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Abstract

In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older 

adults. A methodology has been developed to extract gait parameters including walking speed and 

step time using Doppler radar. The gait parameters have been validated with a Vicon motion 

capture system in the lab with 13 participants and 158 test runs. The study revealed that for an 

optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at 

foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass 

correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For 

walking speed, although both radars show excellent consistency they all have a system offset 

compared to the ground truth due to walking direction with respect to the radar beam. The torso 

level radar has a better performance (9% offset on average) in the speed estimation compared to 

the foot level radar (13%–18% offset). Quantitative analysis has been performed to compute the 

angles causing the systematic error. These lab results demonstrate the capability of the system to 

be used as a daily gait assessment tool in home environments, useful for fall risk assessment and 

other health care applications. The system is currently being tested in an unstructured home 

environment.
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I. Introduction

Researchers have revealed great advantages of aging in place where seniors would be able to 

remain in the home environment of their choice with supportive health care services 

provided as needed [1]. However, there are huge challenges in keeping older adults healthy 

and functionally able so that they can age in place. One of the challenges of keeping seniors 

living independently is falls. Falls are a major cause of morbidity in elders; one out of three 

adults age 65 and older falls each year [2]; falls are the leading cause of injury death among 

older adults 65 or older [3]; the direct medical costs of falls, adjusted for inflation, was $30.0 

billion in 2010 [4].

Increased fall risk in the elderly has been associated with changes in gait characteristics 

including gait speed decline, stride frequency increase, and stride length decrease at a given 

walking speed [5]. We are developing an in-home fall risk assessment system that 

incorporates different low-cost passive sensors for early detection of gait changes in order to 

screen which elderly people are more at risk of falling. We aim to detect gait changes over 

time early enough so that effective strategies can be implemented to prevent or reduce 

severe negative health outcomes, and evaluate healing/deterioration following an 

intervention. The goal is to enable elderly people to maintain quality of life in their own 

home with adequate health care while preventing or reducing institutional care. We believe 

the key to both better health and lower healthcare cost is prevention, which hinges on early 

detection and early intervention addressing risk of falls.

Unobtrusive continuous quantitative activity and gait assessment and monitoring offer great 

advantages for the early detection of health changes including real-time detection of changes 

in fall risk, as well as monitoring elderly activity and gait analysis in a home environment 

remotely while preserving privacy [6], [7]. The major advantages of the pulse-Doppler radar 

with respect to other technologies are that it makes unobtrusive characterization of human 

gait possible by using the Doppler effect of electromagnetic waves and is much less affected 

by environmental conditions such as lighting and furniture clutter.

In the next section, we discuss related work in this field. Section III gives a detailed 

description of the gait analysis methodology. Section IV presents validation experiments and 

results. We offer discussion in Section V, and conclude in Section VI.

II. Related Work

In health care, detailed gait analysis necessary for fall risk assessment is commonly done by 

health care providers directly assessing gait or by trained personnel using a gait lab. 

Typically, assessment of walking ability may or may not be a part of a routine primary care 

office visit for an older person and it is difficult for the health care provider to compare 

accurately from one visit to another. Assessments performed in a gait lab are accurate but 

costly, and typically performed too infrequently to detect changes in time for interventions 

to be successful. In addition, our research has revealed that people display different gait 

patterns when they are tested in a lab setting as compared to in a home environment [6], [8]. 

There is a clear need for a low cost, continuous gait assessment tool for older adults that can 

be deployed in a home environment to capture the whole picture of an elderly person’s gait 
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and detect changes so that treatment to improve walking ability can be initiated in time to 

reduce the risk of debilitating, costly falls.

With advancements in technology, researchers have attempted to deploy different techniques 

for continuous gait assessment with varying degrees of obtrusiveness. Among the most 

studied techniques are those using wearable accelerometers and gyroscopes. Many wearable 

systems have demonstrated accuracy and precision, but suffer from limitations such as short 

battery life, the need to download the data or introduce additional hardware for wireless data 

collection, and the inconvenience of both having to wear the device and having to remember 

to consistently wear it. Research shows compliance with consistently wearing the device 

declines over time [9]. For these reasons, wearable devices are currently inadequate for a 

long-term, in-home, unobtrusive monitoring.

