Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Aug;76(2):770–778. doi: 10.1172/JCI112034

Effect of arginine vasopressin on renal medullary blood flow. A videomicroscopic study in the rat.

B Zimmerhackl, C R Robertson, R L Jamison
PMCID: PMC423899  PMID: 4031072

Abstract

The role of arginine vasopressin (AVP) in the regulation of renal medullary blood flow is uncertain. To determine if AVP has a direct vasoconstrictive action on vasa recta, the effect of AVP on erythrocyte velocity (VRBC), diameter, and blood flow (QVR) in descending vasa recta (DVR) and ascending vasa recta (AVR) was studied in the exposed renal papilla of four groups of chronically water diuretic rats using fluorescence videomicroscopy. There were three periods: control (period 1), experimental (period 2), and recovery (period 3). In periods 1 and 3, all groups received hypotonic saline. In period 2, group I rats (AVP) received AVP (45 ng/h per kg body wt); group II (time) received hypotonic saline alone; group III (AVP plus V1-inhibitor) received AVP plus its vascular antagonist, d(CH2)5Tyr(Me)AVP; and group IV (V1-inhibitor) received the vascular antagonist alone. Another group of rats (group V) was employed to demonstrate that the rise in blood pressure induced by a 3- or 10-ng/kg injection of AVP was virtually abolished by the prior infusion of the V1-inhibitor. The urine of group III as well as group I rats was concentrated (Uosm = 721 +/- 62 H2O vs. 670 +/- 39 mosM/kg), while urine remained dilute in groups II and IV. In period 2, VRBC and QVR in DVR and AVR decreased in group I, did not decrease in group III, and increased in groups II and IV. The vascular antagonist thus completely abolished the AVP-induced decrease in QVR in group III. These findings unequivocally establish that AVP in physiological amounts reduces medullary blood flow, at least in part, by a direct vasoconstrictive action on the medullary microcirculation. They also show that an effect of AVP on medullary blood flow is not necessary for its antidiuretic effect.

