Skip to main content
. Author manuscript; available in PMC: 2014 Nov 20.
Published in final edited form as: SIAM J Sci Comput. 2014;36(2):C95–C118. doi: 10.1137/120866580

Table 3.

Real-world problems and corresponding running times in seconds. DGELSD does not take advantage of sparsity, with its running time determined by the problem size. Though SPQR may not output min-length solutions to rank-deficient problems, we still report its running times (marked with “ * ”). Blendenpik either does not apply to rank-deficient problems or runs out of memory (OOM). LSRN’s running time is mainly determined by the problem size and the sparsity.

Matrix m n nnz Rank Cond DGELSD SPQR Blendenpik LSRN

landmark 71952 2704 1.15e6 2671 1.0e8 18.64 4.920* - 17.89
rail4284 4284 1.1e6 1.1e7 full 400.0 > 3600 505.9 OOM 146.1

tnimg_1 951 1e6 2.1e7 925 - 510.3 72.14* - 41.08
tnimg_2 1000 2e6 4.2e7 981 - 1022 168.6* - 82.63
tnimg_3 1018 3e6 6.3e7 1016 - 1628 271.0* - 124.5
tnimg_4 1019 4e6 8.4e7 1018 - 2311 371.3* - 163.9
tnimg_5 1023 5e6 1.1e8 full - 3105 493.2 OOM 197.6