Low-cost passive sensor systems for gait assessment, such as inexpensive passive infrared 

motion sensors, are used for continuous and unobtrusive assessment of mobility and walking 

speed in the home [10]. However, such systems can provide only walking speed as the 

single gait parameter. While walking speed is a good and important gait parameter, 

additional parameters are needed for a more complete fall risk assessment [11].

Vision sensors are a rich source of information that can be used for gait analysis; vision-

based gait analysis has been an active research topic in the computer vision community. Our 

low-cost multiwebcam system [6] has been shown to provide accurate unobtrusive gait 

assessment in a noncontrolled multi-person home environment. Despite the advantages, it 

also faces challenges of lighting condition, occlusion, and computation complexity.

There are a number of existing studies using radars, including Doppler radar, and 

ultrawideband pulse radars, in medical monitoring applications, such as respiration and 

heartbeat vital sign monitoring [12], [13]. Recent research also explored the concept of using 

these radars for gait analysis. Geisheimer et al. [14] demonstrate that different human body 

parts generate different radar signatures. Tahmoush and Silvious [15] use Ku-band and Ka-

band radar in an outdoor environment to estimate the gait velocity from the frequencies with 

the highest reflection levels, and then extract stride rate from the velocity. Otero [16] uses a 

continuous wave radar to detect and classify people based on the Doppler signatures 

(velocity and stride rate) they produce when walking. The stride rate is estimated by taking 

the Fourier transform at each Doppler frequency bin after computing the radar spectrogram. 

Tivive et al. [17] proposed a method of characterizing the human motion based on the nature 

of arm swings using Doppler radar. Orović et al. [18] introduced a human gait classification 

method based on the time–frequency analysis of the radar data, and the motion signature 

obtained from the arm and leg movements. Kim and Ling [19] investigated the feasibility of 

classifying different human activities using micro-Doppler signature.

With the advance of digital techniques, pulse-Doppler radars have become light and 

inexpensive, and Doppler processors for coherent pulse radars are more common. The 

advantage of combining Doppler processing with pulse radars is to provide accurate velocity 

information. This velocity is called range-rate. It describes the rate that a target moves 

toward or away from the radar. Pulse Doppler radar has the advantage of low power 
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consumption, simple radar architecture, and accurate velocity estimation. These features are 

important for long term, passive, remote in-door gait monitoring. We have developed our 

sensor system based on the Doppler radar from GE security design [20] and implemented 

several modifications for increased sensitivity for the medical application. Advanced signal 

processing techniques are developed and utilized to reliably extract the gait parameters.

There are a number of existing studies that employ a radar system and investigated walking 

velocity and stride rate estimation using radar qualitatively [21]–[24]. However, none have 

developed an automated approach and system for on-going gait analysis for assessment of 

fall risk, and no large dataset was studied statistically and validated quantitatively. 

Therefore, in contrast to the existing published research, we employed a different radar 

system (pulse-Doppler radar), developed algorithms for gait analysis and conducted large-

scale experiments with highly accurate ground truth to evaluate the accuracy and reliability 

of the radar system.

III. Gait Analysis Methodology

A. Radar and Human Motion

A human body is an articulated object, comprising a number of rigid parts connected by 

joints. The walking gait is a complex motion of swinging arms and legs. Obtained from 

webcam images, Fig. 1(a) illustrates this through various poses of a human walking.

The radar transmits an electromagnetic wave at a specific frequency and measures the shifts 

in the reflected waves. These frequency shifts can then be used to obtain the velocities of the 

person’s body parts in the radar’s direction. Different body parts create distinct Doppler 

signatures when a person moves, which can be easily viewed through a spectrogram. The 

spectrogram is the short-time Fourier transform of the radar signal, defined as:

(1)

where t is time, f is frequency, r is the radar signal, and w is a sliding window function.

A spectrogram showing a typical Doppler signature of a person walking is shown in Fig. 

1(b), where the horizontal axis represents time t, the vertical axis represents frequency f and 

the color at any point represents the energy of the signal at a certain time and frequency P (f, 

t). The energy is color coded with red being the highest intensity and white the lowest. 