Full text

PDF
778

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aukland K. Renal blood flow. Int Rev Physiol. 1976;11:23–79. [PubMed] [Google Scholar]
  2. Aukland K. Vasopressin and intrarenal blood flow distribution. Acta Physiol Scand. 1968 Sep-Oct;74(1):173–182. doi: 10.1111/j.1748-1716.1968.tb04226.x. [DOI] [PubMed] [Google Scholar]
  3. Bankir L., Tan M. M., Grünfeld J. P. Measurement of glomerular blood flow in rabbits and rats: erroneous findings with 15-micron microspheres. Kidney Int. 1979 Feb;15(2):126–133. doi: 10.1038/ki.1979.18. [DOI] [PubMed] [Google Scholar]
  4. Bayle F., Eloy L., Trinh-Trang-Tan M. M., Grünfeld J. P., Bankir L. Papillary plasma flow in rats. I. Relation to urine osmolality in normal and Brattleboro rats with hereditary diabetes insipidus. Pflugers Arch. 1982 Sep;394(3):211–216. doi: 10.1007/BF00589093. [DOI] [PubMed] [Google Scholar]
  5. Chuang E. L., Reineck H. J., Osgood R. W., Kunau R. T., Jr, Stein J. H. Studies on the mechanism of reduced urinary osmolality after exposure of renal papilla. J Clin Invest. 1978 Mar;61(3):633–639. doi: 10.1172/JCI108974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cross R. B., Trace J. W., Vattuone J. R. The effect of vasopressin upon the vasculature of the isolated perfused rat kidney. J Physiol. 1974 Jun;239(3):435–442. doi: 10.1113/jphysiol.1974.sp010576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis J. M., Schnermann J. The effect of antidiuretic hormone on the distribution of nephron filtration rates in rats with hereditary diabetes insipidus. Pflugers Arch. 1971;330(4):323–334. doi: 10.1007/BF00588584. [DOI] [PubMed] [Google Scholar]
  8. FUHR J., KACZMARCZYK J., KRUTTGEN C. D. Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr. 1955 Aug 1;33(29-30):729–730. doi: 10.1007/BF01473295. [DOI] [PubMed] [Google Scholar]
  9. Fourman J., Kennedy G. C. An effect of antidiuretic hormone on the flow of blood through the vasa recta of the rat kidney. J Endocrinol. 1966 Jun;35(2):173–176. doi: 10.1677/joe.0.0350173. [DOI] [PubMed] [Google Scholar]
  10. Gellai M., Silverstein J. H., Hwang J. C., LaRochelle F. T., Jr, Valtin H. Influence of vasopressin on renal hemodynamics in conscious Brattleboro rats. Am J Physiol. 1984 Jun;246(6 Pt 2):F819–F827. doi: 10.1152/ajprenal.1984.246.6.F819. [DOI] [PubMed] [Google Scholar]
  11. Gussis G. L., Robertson C. R., Jamison R. L. Erythrocyte velocity in vasa recta: effect of antidiuretic hormone and saline loading. Am J Physiol. 1979 Oct;237(4):F326–F332. doi: 10.1152/ajprenal.1979.237.4.F326. [DOI] [PubMed] [Google Scholar]
  12. Holliger C., Lemley K. V., Schmitt S. L., Thomas F. C., Robertson C. R., Jamison R. L. Direct determination of vasa recta blood flow in the rat renal papilla. Circ Res. 1983 Sep;53(3):401–413. doi: 10.1161/01.res.53.3.401. [DOI] [PubMed] [Google Scholar]
  13. Ichikawa I., Brenner B. M. Evidence for glomerular actions of ADH and dibutyryl cyclic AMP in the rat. Am J Physiol. 1977 Aug;233(2):F102–F117. doi: 10.1152/ajprenal.1977.233.2.F102. [DOI] [PubMed] [Google Scholar]
  14. Ichikawa I., Maddox D. A., Brenner B. M. Maturational development of glomerular ultrafiltration in the rat. Am J Physiol. 1979 May;236(5):F465–F471. doi: 10.1152/ajprenal.1979.236.5.F465. [DOI] [PubMed] [Google Scholar]
  15. Imai Y., Nolan P. L., Johnston C. I. Restoration of suppressed baroreflex sensitivity in rats with hereditary diabetes insipidus (Brattleboro rats) by arginine-vasopressin and DDAVP. Circ Res. 1983 Aug;53(2):140–149. doi: 10.1161/01.res.53.2.140. [DOI] [PubMed] [Google Scholar]
  16. Jamison R. L., Buerkert J., Lacy F. A micropuncture study of collecting tubule function in rats with hereditary diabetes insipidus. J Clin Invest. 1971 Nov;50(11):2444–2452. doi: 10.1172/JCI106743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jamison R. L. Micropuncture study of superficial and juxtamedullary nephrons in the rat. Am J Physiol. 1970 Jan;218(1):46–55. doi: 10.1152/ajplegacy.1970.218.1.46. [DOI] [PubMed] [Google Scholar]
