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Abstract

Rationale—Though treatment of the prematurely born infant breathing with assistance of a 

mechanical ventilator has much advanced in the past decades, predicting extubation outcome at a 

given point in time remains challenging. Numerous studies have been conducted to identify 

predictors for extubation outcome; however, the rate of infants failing extubation attempts has not 

declined.

Objective—To develop a decision-support tool for the prediction of extubation outcome in 

premature infants using a set of machine learning algorithms

Methods—A dataset assembled from 486 premature infants on mechanical ventilation was used 

to develop predictive models using machine learning algorithms such as artificial neural networks 

(ANN), support vector machine (SVM), naïve Bayesian classifier (NBC), boosted decision trees 

(BDT), and multivariable logistic regression (MLR). Performance of all models was evaluated 

using area under the curve (AUC).

Results—For some of the models (ANN, MLR and NBC) results were satisfactory (AUC: 0.63–

0.76); however, two algorithms (SVM and BDT) showed poor performance with AUCs of ~0.5.

Conclusion—Clinician's predictions still outperform machine learning due to the complexity of 

the data and contextual information that may not be captured in clinical data used as input for the 

development of the machine learning algorithms. Inclusion of preprocessing steps in future studies 

may improve the performance of prediction models.
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Introduction/Background

Though treatment of the prematurely born infant breathing with assistance of a mechanical 

ventilator has much advanced in the past decades, predicting extubation outcome at a given 

point in time remains challenging. Numerous studies have been conducted to identify 

predictors for extubation outcome; however, the rate of infants failing extubation attempts 

has not declined [1–5].

After promising results using Artificial Neural Networks (ANN) to determine the most 

important predictors for extubation success that resulted in an ANN predicting which infant 

would succeed an extubation attempt with 85% accuracy [6], our team used similar methods 

attempting to further improve the previously achieved results. The goal of this study was to 

develop a decision-support tool using a heterogeneous set of machine learning algorithms 

for the determination of whether or not a given infant should be extubated at a given time 

point. Algorithms included artificial neural networks (ANN), support vector machines 

(SVM), naïve Bayesian classifiers (NBC), boosted decision trees (BDT), and multivariable 

logistic regression (MLR). The intent of this study was to use the individual prediction from 

its different algorithms to determine an overall prediction providing better generalization 

and performance in the combined results compared to the individual predictions [7]. It was 

hypothesized that providing a large amount of data would enable a set of algorithms to 

return predictions for unseen data with a high level of accuracy.

Methods

Data collection

After receiving approval from the local IRB (HR#18064) in a first step, 682 potentially 

eligible babies born at the Medical University of South Carolina (MUSC) between January 

2005 and September 2009 were identified from the MUSC Perinatal Information System 

(PINS) database.

Infants were identified to be potentially eligible on the basis of having been mechanically 

ventilated and having a diagnosis of RDS. In a second step, a trained data abstractor with 

more than twenty years experience as a neonatal intensive care nurse accessed each infant's 

medical record to collect study specific variables, including demographic characteristics of 

the infant (such as age in days, gender, race/ethnicity, gestational age, birth weight and 

weight at extubation), clinical characteristics (such as Apgar scores at 1 and 5 minutes, heart 

rate, respiratory rate, blood pressure), medication (maternal: betamethasone and infants: 

surfactant, saline [given for hypotension as decided by the clinical team], methylxanthines), 

ventilator information (including time to intubation from birth, time from last blood gas until 

extubation, type of ventilator, and ventilator settings at extubation and at the last time point 

prior to extubation, blood gas values prior to, at and after extubation), whether the 

extubation was successful or failed, and type of ventilatory support infants received after 

extubation within 48 and 72 hours.

Following clinical guidelines for ventilatory management of the preterm infant, clinicians, 

nurses and respiratory therapists worked in concert to wean ventilatory and oxygen support 
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(see Appendix I). The decision to extubate was made by the clinical team based on the set of 

criteria specified in the guidelines. When these criteria were met by the preterm infant, the 

infant was extubated to either nasal CPAP, nasal cannula or room air, the type of post-

extubation support being dictated by the work of breathing, gestational age, and the oxygen 

requirements of that infant at the time of extubation.