These plots are obtained by taking a succession of FFTs, each over a short-time window. 

The integration time used in our study is 0.4 s and consecutive FFT windows have 50% 

overlap. Fig. 1(b), thus, shows how the spectra of the reflected signals change as a function 

of time during a human walk in the direction of the radar beam.

The frequency shift with the highest reflected energy yields the torso motion speed as the 

torso has the largest surface area in a human body, thus the gait velocity. Leg swings 

generate a much higher frequency shift due to the motion being faster than that of the torso. 

However, the reflected energy from the legs is lower due to their smaller radar cross-section 

area. Nevertheless, the reflections from the legs are still visible in the radar spectrogram and 

this information can be used to extract stride duration information. Signal processing 
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algorithms are designed and implemented to extract human movement parameters that are 

employed by these strategies. During the act of walking the human body structure moves 

cyclically from the swing phase where there is forward motion of the legs [“o” in Fig. 1(b)], 

to the double support phase when both feet are on the ground and the most body parts are 

moving at the overall velocity of the walker, which corresponds to a peak torso velocity. 

This cyclic pattern is clearly visible in the spectrogram shown in Fig. 1(b).

B. Walk Segmentation for Gait Analysis

When presented with a large amount of radar data of a person’s daily activities, it is 

necessary to locate the walk segment suitable for gait analysis. Unlike critical monitoring 

such as fall detection and vital sign monitoring, the problem of locating suitable walking 

segments can be overcome in our application, as long as some good walking sequences can 

be identified. When this technology is deployed in a home, identifying a few good gait 

sequences each day is sufficient to serve the gait monitoring purpose. When presented with 

the input radar data, the walking speed is first estimated based on Section III-C, and then the 

walking segments are selected with Algorithm I. The step time estimation described in 

Section III-D can be done in the selected walk segment. The speed threshold in Algorithm I 

is set to be 40 cm/s in the study, and can be varied based on the subject’s normal walking 

speed. The walking sequence length threshold is set to Tt = 3 s.

Algorithm I

walking sequences selection

For each input data point

 If (speed > threshold)

  If (continuous)

    Add to the current existing walk sequence

   Else

    Start a new sequence

    Keep the previous sequence if the length is greater than Tt second

C. Walking Speed

Doppler radars use the principle of the Doppler effects to measure the velocity of a target. 

Doppler theory states that an electromagnetic wave reflected from a moving target 

undergoes a frequency shift proportional to the velocity of the target. This enables the 

estimation of different movement parameters such as torso velocity and step time [22], [24].

The equation for computing the nonrelativistic Doppler frequency shift, Fd, of a simple 

point scatter moving with speed v with respect to a stationary transmitter is:

(2)

where Ft is the frequency of the transmitted signal, θ is the angle between the subject motion 

and the beam of the radar in the ground plane, φ is the elevation angle between the subject 
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and the radar beam, and c is the speed of light. For complex objects, such as walking 

humans, the velocity of each body part varies over time. Additionally, the radar cross-

section of various body parts is a function of aspect angles. Walking speed is estimated by 

the torso velocity, vtorso, which corresponds to the frequency shift with the highest reflected 

energy, and is extracted using Algorithm II.

Algorithm II

walking speed estimation:

1 Band pass filter (freq_low, freq_high) to limit the frequency range reasonable based on human gait speed

2 Compute spectrogram

3 Reduce spectral noise with average filter

4 Select frequency with peak energy at time t as the torso frequency shift F (t)f → max[P (t, f)]

5 Refine outlier torso frequency beyond (mean + 3*std dev)

6 Update freq_low, freq_high based on obtained torso frequency, and repeat step 1–5 three times with updated 
freq_low, freq_high

7 Suppress no-motion (sum energy at time t < threshold) torso frequency to zero

8
Compute the walking speed 

D. Step Recognition

As mentioned earlier, a leg swing generates a much higher frequency shift than the torso 

motion, but the reflected energy is lower due to their smaller radar cross-section area. 

Therefore, in order to extract the leg swing instance, background noise subtraction is 

necessary.

