate 2GHz with 128GB RAM. The virtual cluster

consists of 20 m1.large instances configured by a third-party tool called StarCluster.2 An

m1.large instance has two virtual cores with two EC2 Compute Units3 each. To attain top

performance on the shared-memory machine, we implemented a multithreaded version of

LSRN in C, and to make our solver general enough to handle large problems on clusters, we

also implemented an MPI version of LSRN in Python with NumPy, SciPy, and mpi4py. Both

packages are available for download.4 We use the multithreaded implementation to compare

LSRN with other LS solvers and use the MPI implementation to explore scalability and to

compare iterative solvers under a cluster environment. To generate values from the standard

normal distribution, we adopted the code from Marsaglia and Tsang [19] and modified it to

use threads; this can generate a billion samples in less than two seconds on the shared-

memory machine. For both the multi-threaded version and the MPI version, the random

seeds for each thread/process is determined by its rank, which works well in practice. We

compiled SuiteSparseQR with Intel Threading Building Blocks (TBB) enabled, as suggested

by its author. We also modified Blendenpik to call multithreaded FFTW routines.

Blendenpik’s default settings were used. All of the solvers were linked against the BLAS

and LAPACK libraries shipped with MATLAB R2011b. This is a fair setup because all the

solvers can use multithreading automatically and are linked against the same BLAS and

LAPACK libraries. The running times were measured in wall-clock times.

6.2. κ(AN) and number of iterations

Recall from Theorem 4.4 that κ(AN), the condition number of the preconditioned system, is

roughly bounded by when s is large enough such that we can ignore

α in practice. To verify this statement, we generate random matrices of size 104 × 103 with

condition numbers ranging from 102 to 108. The left figure in Figure 1 compares κ(AN) with

κ+(A), the effective condition number of A, under different choices of s and r. We take the

largest value of κ(AN) in ten independent runs as the κ(AN) in the plot. For each pair of s

and r, the corresponding estimate is drawn in a solid line of the

same color. We see that is indeed an accurate estimate of the upper

bound on κ(AN). Moreover, κ(AN) is not only independent of κ+(A), but it is also quite

small. For example, we have if s > 2r, and hence we can expect

1As stated by Tim Davis, “SuiteSparseQR is now QR in MATLAB 7.9 and x = A\b when A is sparse and rectangular.” http://
www.cise.ufl.edu/research/sparse/SPQR/
2http://web.mit.edu/stardev/cluster/
3“One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor.” http://
aws.amazon.com/ec2/faqs/
4http://www.stanford.edu/group/SOL/software/lsrn.html

Meng et al. Page 20

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cise.ufl.edu/research/sparse/SPQR/
http://www.cise.ufl.edu/research/sparse/SPQR/
http://web.mit.edu/stardev/cluster/
http://aws.amazon.com/ec2/faqs/
http://aws.amazon.com/ec2/faqs/
http://www.stanford.edu/group/SOL/software/lsrn.html

super fast convergence of CG-like methods. Loss of orthogonality is not an issue here

because of extremely good conditioning and small iteration counts. Based on Theorem 4.5,

the number of iterations should be less than , where ε is a given

tolerance. In order to match the accuracy of direct solvers, we set ε = 10−14. The right figure

in Figure 1 shows the number of LSQR iterations for different combinations of r/s and

κ+(A). Again, we take the largest iteration number in ten independent runs for each pair of

r/s and κ+(A). We also draw the theoretical upper bound in a dotted

line. We see that the number of iterations is basically a function of r/s, independent of κ+(A),

and the theoretical upper bound is very good in practice. This confirms that the number of

iterations is fully predictable given γ.

6.3. Tuning the oversampling factor γ

Once we set the tolerance and maximum number of iterations, there is only one parameter

left: the oversampling factor γ. To demonstrate the impact of γ, we fix the problem size to

105 ×103 and the condition number to 106, set the tolerance to 10−14, and then solve the

problem with γ ranged from 1.2 to 3. Figure 2 illustrates how γ affects the running times of

LSRN’s stages: randn for generating random numbers, mult for computing Ã = GA, svd for

computing Σ̃ and Ṽ from Ã, and iter for LSQR. We see that the running times of randn,

mult, and svd increase linearly as γ increases, while iter time decreases. Therefore, there

exists an optimal choice of γ. For this particular problem, we should choose γ between 1.8

and 2.2. We experimented with various LS problems. The best choice of γ ranges from 1.6

to 2.5, depending on the type and the size of the problem. We also note that, when γ is

given, the running time of the iteration stage is fully predictable. Thus we can initialize

LSRN by measuring randn/sec and flops/sec for matrix-vector multiplication, matrix-matrix

multiplication, and SVD, and then determine the best value of γ by minimizing the total

running time (4.13). For simplicity, we set γ = 2.0 in all later experiments; although this is

not the optimal setting for all cases, it is always a reasonable choice.