Study sample

Infants were included in the study if they were born prematurely; had a birth weight between 

500 and 2000 grams; had a primary diagnosis of RDS confirmed radiographically; and were 

intubated and managed on a ventilator within 6 hours after birth. Infants were excluded if 

they had chromosomal, surgical or congenital anomalies; had comorbidities such as 

pulmonary hypertension; were on high frequency ventilation; or had life support withdrawn 

without a previous attempt to extubate.

Statistical methods—Means, standard deviations and proportions are reported to 

describe the study sample. For comparison between the group of infants who failed their 

first attempt to extubate and the group of infants who were extubated successfully, t-tests 

were used for continuous variables and chi-square tests for categorical variables.

Machine learning—A heterogeneous set of algorithms to predict extubation outcome was 

chosen. Such a set allows for better generalization and performance of the combined 

prediction compared to individual results since each of these algorithms provides different 

strengths through their diverse mathematical approaches. In addition, these algorithms allow 

for nonlinear relationships between variables without the need to explicitly specify them. 

Missing data were imputed based on weight category and variable type using mean or 

median.

Algorithms used in this study included multivariable logistic regression (MLR), artificial 

neural networks (ANNs), support vector machines (SVM), naïve Bayesian classifier (NBC), 

and bagged decision trees (BDT).

Multivariable Logistic Regression (MLR) is used to predict some event from several 

independent variables using a logistic function. This function can take inputs with any value 

from negative infinity to positive infinity and produces an output between 0 and 1, expressed 

as a probability. An advantage of this method is its ease of interpretation [8].

Artificial neural networks (ANNs) are modeled after the brain by using layers of so-called 

neurons that are connected within and between layers. In a simplified form, ANNs use 

multiple logistic regression models in parallel and in sequence. Advantages of ANNs are 

that relationships between variables do not have to be pre-specified and can be non-linear as 

ANNs learn from data [9]. ANNS have been known as “black boxes” that are difficult to 

interpret; however, in recent years software provides measures of sensitivity indicating the 

importance of individual variables in the ANN model used for prediction of a given outcome 

[6].
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Similarly, Support Vector Machines (SVM) are used to assign events to one of two classes 

(e.g. infant failed/did not fail extubation). SVMs can be thought of as representing points in 

a more dimensional space where the two classification categories are clearly separated by a 

gap between the categories. This gap is called a hyperplane (or a set of hyperplanes), which 

is positioned in a way that both classes of points have the largest possible distance from the 

hyperplane. SVMs have simple geometric explanations and are less prone to overfitting 

[10].

The Naïve Bayesian Classifier (NBC) is a simple, probabilistic method to classify data using 

the Bayes theorem. With this theorem, the probability to classify an event into a class (A) 

given a set of parameters (B) equals the probability for a class multiplied by the probability 

for a set of variables given a certain class divided by the probability for the set of variables:

This classifier assumes that all variables are independent from each other. NBCs can be 

trained on relatively small data sets and perform well despite the naïve design [11].

Traditionally, decision trees (DTs) were created manually as a tree-like structure by 

branching into alternatives for each subsequent variable and expected values for each 

alternative, then were calculated. DTs are easy to interpret and understand and require little 

data; however, they are prone to produce very different results for small differences in data. 

Bagging, which is a bootstrapping method, i.e. samples repeatedly from the same data set 

with replacement, is used as a method to improve accuracy of the DTs and reduce the 

susceptibility to small disturbances in the data. In the Bagged Decision Tree (BDT) method 

a set of DTs is generated with differing subsets of data. The final classification result of the 

set of trees is determined through the average over all individual trees [12]. A detailed 

description of these algorithms including their parameters as well as the feature selection 

procedure employed and number of features included can be found in Mueller et al. [13].