The noisy spectrogram pixel estimate, P (t, f), at frequency index f and time t, consists of 

background noise Pback (t, f) and the actual signal due to motion Pm (t, f) as P (t, f) = Pm (t, 

f) + Pback (t, f). Thus, the estimated value of the background noise can be subtracted from 

each computed pixel P (t, f) in order to obtain Pm (t, f). The value of the background signal 

at each frequency Pback (f) can be used instead of Pback (t, f) and can be estimated by 

averaging Pback (t, f) over the time t. Thus, the power of the Doppler signal due to motion 

only, Pm (t, f), can be estimated as:

(3)

Algorithm III

step recognition:

1 Apply average filter on radar data

2 Compute spectrogram

3 Obtain Pm (t, f) through background noise subtraction

4 Apply median filter on spectral data
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5 At each time t, select highest frequency F (t) satisfying [Pm (t, f) > Pth]

6 Refine outlier leg frequency beyond (mean + 3*std dev)

7 Smooth F (t) with an average filter

8 Obtain step instances through time domain peak selection for F (t), where peak is F (t) ≥ F (t − 1) and F(t) ≥ 
F(t + 1) + c

9 Eliminate step instances with time intervals to their neighboring steps ≤ 0.35 s

The step recognition is performed as Algorithm III. A preselected energy threshold Pth is set 

to be −70 dB, and the constant c in the peak selection step is chosen as 0.01 in the study. The 

last step in Algorithm III is used to eliminate the step instances that may come from the 

signal fluctuation and are picked up by the peak detection. The value 0.35 s was selected in 

determining the step instances that are too close, which is based on the findings of this study 

as well as our previous work [6] that the step time is normally greater than 0.4 s including 

healthy young adults. An example spectrogram with extracted step instances is shown in 

Fig. 3. The step time T is then computed from the time intervals between step instances.

E. Vicon as Ground Truth

The commercial 3-D motion analysis system, Vicon MX, allows for very accurate 

measurement of movement, using reflective markers and seven simultaneous cameras. The 

cameras emit infrared light signals and detect the reflection from the markers attached to the 

participant’s head and the toe of both shoes. Based on the angle and time delay between the 

original and reflected signals, it tracks the movement trajectories of the reflective markers in 

3-D space. The Vicon cameras were sampled at 100 Hz and were properly calibrated 

according to the manufacturer’s instructions prior to data collections.

Walking speed can be easily computed using the torso marker 3-D location information. A 

comparison of walking speed obtained from Vicon versus radar is illustrated in Fig. 4. The 

radar and Vicon were synchronized using time stamp, and the velocity was used as a feature 

for visual inspection of the alignment.

A footfall is a momentarily stationary location of the foot. The accurate detection of the 

footfall is achieved by monitoring the foot markers’ velocity M(t) at time t. As shown in Fig. 

5, the footfalls are identified as the markers’ cross zero velocity from stationary to motion. 

Once the footfalls are identified, the step time is extracted from the time information 

associated with each footfall. As mentioned earlier, radar system relies on the detection of 

leg swing motion for step recognition, then computes the associated gait parameters. In the 

time domain, each step time segment based on the initial foot motion used by the Vicon is 

likely not to align exactly with the one based on the peak motion estimated by the radar. 

These two motions happen at two different times. However, this exact alignment of the two 

in step recognition is not critical as we are interested only in the time intervals between step 

instances as the step time. The low-cost radar system is able to accurately estimate these gait 

parameters compared to the ground truth.
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IV. Experimental Results

A. Study Overview

The purpose of this study is to evaluate the pulse-Doppler radar’s accuracy and reliability in 

assessing human gait in an indoor environment, and to investigate the feasibility of 

developing and eventually deploying such technology for continuous eldercare gait 

assessment in the home.

Thirteen volunteers (seven females, six males, age 23–67) were recruited to participate in 

the study, with Doppler radar, Vicon and other sensors including web cameras, Microsoft 

Kinect depth camera recording. All participants provided informed consent. The participants 

with Vicon reflective markers attached to the toe of both shoes and their back were asked to 

walk in their normal speed, slow speed, and faster speed for a 17 ft distance, straightly 

toward the radar, turn around, and return to the starting point. The walking segment can be 

clearly observed on the spectrogram in Fig. 2 where the person starts to accelerate from a 

fixed stance toward the radar, reaches an approximately constant velocity, then begins to 

slow down, turns around, and begins to walk in the opposite direction.