  18. Johnston P. A., Lacy F. B., Jamison R. L. Effect of antidiuretic hormone-induced antidiuresis on water reabsorption by the superficial loop of Henle in Brattleboro rats. J Lab Clin Med. 1977 Dec;90(6):1004–1011. [PubMed] [Google Scholar]
  19. KRAMER K., THURAU K., DEETJEN P. [Hemodynamics of kidney medullary substance. Part I. Capillary passage time, blood volume, circulation, tissue hematocrit and oxygen consumption of kidney medullary substance in situ]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:251–269. [PubMed] [Google Scholar]
  20. Kruszynski M., Lammek B., Manning M., Seto J., Haldar J., Sawyer W. H. [1-beta-Mercapto-beta,beta-cyclopentamethylenepropionic acid),2-(O-methyl)tyrosine ]argine-vasopressin and [1-beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)]argine-vasopressine, two highly potent antagonists of the vasopressor response to arginine-vasopressin. J Med Chem. 1980 Apr;23(4):364–368. doi: 10.1021/jm00178a003. [DOI] [PubMed] [Google Scholar]
  21. Kurtzman N. A., Rogers P. W., Boonjarern S., Arruda J. A. Effect of infusion of pharmacologic amounts of vasopressin on renal electrolyte excretion. Am J Physiol. 1975 Mar;228(3):890–894. doi: 10.1152/ajplegacy.1975.228.3.890. [DOI] [PubMed] [Google Scholar]
  22. LILIENFIELD L. S., MAGANZINI H. C., BAUER M. H. Blood flow in the renal medulla. Circ Res. 1961 May;9:614–617. doi: 10.1161/01.res.9.3.614. [DOI] [PubMed] [Google Scholar]
  23. Michell R. H., Kirk C. J., Billah M. M. Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin. Biochem Soc Trans. 1979 Oct;7(5):861–865. doi: 10.1042/bst0070861. [DOI] [PubMed] [Google Scholar]
  24. Persson A. E., Schnermann J., Ulfendahl H. R., Wolgast M., Wunderlich P. The effect of water diuresis and antidiuretic hormone on the regional renal red cell flow. Acta Physiol Scand. 1974 Jan;90(1):193–201. doi: 10.1111/j.1748-1716.1974.tb05577.x. [DOI] [PubMed] [Google Scholar]
  25. Robertson G. L., Mahr E. A., Athar S., Sinha T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J Clin Invest. 1973 Sep;52(9):2340–2352. doi: 10.1172/JCI107423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roman R. J., Lechene C. Meclofenamate and urine concentration with and without exposure of the renal papilla. Am J Physiol. 1981 May;240(5):F423–F429. doi: 10.1152/ajprenal.1981.240.5.F423. [DOI] [PubMed] [Google Scholar]
  27. Sanjana V. M., Johnston P. A., Robertson C. R., Jamison R. L. An examination of transcapillary water flux in renal inner medulla. Am J Physiol. 1976 Aug;231(2):313–318. doi: 10.1152/ajplegacy.1976.231.2.313. [DOI] [PubMed] [Google Scholar]
  28. Sawyer W. H., Manning M. The development of vasopressin antagonists. Fed Proc. 1984 Jan;43(1):87–90. [PubMed] [Google Scholar]
  29. Smith H. W., Finkelstein N., Aliminosa L., Crawford B., Graber M. THE RENAL CLEARANCES OF SUBSTITUTED HIPPURIC ACID DERIVATIVES AND OTHER AROMATIC ACIDS IN DOG AND MAN. J Clin Invest. 1945 May;24(3):388–404. doi: 10.1172/JCI101618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. THURAU K., DEETJEN P., KRAMER K. [Hemodynamics of kidney medullary substance. Part II. Interrelationships between the vascular and tubular counter-flow system in arterial pressure increases, water diuresis and osmotic diuresis]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:270–285. [PubMed] [Google Scholar]
  31. THURAU K. RENAL HEMODYNAMICS. Am J Med. 1964 May;36:698–719. doi: 10.1016/0002-9343(64)90181-0. [DOI] [PubMed] [Google Scholar]
  32. Trinh-Trang-Tan M. M., Bouby N., Douté M., Bankir L. Effect of long- and short-term antidiuretic hormone availability on internephron heterogeneity in the adult rat. Am J Physiol. 1984 Jun;246(6 Pt 2):F879–F888. doi: 10.1152/ajprenal.1984.246.6.F879. [DOI] [PubMed] [Google Scholar]
  33. Wayland H. The Microcirculatory Society Eugene M. Landis Award Lecture. A physicist looks at the microcirculation. Microvasc Res. 1982 Mar;23(2):139–170. doi: 10.1016/0026-2862(82)90061-9. [DOI] [PubMed] [Google Scholar]
  34. Zimmerhackl B., Robertson C. R., Jamison R. L. Fluid uptake in the renal papilla by vasa recta estimated by two methods simultaneously. Am J Physiol. 1985 Mar;248(3 Pt 2):F347–F353. doi: 10.1152/ajprenal.1985.248.3.F347. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES