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Abstract: The high level of accu-
racy and sensitivity of next gener-
ation sequencing for quantifying
genetic material across organismal
boundaries gives it tremendous
potential for pathogen discovery
and diagnosis in human disease.
Despite this promise, substantial
bacterial contamination is routinely
found in existing human-derived
RNA-seq datasets that likely arises
from environmental sources. This
raises the need for stringent se-
quencing and analysis protocols for
studies investigating sequence-
based microbial signatures in clin-
ical samples.

The advent of next generation sequenc-

ing (NGS) technology has revolutionized

the way pathogens can be detected,

studied, and discovered. NGS lends itself

to highly sensitive, relatively unbiased,

global assessments of all known exogenous

agents within biological specimens, includ-

ing human biopsies. Several laboratories,

including ours, have successfully utilized

NGS for the discovery and investigation of

exogenous agents associated with several

human diseases, such as the recent asso-

ciation of fusiform bacteria with colorectal

carcinoma [1–7]. NGS-based approaches

also have great potential in the clinic for

the diagnosis of symptomatic infections.

Early studies examined microbial se-

quence-based signatures in feces from

patients with diarrheal disease and in

urine from patients suspected of having a

urinary tract infection to identify the

infectious cause [8,9]. In a recent case

report, NGS was used to diagnose a

patient with a rare but treatable bacterial

meningoencephalitis caused by leptospiro-

sis, a condition which was undetectable

using current clinical assays [10].

With the great potential of NGS for

pathogen analysis of clinical samples,

opportunities are being discussed and

bioinformatics challenges are being ad-

dressed [11,12]. While the discussion of

opportunities and bioinformatics challeng-

es is highly appropriate, data reliability

and contamination, issues that are espe-

cially relevant to the inquisitive nature of

this application, are scarcely discussed. For

some of the current mainstream applica-

tions of NGS, such as host transcriptome

quantification, reproducibility studies

across sequencing centers are being per-

formed to assess data veracity [13]. At a

minimum, data reliability in pathogen

sleuthing also needs to be thoroughly

tested and analyzed, and potential obsta-

cles need to be addressed.

Bacterial Reads in Multiple
Human-Derived RNA-seq
Datasets

During the course of DNA and RNA

sequencing experiments performed in our

laboratory over the past several years, we

invariably noted surprising levels of bac-

terial reads whether the genetic material

was derived from human clinical speci-

mens, tissue culture cells, or animal tissues.

The extent and pervasiveness of this

observation led us to investigate this issue

using data from a variety of other

publically available data sources. As a first

line of investigation, we downloaded

RNA-seq datasets from 93 invasive breast

carcinomas [14], 15 kidney renal papillary

cell carcinomas, 18 lung adenocarcinomas

[15], 38 lung squamous cell carcinomas,

and 50 rectum adenocarcinomas [16]

from The Cancer Genome Atlas (TCGA)

cohort (originally made available from the

database of Genotypes and Phenotypes

[dbGaP] [phs000178]). Colorectal carci-

noma (CRC) RNA-seq datasets from

Castellarin et al. were downloaded from

the National Center for Biotechnology

Information (NCBI) Sequence Read Ar-

chive (accession number SRP007584) [2].

We also downloaded RNA-seq datasets

from normal human tissue samples from

the Illumina Human Body Map 2.0

project (from the NCBI Gene Expression

Omnibus (GEO) database [GEO acces-

sion number: GSE30611]). In total, we

analyzed RNA-seq datasets from 244

different specimens from different sources

and from different specimen types (Table

S1). Ten specimens were identified as

outliers based on poor alignment percent-

ages to the human genome (using the
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robust regression and outlier removal

(ROUT) method in GraphPad Prism

[version 6 Mac, www.graphpad.com])

and excluded from the analysis.

Metatranscriptome analysis was per-

formed using our computational pathogen

detection pipeline, RNA CoMPASS [17].

Briefly, reads ranging from 42–101 nucleo-

tides long were aligned to the human

reference genome, hg19 (UCSC), plus a

splice junction database (which was gener-

ated using the make transcriptome applica-

tion from Useq [18]; splice junction radius

set to the read length minus 4), and

abundant sequences (which include se-

quence adapters, mitochondrial, ribosomal,

enterobacteria phage phiX174, poly-A, and

poly-C sequences) using Novoalign V3

(www.novocraft.com [-o SAM, default op-

tions]). Nonmapped reads were isolated and

subjected to consecutive BLAST V2.2.28

searches against the Human RefSeq RNA

database and then to the NCBI nucleotide

(nt) database to identify reads corresponding

to known exogenous organisms [19,20].