The experiments were conducted in two sessions with different radar arrangements: 1)single 

radar setting: one radar was placed on the ground, 2) dual radar setting: one radar was on the 

ground, and the second radar was 1.25 m directly above the ground. They are referred as 

foot radar and torso radar respectively in this paper. The foot radar on the ground level is 

expected to produce a more accurate foot step estimation; and the torso radar is at the same 

height of a person’s torso for a more accurate estimation of the torso’s velocity. All radars 

were placed directly at the end of the walkway. Vicon markers were attached on both radars 

in the dual radar setting (not the single radar setting) to obtain the radars’ 3-D locations for 

further analysis.

Each continuous straight walk period is considered as a walking segment. In total, there are 

168 walk segments collected, with 112 walk segments collected from eight participants with 

the single radar setting, and 56 walk segments collected from five participants with the dual 

radar setting. Half of the walk segments are in the “toward” radar direction, and the other 

half are in the “away” from radar direction. The numbers of “slow,” “normal,” and “fast” 

speed walks are the same in either direction for each participant.

The radar used in the experiments is an off the shelf pulse-Doppler range control radar, 

RCR-50 from GE Security [20], which has a carrier frequency of 5.8 GHz, a pulse repetition 

frequency of 10 MHz, a duty cycle of 40%, and a variable range setting of 20 to 50 ft. The 

radar was designed as a security device to detect any motion in a room. To fit the gait 

assessment application, the range was set to 20 ft, and the integrated infrared sensor is 

disabled. The radar’s back was covered by a 2 ft × 2 ft metal shield to reduce interference. 

The RCR mixes the transmitted and reflected signals and passes the resulting waveform 

through a low-pass filter to capture the frequency shift. The collection of the radar signal is 

done using a data acquisition (DATAQ) unit [25]. The radar outputs this low-pass filtered 

signal, which is then digitalized and sampled at 960 Hz and stored.
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Prior to the data collection, the radar system was calibrated with the following two steps: 1) 

online calibration: the real-time signal waveform is observed through DATAQ software 

directly. The radar position, direction and shield are adjusted until the waveform is accurate 

and clear enough to reflect the testing motion in the radar range. 2) offline calibration: some 

sample data of sequences are collected of a person walking toward or away from radar. The 

radar position, direction, and shield are again adjusted until the spectrogram of the walk 

pattern is clear enough to differentiate the step instances.

B. Results

The gait parameters obtained from the tests cover a large variation: velocity ranges from 

around 50 to 150 cm/s, step time from around 0.5 to 1.1 s. The set of experiments was 

designed to test the radar system with some extreme walking patterns as demonstrated by 

the large variation in the gait parameters. For the application of elderly in-home gait 

assessment and monitoring, the variations of the walking speed and step times are expected 

to be much less.

1) Velocity Estimation—As illustrated in Fig. 4, velocity obtained from the Vicon was 

used as ground truth for comparison. Walk sequences were obtained using Algorithm I, and 

the threshold value of 50% of the peak speed was used. Only speed results above the 

threshold were used for comparison. This method has been tested before in a realistic living 

environment to segment the continuous walk [6].

The velocity comparison results for the single radar setting are shown in Fig. 6. Clearly, the 

walking speed obtained from the radar system is consistently lower than the ground truth 

values. The relation between the radar estimated speed and the Vicon ground truth is 

approximated as: vradar = 0.87*vvicon. This observation is mainly due to the fact that the 

radar can only detect the effective velocity directly toward or away from the radar as ve3 = 

(vrealcosθcosφ), and it also matched results in Fig. 4, where radar speed results above the 

threshold used for comparison are consistently lower than the Vicon ones. Furthermore, it is 

also interesting to observe that, for many areas below the threshold velocity, which are not 

used for comparison, the radar instead overestimates the velocity. Using the Fig. 4 data 

segment from 10 to 30 s as an example, at around 10 and 30 s, the subject is at the farthest 

place from the radar, near the edge of the Vicon viewing area. It is believed that the 

discrepancy of the two systems here is mainly from the subject entering/exiting the Vicon 

viewing area, which caused the abrupt Vicon marker location change and consequential 

inaccurate Vicon velocity results. At around 20 s, near the middle of this data segment, the 

subject is at the closest distance to the radar with highest energy reflected as seen in the 

spectrogram, makes the turn around motion, and walks in the opposite direction. We believe 

the radar results may be affected by the turn around motion, and therefore are higher than 

the Vicon’s velocity.