For the purpose of this study, all algorithms were developed using MATLAB (Version 

R2009b, Copyright 1984–2009, The MathWorks Inc.) with 100 data sets that were created 

through resampling. For this process we repeatedly (100 times) randomly split the total 

sample into 2/3 vs. 1/3 for training and validation data and applied each of the algorithms to 

each dataset. The median performer for each algorithm among the 100 applications was 

determined using the area under the curve (AUC) obtained from Receiver Operating 

Characteristic (ROC) curves. Similarly, performance of all algorithms was compared using 

AUCs from training and validation data.

In addition to the main data set, several different sub data sets were used as described above. 

These subsets were created based on: a) birth weight (<1000g vs. ≥1000g and 500g–999g 

vs. 1000g–1499g vs. 1500g–1999g); b) birth year (2006–2007 vs. 2008–2009); c) use of 

weaning protocol (yes vs. no); d) correlation - variables that were highly correlated were 

excluded (for example birth weight vs. current weight, lag time from last blood gas to 

extubation vs. lag time between last two blood gases, HCO3 vs. BE); e) Principal 
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Components Analysis - variables were excluded if loadings were below 0.4, 0.35 and 0.3; 

and f) tests for statistical significance (t-tests/chi-square tests) – variables were excluded if p 

was found to be above 0.1 (table 1). For these subsets the same resampling procedure was 

used as for the original data set described above.

The goal of this study was to provide clinicians with a decision-support tool for the 

prediction of extubation outcome in artificially ventilated premature infants using a set of 

heterogeneous machine learning algorithms.

Results

Data on 682 potentially eligible infants were obtained from the PINS database from January 

2006 to September 2009. Of those, 196 infants were excluded for the following reasons: 95 

preterm infants had a birth weight greater than 2000 grams, 47 infants were intubated post 6 

hours after birth; 5 infants did not receive mechanical ventilation; 7 infants required surgical 

intervention; 4 infants had a diagnosis of congenital anomaly(ies); 20 infants had support 

withdrawn prior to the first extubation attempt; 5 infants were extubated from ventilators 

different than SIMV (HFOV or HFJV); and medical records of 13 infants were incomplete 

and data were unobtainable.

Of the remaining 486 infants, ventilator and blood gas data were obtained from the medical 

record. Of those, 59 (12.1%) infants failed extubation, 53% were White, 49% were Male; 

mean gestational age was 28.6 weeks, mean birth weight was 1178 grams. Infants failing 

extubation were born on average 1.5 weeks earlier compared to infants who were extubated 

successfully (gestational age 27.2 ± 2.3 vs. 28.8 ± 2.4, p<0.0001). Consequently, birth 

weight for infants who failed their first extubation attempt was lower (929 ± 326 grams) 

compared to infants who were extubated successfully (1213 ± 351 grams; p<0.0001). Figure 

1 depicts distributions of birth weight for infants who were extubated successfully versus 

those who failed. Among ventilator settings, tidal volume (VT) immediately prior to 

extubation was statistically significantly higher in infants who succeeded their first 

extubation attempt than in infants who failed (5.1 ± 2.9 vs. 3.7 ± 1.9; p<0.0001). PaCO2, pH 

and SaO2 were statistically significantly different between the two groups: pH and SaO2 

were higher, while PaCO2 was lower for infants succeeding their first extubation compared 

to those who failed (table 1, p<0.05). Infants who failed extubation received more dosages 

of surfactant prior to extubation compared to infants who did not fail (2.1 ± 1.3 vs. 1.6 ± 1.1; 

p=0.01). Time between last blood gas analysis and extubation was statistically significantly 

shorter in the group that was extubated successfully compared to the group that failed 

extubation (142 +/− 200 min vs. 211 +/− 254 min, p=0.04).

In Table 2, findings after extubation are reported. Of all 486 infants included in this study, 

59 (12.1%) infants failed extubation within 48 hours and 69 (14.0%) failed within 72 hours. 