6.4. Solution accuracy

Under the default settings γ = 2.0 and ε = 10−14, we test LSRN’s solution accuracy on three

types of LS problems: full rank, rank-deficient, and approximately rank-deficient. As

mentioned in section 4.3, LSRN uses the common approach to determine the effective rank

of Ã, whose singular values smaller than cσ1(Ã) are treated as zeros, where c is a user input.

A is generated by constructing its SVD. For full-rank problems, we use the following

MATLAB script:

U = orth(randn(m, n)); S = diag (linspace (1, 1/kappa, n));

V = orth(randn(n, n)); A = U*S*V’; x = randn(n, 1);

b = A*x; err = randn(m, 1); b = b + 0.25*norm(b)/norm(err) * err;

For rank-deficient problems, we use

U = orth(randn(m, r)); S = diag (linspace (1, 1/kappa, r)); V = orth(randn(n, r));

Meng et al. Page 21

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The script for approximately rank-deficient problems is the same as for the full rank one

except that

S = diag ([linspace (1, 1/kappa, r), 1e−8 * ones (1, n−r)]);

We choose m = 105, n = 100, r = 80, and κ = 106. DGELSD is used as a reference solver

with c (RCOND) set as 10−7. The metrics are relative differences in ‖x‖2 and ‖Ax − b‖2 and

‖AT (Ax − b)‖2, all scaled by 1/κ, which is generally more informative (see [3, Remark 5.3]),

and computed using quad precision. Table 2 lists the average values of those metrics from

50 independent runs. We see that LSRN is accurate enough to meet the accuracy requirement

of most applications.

6.5. Dense least squares

Though LSRN is not designed for dense problems, it is competitive with DGELSD/DGELSY

and Blendenpik on large-scale strongly over- or underdetermined LS problems. Figure 3

compares the running times of LSRN and competing solvers on randomly generated full-rank

LS problems. We use the script from section 6.4 to generate test problems. The results show

that Blendenpik is the overall winner. The runners-up are LSRN and DGELSD. We find that

the SVD-based DGELSD actually runs much faster than the QR-based DGELSY on

strongly over- or underdetermined systems on the shared-memory machine. It may be

because of better use of multithreaded BLAS, but we do not have a definitive explanation.

The performance of LAPACK’s solvers decreases significantly for underdetermined

problems. We monitored CPU usage and found that LAPACK could not fully use all of the

CPU cores; i.e., it could not effectively call multithreaded BLAS. The performance of

Blendenpik also decreases, while that of LSRN does not change much, making LSRN’s

performance very close to Blendenpik’s.

Remark. The performance of DGELSD/DGELSY varies greatly, depending on the

LAPACK implementation. When we use the LAPACK library shipped with MATLAB

R2010b, the DGELSD from it takes nearly 150 seconds to solve a 106 × 103 LS problem,

which is slower than LSRN. However, after we switch to MATLAB R2011b, it runs slightly

faster than LSRN does on the same problem.

LSRN is also capable of solving rank-deficient problems, and in fact it takes advantage of

any rank-deficiency (in that it finds a solution in fewer iterations). Figure 4 shows the results

on over- and underdetermined rank-deficient problems generated the same way as in

previous experiments, except that we set r = 800. Blendenpik is not included because it is

not designed to handle rank deficiency. DGELSY/DGELSD remains the same speed on

overdetermined problems as in full-rank cases, and runs slightly faster on underdetermined

problems. On the problem of size 106 × 103, DGELSD spends 99.5 seconds, almost the

same as in the full-rank case, while LSRN’s running times reduce to 89.0 seconds, from

101.1 seconds on its full-rank counterpart.