To further analyze the effects of angles θ and φ on the accuracy of the walking speed 

estimation, Vicon markers were attached to the radars in the dual radar setting to obtain the 

radars’ accurate 3-D positions. θ, the angle between the subject’s walking trajectory and the 

beam of the radar in the ground plane, was computed from the walking path fitting line and 
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the radar’s pointing direction as a time invariant parameter for a particular walk segment, as 

shown in Fig. 7(a). Elevation angle φ is a time variant parameter [see Fig. 7(c)] that was 

estimated using the subject’s torso height and the distance to the radar in the ground plan as 

illustrated in Fig. 7(b).

The velocity estimated from the floor radar and the torso radar is compared with the Vicon 

ground truth in Figs. 8 and 9, respectively, and are approximated as:

(4a)

(4b)

It has been observed that the foot radar has a larger error than the torso radar in the velocity 

estimation when compared to the ground truth. This is because both θ and φ are 

nonnegligible for the foot radar, especially for φ when the participants are close to the radar. 

For the torso radar, on the other hand, φ is greatly reduced to a negligible level as the radar 

beam is at the similar height as the torso. In Figs. 8(a), (b), and (c), the foot radar estimated 

walking speed is corrected with computed angle φ first, and then angle θ. As expected, after 

angle φ correction, the foot radar results [see Fig. 8(b)] appear to be very similar the torso 

radar results [see Fig. 9(a)]. Since cosθ is, on average, 0.91 based on (4b), cosφ for the foot 

radar can be approximated as, on average, 0.82/0.91 = 0.90. Therefore, for the foot radar, the 

velocity errors caused by angle θ and φ are about the same level. It is worth mentioning due 

to the different radar placement and different participants in the two sessions, it is not 

surprising to see the foot radar in the dual radar setting produced a slightly different error on 

average than the foot radar in the single radar setting with respect to the ground truth.

Similarly, the torso radar walking speed was corrected with computed angle θ in Fig. 9. 

Compared to the foot radar, the torso radar data points are of a much tighter distribution, 

demonstrating a more accurate velocity estimation.

Table I lists the comparison between the Doppler radar and Vicon. Intraclass coefficients 

(ICCs) of the type (2,1) were used to evaluate the level of agreement between the radar and 

Vicon. The intraclass correlation coefficient (ICC) is a measure of the reliability of 

measurements which includes consistency and absolute agreement measures. Paired t-tests 

were used to determine the systematic difference between the two systems. Table I results 

revealed that both foot and torso radar have a good consistency (ICC consistency of 0.97 

and 0.99, respectively) in measuring the subjects’ walking speed, but in terms of the 

absolute agreement, the torso radar has a much better performance of 0.96 than the foot 

radar of 0.87. This matched with the observance in Figs. 8 and 9. The paired T-test (p < 

0.05) confirmed that the difference is statistically significant for both foot and torso radar. 

Thus, even though the radar measurement is consistent when compared to the Vicon ground 

truth, there is a systematic difference between the two measurements. The instructions to the 

participants were to walk straight toward the radar, but there were no constraints on the 

participant’s walking path, similar to an elderly person walking in a natural home 
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environment. This is a major challenge in walking speed estimation using the radar in a 

home environment.

2) Step Recognition—An excellent agreement in step time between the foot radar system 

and Vicon is achieved as shown in Fig. 10, where both the single radar and dual radar setting 

results are combined. A paired T-test showed that the differences between the two 

measurement systems under comparison are not statistically significant (p > 0.05). ICC of 

0.97 demonstrates an excellent level of consistency and absolute agreement between the two 

systems under comparison. On the contrary, due to the height of the torso radar to the feet/

legs, data analysis showed that the leg swing signals are too weak to produce decent step 

recognition.