One infant was extubated unintentionally and needed reintubation. Among infants who had 

failed the first extubation attempt, 17% succeeded in a second attempt within 72 hours of the 

first. Among the infants who were considered extubated successfully at 48 hours, only 10 

(2.3%) ultimately needed reintubation within 72 hours.
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Thirteen percent of infants in the group who extubated successfully required escalated 

ventilatory support, i.e., reintubation with increased FiO2 and PIP within 48 hours of 

extubation compared to 98% in the group that failed (p<0.0001). More infants in the group 

that failed extubation were extubated to CPAP and no infants were extubated to room air 

compared to the group that was extubated successfully, though these differences were not 

statistically significant (p=0.2). Number of days at highest level of ventilatory support was 

similar between the groups (p=0.4); while approximately 10% of infants who failed 

extubation had HFOV or HFJV as highest level of ventilatory support prior to extubation 

compared to only 4% of infants who did not fail (p=0.1). Reasons for extubation failure 

were primarily apnea of prematurity, increased work of breathing, marked increase of O2 

requirements and CO2 retention (table 3).

Machine learning

Table 4 reports performance of the different prediction methods as measured by the area 

under the curve (AUC) determined from the Receiver Operating Characteristic (ROC) 

curves using the full data set for training and validation. Figure 2 displays results using the 

validation set for three methods: for ANN and MLR methods ROC curves are depicted; for 

NBC a single prediction point (except 0 and 1) is displayed. As shown in table 4 several 

algorithms performed with high accuracy for the training data. The high accuracy for the 

training sets results from overfitting of the algorithms to the available data. When models 

are overfitting to data, the methods predict the known outcomes in the training data set 

extremely well but at the same time generalizability is decreased which means that the 

methods exhibit diminished capability to predict outcomes for the validation set or future 

data. This reduced generalizability is reflected in the poor performance in the validation data 

with two of the methods resulting in AUCs close to 0.5, i.e., with a 50/50 chance to predict 

the correct outcome. Only ANN and MLR showed satisfactory performance for the 

validation data with MLR having slightly higher AUC than ANN. None of the methods 

performed above 0.8, which would be considered minimally acceptable performance for this 

population.

Regardless of sub-sets of the full data used for model development such as sets based on 

birth weight or year of use of weaning protocol, sets without highly correlated variables, sets 

created though use of Principal Components Analysis and combinations of these criteria, all 

methods consistently exhibited low performance (results not shown). The only subset that 

showed satisfactory performance (AUC=0.78) comprised of only those variables that 

showed statistically significant differences when comparing infants who failed extubation to 

infants that were extubated successfully. For this subset AUC was slightly increased for 

MLR, similar for NBC and slightly lower for ANN as compared to the full data set (table 5). 

Variables in this subset included birth weight, Apgar at 5 minutes, maternal betamethasone, 

lag time, rate ratio, FiO2, PIP, inspiratory time, tidal volume, pH, PaCO2, PAO2, SaO2, 

pulse, blood pressure, minute volume, surfactant, caffeine. As a result of the consistently 

low performance across all algorithms no decision-support tool using the most accurate 

prediction methods was developed.
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Discussion

Development of machine learning models for prediction has recently moved towards use of 

homogeneous and heterogeneous sets of algorithms to capitalize on better performance and 

generalizability of the combined results. However, better performance of a set of methods 

can only be achieved if accuracy among the individual members of the set is high, i.e., the 

predictions are better than guessing, results are diverse, and the methods produce errors that 

are different from those of other methods for a given set of input variables. In our results, 

MLR achieved the highest median performance (AUC=0.78) using the data set including 

only variables that showed a statistically significant relationship with extubation in prior 

descriptive analyses. This AUC value can be loosely interpreted as having at best 78% of the 

extubations among this group of premature infants predicted correctly. In a previous study, 

the predictive performance of clinicians was directly compared to the performance of two 

algorithms, ANN and MLR [6,14]. On average, clinicians were 70% accurate in the 

validation set with a range from 51–79% when limited to the same information (variables) 

provided to the machine learning algorithms. This wide spread reflected the level of 

experience among the clinicians (i.e., years as neonatologist working in the NICU) as well 

as differing preferences such as extubating an infant rather “too early” than “too late”. In 

contrast, the current data set contained only 12% of extubation failures, indicating that 

clinicians predicted extubation success with 88% accuracy. However, none of the algorithms 

used in this study achieved sufficiently high accuracy to be included in a tool intended to 

provide decision-support for clinicians.