We see that, for strongly over- or underdetermined problems, DGELSD is the fastest and

most reliable routine among the LS solvers provided by LAPACK. However, it (or any other

LAPACK solver) runs much slower on underdetermined problems than on overdetermined

Meng et al. Page 22

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

problems, while LSRN works symmetrically on both cases. Blendenpik is the fastest dense

least squares solver in our tests. Though it is not designed for solving rank-deficient

problems, Blendenpik should be modifiable to handle such problems following Theorem

3.2. We also note that Blendenpik’s performance depends on the distribution of the row

norms of U. We generate test problems randomly so that the row norms of U are

homogeneous, which is ideal for Blendenpik. When the row norms of U are heterogeneous,

Blendenpik’s performance may drop. See Avron, Maymounkov, and Toledo [2] for a more

detailed analysis.

6.6. Sparse least squares

The running time and flop count of SPQR depend upon the fill-reducing ordering it finds

(itself a heuristic for an NP-hard problem), and thus the memory usage and factorization

time are strongly dependent on the sparsity pattern of A. LSRN relies instead on matrix-

matrix and matrix-vector multiplications involving A, and hence its flop count and memory

usage are independent of how the nonzero entries are distributed in A. LAPACK does not

have any direct sparse LS solver. Blendenpik uses fast transforms, which treat the input

matrix as a dense matrix in order to apply fast transforms.

We generated sparse LS problems using MATLAB’s “sprandn” function with density 0.01

and condition number 106. All problems have full rank. Figure 5 shows the results.

DGELSD/DGELSY and Blendenpik basically perform the same as in the dense case. For

overdetermined problems, we see that SPQR handles sparse problems very well when m <

105. As m grows larger, the factor R becomes increasingly dense in general and SPQR slows

down. For our test cases, SPQR runs even longer than DGELSD when m ≥ 3 × 105. LSRN

becomes the fastest solver among the five when m ≥ 105. It takes only 26.1 seconds on the

overdetermined problem of size 106 ×103. On large underdetermined problems, LSRN still

leads by a huge margin.

LSRN makes no distinction between dense and sparse problems. The speedup on sparse

problems is due to faster matrix-vector and matrix-matrix multiplications. Hence, although

no test was performed, we expect a similar speedup on fast linear operators as well. Also

note that, in the multithreaded implementation of LSRN, we use a naive multithreaded

routine for sparse matrix-vector and matrix-matrix multiplications, which is far from

optimized and thus leaves room for improvement.

6.7. Real-world problems

In this section, we report results on some real-world large data problems. The problems are

summarized in Table 3, along with running times. DGELSY is not included because it is

inferior to DGELSD.

landmark and rail4284 are from the University of Florida Sparse Matrix Collection [7].

landmark originated from a rank-deficient LS problem. rail4284 has full rank and

originated from a linear programming problem on Italian railways. Both matrices are very

sparse and have structured patterns. Though SPQR runs extremely fast on landmark, it

does not guarantee to return the min-length solution. Blendenpik is not designed to handle

Meng et al. Page 23

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the rank-deficient landmark, and it unfortunately runs out of memory (OOM) on

rail4284. LSRN takes 17.55 seconds on landmark and 136.0 seconds on rail4284.

DGELSD is slightly slower than LSRN on landmark and much slower on rail4284.

tnimg is generated from the TinyImages collection [24], which provides 80 million color

images of size 32 × 32. For each image, we first convert it to grayscale, compute its two-

dimensional DCT (Discrete Cosine Transform), and then keep only the top 2% largest

coefficients in magnitude. This gives a sparse matrix of size 1024 × 8e7 where each column

has 20 or 21 nonzero elements. Note that tnimg does not have apparent structured pattern.

Since the whole matrix is too big, we work on submatrices of different sizes. tnimg_i is the

submatrix consisting of the first 106 × i columns of the whole matrix for i = 1, …, 80, where

empty rows are removed. The running times of LSRN are approximately linear in n. Both

DGELSD and SPQR are slower than LSRN on the tnimg problems. More importantly, their

running times show that DGELSD and SPQR do not have linear scalability. Blendenpik

either does not apply to the rank-deficient cases or runs OOM.

We see that, though both methods take advantage of sparsity, SPQR relies heavily on the

sparsity pattern and its performance is unpredictable until the sparsity pattern is analyzed,

while LSRN does not rely on the sparsity pattern and always delivers predictable

performance and, moreover, the min-length solution.