It is clear that the foot radar system has a strong advantage in the step time estimation 

considering its accuracy and that it is unaffected by the environment, such as lighting 

variations, clothing, and occlusion due to clutter. It has great potential to be a 

complementary system to the vision sensors we have developed [6]. The vision sensors have 

the advantage of good performance in estimating unconstrained walking speed, but the step 

recognition is at times compromised by occlusion in a real living environment.

V. Discussion

The proposed Doppler radar in-home gait assessment system has been validated with Vicon 

ground truth. Results show that a dual radar setting is needed for an optimal walking speed 

and step time measurement and provides a clear advantage over the single radar system. The 

foot radar accurately estimates the step time compared with the ground truth with intraclass 

correlation coefficients of 0.97 in terms of consistency and absolute agreement. The walking 

speed estimation with both torso and foot radars is systematically lower than the ground 

truth due to the angles between the walking person and radar beam. Torso radar has clearly a 

higher accurate walking speed (on average 9% lower) than the foot radar (on average 13%–

18% lower) because of the minimized elevation angle. We are in the process of testing the 

radar system in ten senior apartments with 13 resident participants for two years. The initial 

walking speed results collected with the single foot radar setting [24] are on average 14.5% 

lower before angle calibration and 10.5% lower after angle correction compared to the ones 

recorded by clinicians, in agreement with the lab results reported here. We will report 

further results as the study proceeds. We have found that in order to accurately estimate the 

walking speed, it is necessary to minimize the angle to the radar beam. This can be achieved 

through radar placement at the torso level, a constrained walking path in line with the radar 

beam, using only the walking segment in a certain distance, and using other sensors, such as 

vision sensors, for angle correction.

Through the study we have learned the radar system’s capability, strength, and drawbacks. 

Radar has clear advantages in the following aspects.

1. Operating conditions. The Doppler radar can operate in low or no light conditions, 

and is much less affected by clutter in the daily living environment.
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2. Doppler-based devices are relatively insensitive to constant background effects, as 

these can usually be eliminated through background subtraction.

3. Computation cost and associated hardware cost. One advantage of the radar 

system lies in its cost, and its minimal energy consumption. Consequently they can 

be deployed in a long-term in-home monitoring or a remote diagnostic application. 

The entire Doppler radar system used for this study includes a $50 RCR-50 radar 

and a $500 wireless DATAQ unit. In addition, the radar signal processing is much 

less computationally intensive compared to, for example, color vision sensors.

4. Privacy. The radar system does not raise privacy concerns for in-home use.

Inevitably, the radar system also has some drawbacks. The approach of using Doppler radar 

to measure walking speed can be effective and accurate in the front direction, but its 

accuracy decreases with the increase of the angles between the radar beam and the walking 

direction, and eventually loses accuracy completely with the sagittal direction movement. In 

addition, Doppler-based mechanisms are affected by secondary moving objects in the range 

of the sensor, such as another moving person in the field of view of the radar, which cannot 

be easily identified and isolated.

To address these drawbacks, strategic placement of the radar system, such as at the end of a 

hall way, can help to optimize the system’s performance by constraining the walking 

direction to align with the radar beam. It may also prove useful to add a calibration step 

during which data from a specific home are used to generate a linear or low-order regression 

curve which minimizes the error between speeds measured by the radar and ground truth.

For our application, we are most interested in the changes in gait patterns as a means of 

detecting early health problems or functional decline. So a systematic offset in the walking 

speed as seen in this study is not necessarily a problem for detecting a pattern change. In 

addition, the incorporation of radar and other sensing techniques, such as vision sensors, 

would provide an improved overall system with proper sensor fusion. For example, the 

multiple vision sensor-based 3-D gait assessment system [8] developed has advantages in 

accurately capturing walking speed without walking direction constraints, but in many cases 

has difficulties in step recognition due to occlusion of the foot area by furniture and other 

objects in the home. The camera system faces challenges of variable lighting conditions, 

which is the strength of radar system. With the help of vision sensors, it is possible to 

remove secondary moving objects by tracking and segmenting out the target walker with the 

use of a suitable algorithm [26], and estimate the angles between the walker and the radar 

beam. Additionally, the low-power consumption and low computational complex radar 

could be used to provide triggering information for the vision sensors. This type of fusion 

holds great promise of being able to perform 3-D gait assessment in various environments at 

home.