Inferring from these results when variable selection is used as underlying method in 

algorithms processing these types of data it is likely to fail due to batch effects found in such 

datasets. The term “batch effect” was initially used in micro-array experiments where 

differences were found between different batches of experiments when trying to combine 

data sets. This phenomenon has since been found in other areas of research such as 

prediction of outcomes using machine learning. If batch effects are present in the data 

validation using resampling procedures, for example using a subset of a given dataset, will 

not do well since it is likely that data points from the same batch that are very similar to each 

other exist in both data sets, training and validation, which will cause selection of variables 

relevant to one batch but not others. In our study, MLR resulted in better performance than 

ANN supporting the above hypothesis since MLR can be considered special cases of ANN 

models. Three methods, MLR, ANN and NBC, performed best in the full data set and the set 

including only variables showing a statistically significant relationship with extubation 

outcome with AUCs ranging from 0.63 to 0.78. In contrast, two methods, SVM and BDT, 

methods tended to over-fit the training data resulting in poor performance (AUC ~0.5) in all 

data sets using validation data.

Therefore, we hypothesize that an additional pre-processing step is needed prior to model 

development in which the dimensionality of the dataset is reduced. This step would decrease 

the number of variables that would be considered for inclusion during model development 

and may improve performance of the individual methods sufficiently to be included 

individually or in combination in a decision-support tool. However, this requires that the 

additional step for variable reduction can deal with potential batch effects present in the data 
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and could, for example, be configured to rank variables as to how much batch effects they 

exhibit. As discussed in Leek et al. [15], handling of batch effects is an active area of 

research where current solutions still depends mostly on multivariate exploratory analysis 

rather than on development and inclusion of a reliable preprocessing step for variable 

selection prior to model development.

Limitations

A large data set was obtained retrospectively from a period of several years. During this 

time, NICU procedures may have changed such as implementation of a weaning protocol 

starting in summer of 2006 (see Appendix I.). This change may not have been fully captured 

by inclusion of a variable whether or not a given infant was treated using this weaning 

protocol. In addition, NICU personnel may have changed during the study period. Further, 

only variables that were available from the medical record and routinely obtained during the 

care for a premature infant with ventilator-assisted breathing could be included. Lastly, the 

outcome variable was severely unbalanced in this data set with only 12% of infants included 

in this data set failing extubation. This imbalance reduced the ability of the prediction 

methods to learn from these data.

Conclusions

To date clinicians still outperform machine-learning prediction models and the medical field 

remains a challenge for artificial intelligence methodologies such as those used in this study. 

All of these methods use the available data to make predictions. Logically, these methods 

are disadvantaged compared to clinicians when decisions are based on experience that 

reflects implicit awareness of covariates resulting from information gained from long term 

exposure and experience, i.e., hours spent in the NICU. To our knowledge, such information 

has not been reliably captured to provide machine-learning or statistical methods with data 

comparable to those processed in the brains of clinical experts. However, since the skill of 

making accurate predictions is based on many years spent at the bedside, we feel that a tool 

providing reasonable decision-support to inexperienced clinicians would be valuable in 

clinical practice. To this date, development of a tool that reliably achieves prediction 

accuracy comparable to those of expert clinicians has not been accomplished and especially 

in the population of premature infants a “pretty good” prediction is simply not good enough.