6.8. Scalability and choice of iterative solvers on clusters

In this section, we move to the Amazon EC2 cluster. The goals are to demonstrate that (1)

LSRN scales well on clusters, and (2) the CS method is preferred to LSQR on clusters with

high communication cost. The test problems are submatrices of the tnimg matrix in the

previous section: tnimg_4, tnimg_10, tnimg_20, and tnimg_40, solved with 4, 10, 20,

and 40 cores, respectively. Each process stores a submatrix of size 1024 × 1e6. Table 4

shows the results, averaged over five runs. Ideally, from the complexity analysis (4.13),

when we double n and double the number of cores, the increase in running time should be a

constant if the cluster is homogeneous and has perfect load balancing (which we have

observed is not true on Amazon EC2). For LSRN with CS, from tnimg_10 to tnimg_20 the

running time increases 27.6 seconds, and from tnimg_20 to tnimg_40 the running time

increases 34.7 seconds. We believe the difference between the time increases is caused by

the heterogeneity of the cluster, because Amazon EC2 does not guarantee the connection

speed among nodes. From tnimg_4 to tnimg_40, the problem scale is enlarged by a factor

of 10 while the running time only increases by a factor of 50%. The result still demonstrates

LSRN’s good scalability. We also compare the performance of LSQR and CS as the iterative

solvers in LSRN. For all problems LSQR converges in 84 iterations and CS converges in 106

iterations. However, LSQR is slower than CS. The communication cost saved by CS is

significant on those tests. As a result, we recommend CS as the default LSRN iterative solver

for cluster environments. Note that to reduce the communication cost on a cluster, we could

also consider increasing γ to reduce the number of iterations.

Meng et al. Page 24

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6.9. Comparison with Coakley, Rokhlin, and Tygert

Coakley, Rokhlin, and Tygert [3] introduced a least squares solver, referred to as CRT11,

based on pre-conditioned normal equation, where the preconditioning matrix is computed

via a random normal projection G, with G ∈ ℝ(n + 4) × m. We implemented a multithreaded

version of CRT11 that shares the code base used by LSRN and uses (m + n2) RAM by

computing in blocks. In this section, we report some comparison results between CRT11 and

LSRN.

It is easy (and thus we omit details) to derive the time complexity of CRT11, which requires

applying A or AT 3n + 6 times, while from section 4.4 we know that LSRN needs roughly 2n

+ 200 matrix-vector multiplications under the default setting. So LSRN is asymptotically

faster than CRT11 in theory. We compare the running times of LSRN and CRT11 on dense

strongly overdetermined least square problems, where m is fixed at 106 while n ranges from

1000 to 3000, and A has full rank. The test problems are generated the same way as in

section 6.5. We list the running times in Table 5, where we see that LSRN is slightly slower

than CRT11 when n = 1000 and becomes faster when n = 2000, 3000, and 4000.

Hardware limitations prevented testing larger problems. We believe that the difference

should be much clearer if A is an expensive operator, for example, if applying A or AT

requires solving a partial differential equation. Based on the evaluation result, we would

recommend CRT11 over LSRN if n ≤ 1000, and LSRN over CRT11 otherwise.

In [3], the authors showed that, unlike the original normal equation approach, CRT11 is very

reliable on a broad range of matrices because the condition number of the preconditioned

system is not very large (≈ 1000). This is true for full-rank matrices. However, the authors

did not show how CRT11 works on approximately rank-deficient problems. Based on our

analysis in section 4.3, we need σk and σk + 1 well-separated with respect to the distortion

introduced by G in order to determine the effective rank correctly. In LSRN we choose G ∈

ℝ2n × m, which leads to a small constant distortion (with high probability), while in CRT11

we have G ∈ℝ(n + 4) × m, which leads to a relatively large distortion. It suggests CRT11 might

be less reliable than LSRN in estimating the rank of an approximately rank-deficient

problem. To verify this, we use the following MATLAB script to generate a test problem:

sigma = [ones (1, n/4), 1/kappa*ones (1, n/4), e*ones (1, n/2)];

U = orth(randn(m, n)); A = U*diag (sparse (sigma)).

where we choose m = 10000, n = 100, κ = 106, and e = 10−7. Thus we have A’s effective

rank k = 50, σ1(A) = 1, σk = 10−6, and σk + 1 = 10−7; To estimate the effective rank, we set

, and singular values of Ã = GA that are smaller than cσ1(Ã) are

treated as zeros. Figure 6 compares the singular values of A and GA for both CRT11 and

LSRN (rescaled by for better alignment, where s = n + 4 for CRT11 and s = 2n for

LSRN). We see that CRT11 introduces more distortion to the spectrum of A than LSRN. In this

example, the rank determined by CRT11 is 47, while LSRN outputs the correct effective rank.