Long-term in-home monitoring is expected to be more challenging than the lab setting 

monitoring demonstrated in this study, due to the complexity of the real-world environment. 

The work reported here is a first step toward investigating the feasibility of using such a 

system in an unstructured home setting. Although the positive results demonstrated the 

Wang et al. Page 12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 November 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



feasibility of deploying such systems in an elderly resident’s home, there are issues to be 

addressed in our future research.

We believe that the Doppler radar-based gait assessment is a promising avenue for future 

exploration. In particular, we hypothesize that Doppler-based gait recognition might be used 

synergistically with vision-based gait assessment systems since the two are complimentary 

in their capabilities and drawbacks.

There is still much potential to improve the performance of the Doppler radar system 

beyond that demonstrated in this paper. We will report the longitudinal study results of 

deploying the system in ten senior apartments currently as the study proceeds. All of these 

are our future research topics.

VI. Conclusion

In this study, we have proposed and validated a low-cost Doppler radar system for passive 

and continuous in-home gait assessment. Using signal processing techniques we explicitly 

estimated human torso velocity and leg swing for step recognition. We found the radar 

system has achieved a high accuracy on the step time estimation, while the walking speed 

estimation is systematically affected by the walking path direction.

The system is robust to environmental conditions, computationally efficient, and with no 

privacy concerns. Thus, this technology is especially suitable for passive, long-term use in 

an unstructured daily living environment.
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Fig. 1. 
(a) Human walk illustration and (b) associated Doppler radar spectrogram (blue line: torso 

motion, black circle: leg swing).
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Fig. 2. 
Extracted frequency shift from torso motion (black line) shown in a spectrogram.
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Fig. 3. 
Spectrogram after background noise subtraction with time-domain signal F(t) in blue line 

and extracted steps (o).
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Fig. 4. 
Walking speed comparison: Vicon versus radar. Dashed line: velocity threshold selected.
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Fig. 5. 
Foot velocity obtained from Vicon markers attached to the shoes (black lines), and steps 

recognized (blue dash line).
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Fig. 6. 
Walking speed comparison for the single radar setting: Vicon versus Foot radar. Blue 

dashed line: vradar = 0.87* vvicon.
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Fig. 7. 
Angle θ and φ affect the walking speed estimated by the radar: (a) θ estimation: walk paths 

(dash line: fitting line) and radar beam projected on the ground plane (red), (b) φ estimation 

and experiment setup, and (c) cosφ as a time variant parameter.
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Fig. 8. 
Foot radar walking speed comparison in the dual radar setting: (a) Vicon versus Floor radar. 

Dashed line: vfoot_radar = 0.82* vvicon. (b) Vicon versus Foot radar with angle φ corrected. 

(c) Vicon versus Foot radar with both angles φ and θ corrected.
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Fig. 9. 
Torso radar walking speed comparison in the dual radar setting: (a) Vicon versus Torso 

radar. Dashed line: vtorso_radar = 0.91* vvicon. (b) Vicon versus Torso radar with angle θ 

corrected.
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Fig. 10. 
Step time comparison: Vicon versus Foot radar including both single radar and dual radar 

setting.
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TABLE I

Radar and Vicon In-Lab Comparison

Radar Vicon ICC

Mean(S.D.) Consistency Absolute

Velocity1 (cm/s) 86.0(19.6) 100.4(25.3) 0.97 0.87

Step time1 (s) 0.64(0.13) 0.64(0.13) 0.97 0.97

Velocity2 (cm/s) 98.7(22.8) 107.8(24.0) 0.99 0.96

Step time2 (s) 0.66(0.13) 0.61(0.09) 0.16 0.15

ICC: Intra-class coefficient;

Velocity1 and Step time1: from the foot radar in both single and dual radar settings;

Velocity2 and Step time2: from the torso radar in the dual radar settings
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