Our results suggest that a critical component in the development of prediction algorithms is 

still missing when dealing with complex medical data that likely contain batch effects. This 

conclusion is consistent with a trend towards approaches using relatively undirected large 

data that rely on the “unreasonable effectiveness of data” as described by Halevy, Norvig & 

Pereira [16]. In other words, the results reported here support the view that maximizing data 

capture describing the context of complex biomedical processes offers more promise for 

predictive modeling than trimming the parameters recorded to the few that can be 

systematically acquired and orderly fed to conventional machine learning tools.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix I

Neonatal Ventilator Management Order for Conventional Pressure-Limited Ventilation 

(“Weaning Protocol.pdf”)

Abbreviations

ANN artificial neural network

AUC area under the curve

BDT boosted decision tree

CPAP continuous positive airway pressure

HFJV high frequency jet ventilation

HFOV High frequency oscillatory ventilation

IRB institutional review board

MLR multivariable logistic regression

NBC naïve Bayesian classifier

NICU neonatal intensive care unit

RDS respiratory distress syndrome

ROC operating receiver characteristic

PINS Perinatal Information System

PIP peak inspiratory pressure

SIMV synchronized intermittent mandatory ventilation.

SVM support vector machine
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Figure 1. 
Distribution of birth weight categories by extubation outcome
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Figure 2. 
ROC curves for validation for ANN, MLR and NBC (full set)
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Table 1

Demographic and clinical characteristics of complete study population by extubation outcome.

Succeeded extubation (n=427) Failed extubation (n=59) p-value

Gestational age (weeks) 28.8 ± 2.4 27.2 ± 2.3 <0.0001

Birth weight (grams) 1212.8 ± 350.8 929.2 ± 325.6 <0.0001

Weight at extubation (grams) 1238.2 ± 352.8 948.6 ± 322.9 <0.0001

Gender (Females) 51.5% (220/427) 49.2% (29/59) 0.733

Race/Ethnicity 0.844

 White 46.5% (226/427) 52.5% (31/59)

 African-American or Black 39.3% (168/427) 39.0% (23/59)

 Hispanic 6.8% (29/427) 6.8% (4/59)

 Asian 0.9% (4/427) 1.7% (1/59)

