Skip to main content
. Author manuscript; available in PMC: 2014 Nov 20.
Published in final edited form as: SIAM J Sci Comput. 2014;36(2):C95–C118. doi: 10.1137/120866580

Algorithm 3.

Chebyshev semi-iterative (CS) method (computes xAb).

  1. Given A ∈ ℝm × n, b ∈ ℝm, and a tolerance ε > 0, choose 0 < σL ≤ σU such that all nonzero singular values of A are in [σL, σU] and let d=(σU2+σL2)/2 and c=(σU2σL2)/2 .

  2. Let x = 0, υ = 0, and r = b.

  3. for
    k=0,1,,(logεlog2)/logσUσLσU+σL
    do
  4. β{0ifk=0,12(c/d)2ifk=1,(αc/2)2otherwise,α{1/difk=0,dc2/(2d)ifk=1,1/(dαc2/4)otherwise.
  5. υ ← βυ + ATr.

  6. xx + αυ.

  7. rr − αAυ.

  8. end for