We note that LSRN is not risk-free for approximately rank-deficient problems, which still

Meng et al. Page 25

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

should have sufficient separation between σk and σk + 1. However, it is more reliable than

CRT11 on approximately rank-deficient problems because of less distortion introduced by G.

7. Conclusion

We developed LSRN, a parallel solver for strongly over- or underdetermined and possibly

rank-deficient systems. LSRN uses random normal projection to compute a preconditioner

matrix for an iterative solver such as LSQR or the Chebyshev semi-iterative (CS) method.

The preconditioning process is embarrassingly parallel and automatically speeds up on

sparse matrices, fast linear operators, and rank-deficient data. We proved that the

preconditioned system is consistent and extremely well-conditioned, and derived strong

bounds on the number of iterations of LSQR or the CS method, and hence on the total

running time. On large dense systems, LSRN is competitive with the best existing solvers,

and runs significantly faster than competing solvers on strongly over- or underdetermined

sparse systems without sparsity patterns that can be exploited to reduce fill-in. LSRN is easy

to implement using threads or MPI, and scales well in parallel environments. The LSRN

package can be downloaded from http://www.stanford.edu/group/SOL/software/lsrn.html.

Acknowledgments

After completing the initial version of this manuscript, we learned of the LS algorithm of Coakley, Rokhlin, and
Tygert [3]. We thank Mark Tygert for pointing us to this reference. We also thank Tim Davis for showing us the
“min2norm” option of SPQR and other useful suggestions. We are grateful to Lisandro Dalcin, the author of
mpi4py, for his own version of the MPI Barrier function to prevent idle processes from interrupting the
multithreaded SVD process too frequently. We are also grateful to the three referees for their very detailed and
helpful suggestions.

This author’s research was partially supported by the US Army Research Laboratory through the Army High
Performance Computing Research Center, Cooperative Agreement W911NF-07-0027, by NSF grant
DMS-1009005, by ONR grant N000141110067-P-00004, and by NIH award U01GM102098. The content is solely
the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

REFERENCES

1. Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.;
Greenbaum, A.; Hammarling, S.; McKenney, A., et al. LAPACK Users’ Guide. Vol. Vol. 9.
Philadelphia: SIAM; 1987.

2. Avron H, Maymounkov P, Toledo S. Blendenpik: Supercharging LAPACK’s least-squares solver.
SIAM J. Sci. Comput. 2010; 32:1217–1236.

3. Coakley ES, Rokhlin V, Tygert M. A fast randomized algorithm for orthogonal projection. SIAM J.
Sci. Comput. 2011; 33:849–868.

4. Davidson, KR.; Szarek, SJ. Handbook of the Geometry of Banach Spaces. Vol. Vol. 1. Amsterdam:
North-Holland; 2001. Local operator theory, random matrices and Banach spaces; p. 317-366.

5. Davis, TA. Direct Methods for Sparse Linear Systems. Philadelphia: SIAM; 2006.

6. Davis TA. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR
factorization. ACM Trans. Math. Software. 2011; 38 article 8.

7. Davis TA, Hu Y. The University of Florida sparse matrix collection. ACM Trans. Math. Software.
2011; 38 article 1.

8. Drineas, P.; Mahoney, MW.; Muthukrishnan, S. Sampling algorithms for ℓ2 regression and
applications. Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms;
ACM; New York. 2006. p. 1127-1136.

Meng et al. Page 26

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.stanford.edu/group/SOL/software/lsrn.html

9. Drineas P, Mahoney MW, Muthukrishnan S, Sarós T. Faster least squares approximation. Numer.
Math. 2011; 117:219–249.

10. Fong DC-L, Saunders M. LSMR: An iterative algorithm for sparse least-squares problems. SIAM
J. Sci. Comput. 2011; 33:2950–2971.

11. Golub, GH.; Van Loan, CF. Matrix Computations. 3rd ed.. Baltimore, MD: Johns Hopkins
University Press; 1996.

12. Golub GH, Varga RS. Chebyshev semi-iterative methods, successive over-relaxation methods, and
second-order Richardson iterative methods, parts I and II. Numer. Math. 1961; 3:147–168.