APGAR at 1 minute 5.1 ± 2.4 4.8 ± 2.3 0.291

APGAR at 5 minutes 8.1 ± 9.0 6.9 ± 2.0 0.013

FiO2(%) 23.7 ± 4.7 26.0 ± 5.9 0.006

Rate (ventilated breaths per minute) 21.0 ± 5.4 21.4 ± 6.9 0.604

Peak Inspiratory Pressure (PIP; cm H20) 15.3 ± 1.2 14.9 ± 1.6 0.113

Positive End Expiratory Pressure (PEEP; cm H20) 4.2 ± 0.5 4.2 ± 0.5 0.377

Mean Airway Pressure (MAP; cm H20) 6.2 ± 0.9 6.2 ± 0.9 0.694

Inspiratory time (seconds) 0.39 ± 0.04 0.37 ± 0.06 0.043

I:E ratio 3.0 ± 2.0 3.1 ± 2.2 0.708

Tidal Volume (VT; mL) 5.1 ± 2.9 3.7 ± 1.9 <0.0001

Minute volume (mL) 0.5 ± 0.3 0.3 ± 0.2 <0.0001

Pressure support (cm H20) 3.6 ± 2.8 3.7 ± 2.8 0.746

pH 7.35 ± 0.06 7.33 ± 0.04 0.0003

PaCO2 41.2 ± 7.2 43.6 ± 6.9 0.014

PaO2 49.9 ± 18.1 47.3 ± 13.8 0.191

SaO2 96.3 ± 3.3 94.6 ± 3.5 0.0002

HCO3 22.8 ± 3.4 23.0 ± 3.4 0.668

Base excess −2.8 ± 2.7 −3.1 ± 3.4 0.556

Over-ventilated (PCO2<35) 12.7% (54/427) 8.5% (5/59) 0.522

Balanced pattern* 92.0% (393/427) 91.5% (54/59) 0.802

Heart rate (beats per minute) 145.3 ± 13.5 152.1 ± 15.2 0.0003

Blood pressure (mm Hg) 42.1 ± 9.7 39.6 ± 8.5 0.057

Rate ratio (spontaneous breathing / ventilatory rate) 2.1 ± 1.0 1.8 ± 1.0 0.097

Maternal betamethasone (yes) 67.7% (348/514) 77.6% (52/67) 0.067

Surfactant (# of dosages prior to extubation) 1.6 ± 1.0 2.1 ± 1.4 0.004

Saline bolus (yes) 12.9% (55/427) 6.8% (4/59) 0.208

Methylxanthines (yes) 67.2% (287/427) 83.1% (49/59) 0.014

Lag time (from last blood gas analysis to extubation) 146.3 ± 206.8 225.0 ± 266.3 0.033

Weaning protocol
†
 followed (yes)

56.7% (242/427) 59.3% (35/59) 0.700
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*
Balanced pattern of ventilator settings. For example, the infant may have weaned to room air (i.e. FiO2 = 21%) but is still requiring a high peak 

inspiratory pressure to maintain oxygenation.

†
Weaning protocol included in Appendix I
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Table 2

Characteristics at or after extubation

Succeeded extubation (n=427) Failed extubation (n=59) p-value

Extubated 87.9% (427/486) 12.1% (59/486) -

Extubated unintentionally 0 1.7% (1/59) -

Escalation of ventilatory support within 48 hours of extubation 13.2% (56/424)* 98.3% (58/59) <0.0001

Extubation success at 72 hours post extubation 97.7% (417/427)
17.0 (10759)

† <0.0001

Highest level of support prior to extubation: 0.100

 SIMV 95.7% (404/422)* 89.8% (53/59)

 HFOV/HFJV 4.3% (18/422)* 10.2% (6/59)

Number of days at highest level of ventilatory support (mean ± std) 2.6 ± 5.4 3.3 ± 4.7 0.358

Age at extubation (days) (mean ± std) 3.2 ± 8.0 4.6 ± 8.8 0.213

Day of life regained birth weight (mean ± std) 9.6 ± 5.0 7.9 ± 5.4 0.016

Extubated to: 0.204

 Room air 5.0% (21/422)* 0

 Nasal cannula 11.4% (48/422)* 10.2% (6/59)

 CPAP 83.7% (353/422)* 89.8% (53/59)

*
Information not available for several infants

†
After additional extubation attempt
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Table 3

Reasons for extubation failure (more than one possible)*

Reasons for failure: N=56 % (n)

Apnea of prematurity 48.2 (27)

Recurrence of RDS 5.4 (3)

Respiratory failure
† 7.1 (4)

CO2 retention 14.3 (8)

Frequent desaturations
‡ 7.1 (4)

Marked increase in O2 requirements 14.3 (8)

Increased work of breathing 35.7 (20)

Pulmonary interstitial emphysema (PIE) 1.8 (1)

Bradycardia 1.8 (1)

Pneumothorax 1.8 (1)

*
Information not available for several infants

†
Acute respiratory failure defined as PCO2>55 along with increased work of breathing (tachypnea, costal and/or subcostal retractions) and 

increasing FiO2 requirement above 50% to maintain saturations of at least 88% or higher

‡
Frequent desaturations defined as > 1/hour

J Neonatal Biol. Author manuscript; available in PMC 2014 November 20.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Mueller et al. Page 17

Table 4

Performance of algorithms as measured by the area under the curve (AUC) for dataset including all variables 

(median AUC from 100 resampling steps).

Algorithm Training Validation

ANN 0.930 0.753

BDT 1.000 0.513

MLR 0.880 0.762

NBC 0.610 0.626

SVM - 0.493
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Table 5

Performance of algorithms as measured by the area under the curve (AUC) for dataset including only 

statistically significant variables (median AUC from 100 resampling steps).

Algorithm Training Validation

ANN 0.921 0.682

BDT 1.000 0.507

MLR 0.853 0.776

NBC 0.769 0.607

SVM - 0.519
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