13. Gutknecht MH, Rollin S. The Chebyshev iteration revisited. Parallel Comput. 2002; 28:263–283.

14. Halko N, Martinsson PG, Tropp JA. Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions. SIAM Rev. 2011; 53:217–288.

15. Herman GT, Lent A, Hurwitz H. A storage-efficient algorithm for finding the regularized solution
of a large, inconsistent system of equations. J. Inst. Math. Appl. 1980; 25:361–366.

16. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J. Research
Nat. Bur. Standards. 1952; 49:409–436.

17. Luenberger, DG. Introduction to Linear and Nonlinear Programming. Reading, MA: Addison-
Wesley; 1973.

18. Mahoney, MW. Foundations and Trends in Machine Learning. Boston: NOW Publishers; 2011.
Randomized Algorithms for Matrices and Data.

19. Marsaglia G, Tsang WW. The ziggurat method for generating random variables. J. Stat. Softw.
2000; 5:1–7.

20. Paige CC, Saunders MA. Solution of sparse indefinite systems of linear equations. SIAM J.
Numer. Anal. 1975; 12:617–629.

21. Paige CC, Saunders MA. LSQR: An algorithm for sparse linear equations and sparse least squares.
ACM Trans. Math. Software. 1982; 8:43–71.

22. Rokhlin V, Tygert M. A fast randomized algorithm for overdetermined linear least-squares
regression. Proc. Natl. Acad. Sci. USA. 2008; 105:13212–13217. [PubMed: 18779559]

23. Sarlós, T. Improved approximation algorithms for large matrices via random projections.
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science; IEEE;
New York. 2006. p. 143-152.

24. Torralba A, Fergus R, Freeman WT. 80 million tiny images: A large data set for nonparametric
object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2008; 30:1958–1970.
[PubMed: 18787244]

25. Wedin P. Perturbation theory for pseudo-inverses. BIT Numerical Mathematics. 1973; 13:217–
232.

Meng et al. Page 27

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Left: κ+(A) versus κ(AN) for different choices of r and s. A ∈ ℝ104 × 103

 is randomly

generated with rank r ∈ {800, 1000} and effective condition number κ+(A) ∈ {102, 103, …,

108}. For each (r, s) pair, we take the largest value of κ(AN) in ten independent runs for each

κ+(A) and plot them using circle marks. The estimate is drawn

using a solid line for each (r, s) pair. Right: Number of LSQR iterations versus r/s. The

number of LSQR iterations is merely a function of r/s, independent of the condition number

of the original system.

Meng et al. Page 28

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
The overall running time of LSRN and the running time of each LSRN stage with different

oversampling factor γ for a randomly generated problem of size 105 × 103. For this

particular problem, the optimal γ that minimizes the overall running time lies in [1.8, 2.2].

Meng et al. Page 29

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Running times on m × 1000 dense overdetermined problems with full rank (left) and on

1000 × n dense underdetermined problems with full rank (right). On the problem of size 106

× 103, we have Blendenpik > DGELSD ≈ LSRN > DGELSY in terms of speed. On

underdetermined problems, LAPACK’s performance decreases significantly compared with

the overdetermined cases. Blendenpik’s performance decreases as well, while LSRN does not

change much.

Meng et al. Page 30

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Running times on m × 1000 dense overdetermined problems with rank 800 (left) and on

1000 × n dense underdetermined problems with rank 800 (right). LSRN takes advantage of

rank-deficiency. We have LSRN > DGSLS/DGELSD > DGELSY in terms of speed.

Meng et al. Page 31

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Running times on m × 1000 sparse overdetermined problems with full rank (left) and on

1000 × n sparse underdetermined problems with full rank (right). DGELSD/DGELSY and

Blendenpik perform almost the same as in the dense case. SPQR performs very well for

small and medium-scaled problems, but it runs slower than the dense solver Blendenpik on

the problem of size 106 × 103. LSRN starts to lead as m goes above 105, and it leads by a

huge margin on the largest problem. The underdetermined case is very similar to its

overdetermined counterpart.

Meng et al. Page 32

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.

Left: Comparison of the spectrum of A and GA for both CRT11 and LSRN (rescaled by

for better alignment, where s = n + 4 for CRT11 and s = 2n for LSRN) and the cutoff values

in determining the effective rank of A. Right: Zoomed in to show that the effective rank

estimated by CRT11 is 47, while LSRN outputs the correct effect rank, which is 50.

Meng et al. Page 33

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meng et al. Page 34

Algorithm 1

LSRN (computes x̂ ≈ A†b when m ≫ n).

1 Choose an oversampling factor γ > 1 and set s = ⌈γn⌉.

2 Generate G = randn(s, m), i.e., an s-by-m random matrix whose entries are independent random variables following the standard
normal distribution.

3 Compute Ã = GA.

4 Compute Ã’s compact SVD ŨΣ̃ṼT, where r = rank(Ã), Ũ ∈ ℝs × r, Σ̃ ∈ ℝr × r, Ṽ ∈ ℝn × r, and only Σ̃ and Ṽ are needed.

5 Let N = ṼΣ̃−1.

6 Compute the min-length solution to miny ‖ANy − b‖2 using an iterative method.

Denote the solution by ŷ.

7 Return x ̂ = Nŷ.

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meng et al. Page 35

Algorithm 2

LSRN (computes x̂ ≈ A†b when m ≪ n).

1 Choose an oversampling γ > 1 and set s = ⌈γm⌉.

2 Generate G = randn(n, s), i.e., an n-by-s random matrix whose entries are independent random variables following the standard
normal distribution.

3 Compute Ã = AG.

4 Compute Ã’s compact SVD ŨΣ̃ṼT, where r = rank(Ã), Ũ ∈ ℝn × r, Σ̃ ∈ ℝr × r, Ṽ ∈ ℝs × r, and only Ũ and Σ̃ are needed.

5 Let M = ŨΣ̃−1.

6 Compute the min-length solution to minx ‖MTAx − MTb‖2 using an iterative method, denoted by x̂.

7 Return x̂.

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meng et al. Page 36

Algorithm 3

Chebyshev semi-iterative (CS) method (computes x ≈ A†b).

1 Given A ∈ ℝm × n, b ∈ ℝm, and a tolerance ε > 0, choose 0 < σL ≤ σU such that all nonzero singular values of A are in [σL, σU] and let

 and .

2 Let x = 0, υ = 0, and r = b.

3
for do

4

5 υ ← βυ + ATr.

6 x ← x + αυ.

7 r ← r − αAυ.

8 end for

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meng et al. Page 37

Table 1

LS solvers and their properties.

solver
min-len solution to Taking advantage of

underdet? rank-def? sparse A operator A

DGELSD/DGELSY yes yes no no

SPQR yes no yes no

Blendenpik yes no no no

LSRN yes yes yes yes

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meng et al. Page 38

Table 2

Comparing LSRN’s solution accuracy to DGELSD. DGELSD’s solution is denoted by x*, and LSRN’s denoted

by x̂. The metrics are computed using quad precision. We show the average values of those metrics from 50

independent runs. LSRN should be accurate enough for most applications.

Full rank −8.5e-14 0.0 3.6e-18 2.5e-17

Rank-def −5.3e-14 0.0 8.1e-18 1.5e-17

Approx. rank-def 9.9e-12 −7.3e-16 2.5e-17 2.7e-17

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meng et al. Page 39

T
ab

le
 3

R
ea

l-
w

or
ld

 p
ro

bl
em

s
an

d
co

rr
es

po
nd

in
g

ru
nn

in
g

tim
es

 in
 s

ec
on

ds
. D

G
E

L
SD

 d
oe

s
no

t t
ak

e
ad

va
nt

ag
e

of
 s

pa
rs

ity
, w

ith
 it

s
ru

nn
in

g
tim

e
de

te
rm

in
ed

 b
y

th
e

pr
ob

le
m

 s
iz

e.
 T

ho
ug

h
SP

Q
R

 m
ay

 n
ot

 o
ut

pu
t m

in
-l

en
gt

h
so

lu
tio

ns
 to

 r
an

k-
de

fi
ci

en
t p

ro
bl

em
s,

 w
e

st
ill

 r
ep

or
t i

ts
 r

un
ni

ng
 ti

m
es

 (
m

ar
ke

d
w

ith
 “

 *
 ”

).

B
le

nd
en

pi
k

ei
th

er
 d

oe
s

no
t a

pp
ly

 to
 r

an
k-

de
fi

ci
en

t p
ro

bl
em

s
or

 r
un

s
ou

t o
f

m
em

or
y

(O
O

M
).

 L
S
R
N

’s
 r

un
ni

ng
 ti

m
e

is
 m

ai
nl

y
de

te
rm

in
ed

 b
y

th
e

pr
ob

le
m

si
ze

 a
nd

 th
e

sp
ar

si
ty

.

M
at

ri
x

m
n

nn
z

R
an

k
C

on
d

D
G

E
L

SD
SP

Q
R

B
le

nd
en

pi
k

L
S
R
N

l
a
n
d
m
a
r
k

71
95

2
27

04
1.

15
e6

26
71

1.
0e

8
18

.6
4

4.
92

0*
-

17
.8

9

r
a
i
l
4
2
8
4

42
84

1.
1e

6
1.

1e
7

fu
ll

40
0.

0
>

 3
60

0
50

5.
9

O
O

M
14

6.
1

t
n
i
m
g
_
1

95
1

1e
6

2.
1e

7
92

5
-

51
0.

3
72

.1
4*

-
41

.0
8

t
n
i
m
g
_
2

10
00

2e
6

4.
2e

7
98

1
-

10
22

16
8.

6*
-

82
.6

3

t
n
i
m
g
_
3

10
18

3e
6

6.
3e

7
10

16
-

16
28

27
1.

0*
-

12
4.

5

t
n
i
m
g
_
4

10
19

4e
6

8.
4e

7
10

18
-

23
11

37
1.

3*
-

16
3.

9

t
n
i
m
g
_
5

10
23

5e
6

1.
1e

8
fu

ll
-

31
05

49
3.

2
O

O
M

19
7.

6

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meng et al. Page 40

T
ab

le
 4

T
es

t p
ro

bl
em

s
on

 th
e

A
m

az
on

 E
C

 2
 c

lu
st

er
 a

nd
 c

or
re

sp
on

di
ng

 r
un

ni
ng

 ti
m

es
 in

 s
ec

on
ds

. W
he

n
w

e
en

la
rg

e
th

e
pr

ob
le

m
 s

ca
le

 b
y

a
fa

ct
or

 o
f

10
 a

nd

in
cr

ea
se

 th
e

nu
m

be
r

of
 c

or
es

 a
cc

or
di

ng
ly

, t
he

 r
un

ni
ng

 ti
m

e
on

ly
 in

cr
ea

se
s

by
 a

 f
ac

to
r

of
 5

0%
. I

t s
ho

w
s
L
S
R
N

’s
 g

oo
d

sc
al

ab
ili

ty
. T

ho
ug

h
th

e
C

S
m

et
ho

d

ta
ke

s
m

or
e

ite
ra

tio
ns

, i
t i

s
fa

st
er

 th
an

 L
SQ

R
 b

y
sa

vi
ng

 c
om

m
un

ic
at

io
n

co
st

.

So
lv

er
N

co
re

s
M

at
ri

x
m

n
nn

z
N

it
er

T
it

er
T

to
ta

l

L
S
R
N

 w
/ C

S
4

t
n
i
m
g
_
4

10
24

4e
6

8.
4e

7
10

6
34

.0
3

17
0.

4

L
S
R
N

 w
/ L

SQ
R

84
41

.1
4

17
8.

6

L
S
R
N

 w
/ C

S
10

t
n
i
m
g
_
1
0

10
24

1e
7

2.
1e

8
10

6
50

.3
7

19
3.

3

L
S
R
N

 w
/ L

SQ
R

84
68

.7
2

21
1.

6

L
S
R
N

 w
/ C

S
20

t
n
i
m
g
_
2
0

10
24

2e
7

4.
2e

8
10

6
73

.7
3

22
0.

9

L
S
R
N

 w
/ L

SQ
R

84
10

2.
3

24
9.

0

L
S
R
N

 w
/ C

S
40

t
n
i
m
g
_
4
0

10
24

4e
7

8.
4e

8
10

6
10

2.
5

25
5.

6

L
S
R
N

 w
/ L

SQ
R

84
13

7.
2

29
0.

2

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meng et al. Page 41

Table 5

Running times (in seconds) on full-rank dense overdetermined problems of size 106 × n, where n ranges from

1000 to 4000. LSRN is slightly slower than CRT 11 when n = 1000 and becomes faster when n = 2000, 3000,

and 4000, which is consistent with our theoretical analysis.

n = 1000 n = 2000 n = 3000 n = 4000

CRT11 98.0 327.7 672.3 1147.9

LSRN 101.1 293.1 594.0 952.2

SIAM J Sci Comput. Author manuscript; available in PMC 2014 November 20.