Results from the nt BLAST searches were

filtered to eliminate matches with an E-value

greater than 10e-6. The results were then

fed into MEGAN 4 V4 [21] for visualization

of taxonomic classifications.

RNA CoMPASS analysis revealed fairly

extensive levels of bacterial reads across all

RNA-seq studies analyzed, with average

numbers ranging from 1,406 reads per

million human mapped reads (RPMHs) in

the TCGA datasets to 11,106 RPMHs in

the normal tissue from the CRC dataset

(Table 1 and Figure S1). Despite the

widespread presence of bacteria across

groups, different taxa displayed substantial

heterogeneity across studies with high

levels of Paracoccus denitrificans SD1 in

the TCGA and BodyMap datasets but not

in the CRC dataset, and Pseudomonas
showing generally high levels in the CRC

but not the TCGA or BodyMap studies

(Table 1 and Figure S2). The substantial

bacterial read numbers for each of these

diverse datasets suggest a fairly ubiquitous

nature to these findings, and taxa-specific

differences across centers raises the possi-

bility of multiple center-specific issues.

Identical Cell Lines Analyzed in
Separate Studies Show
Differences in Bacterial Read
Profiles

To shed light on possible contamination

sources, we analyzed bacterial reads in cell

lines, which we presumed to be free from

microbial contamination. RNA-seq data

from seven different diffuse large B-cell

lymphoma (DLBCL) cell lines that were

analyzed independently in the Cancer

Genome Characterization Initiative (CGCI)

and the Cancer Cell Line Encyclopedia

(CCLE) studies were analyzed. CGCI and

CCLE RNA-seq datasets were downloaded

from dpGaP (phs000235) and the Cancer

Genomics Hub (managed by the University

of California, Santa Cruz), respectively.

Based on averaging RPMHs across all

cell lines for each study, bacterial reads

were found in all datasets, with a consid-

erably greater number in the CGCI study

(Figure 1A). Acinetobacter was found to

contribute to the bulk of bacterial reads in

the CGCI data and P. denitrificans SD1

made up the majority of bacterial reads in

the CCLE study (Figure 1A). Higher

bacterial reads were consistently found in

all of the CGCI cell lines except for NU-

DUL-1 (Figure 1B). In CCLE data, all cell

lines were found to be enriched for P.
denitrificans SD1 reads relative to the

CGCI data, whereas the converse was true

for Acinetobacter (Figure 1C).

The discovery of bacterial reads in cell

line data and the finding of different

bacterial taxa in data from different

sequencing initiatives supports the idea

that a good portion of bacterial reads are

not derived from the specimens them-

selves. It is noteworthy that most of these

datasets were derived from RNA samples

that were polyA selected, a process that

selects against most bacterial transcripts

(which are typically poorly polyadenylat-

ed) [22–25]. Contamination that occurs

upstream from the polyA selection step,

then, is expected to be removed during

this purification step. Nevertheless, ineffi-

ciencies in polyA selection can result in

carry-through of non-polyadenylated bac-

terial RNAs. If inefficient polyA selection

accounted for the majority of bacterial

read findings, then we would expect that

differences in levels of bacterial reads

would relate to differences in polyA

selection efficiencies between samples.

We assessed polyA selection efficiencies

by determining the number of ribosomal

RNA reads for each sample, and we found

little correlation between the numbers of

bacterial reads and the levels of human

ribosomal reads (Figure 1A, 1B), support-

ing the contention that downstream con-

tamination is likely a key source of

bacterial reads in these datasets.

Different Bacterial Read Profiles
across Sequencing Centers
Using Identical RNA Samples
and Library Preparation Kits

To more directly address whether

downstream contamination can occur,

we took advantage of a well-controlled

study performed by the Genetic European

Variation in Health and Disease (GEU-

VADIS) consortium [13,26]. In their pilot

study, ERP000177, RNA from five Ep-

stein-Barr virus (EBV)-positive lympho-

blastoid cell line (LCL) samples was

delivered to seven different sequencing

laboratories across Europe to evaluate the

reproducibility of sequencing data across

various centers. We restricted our analysis

to the six laboratories that used Illumina

sequencing. For these datasets, library

construction at all institutes was performed

utilizing identical library preparation kits.

Across these labs the level of bacterial

RPMHs differed by as much as 30-fold,

with Lab 5 showing an average of 18

bacterial RPMHs while Labs 1 and 6

showed an average of 542 and 570

bacterial RPMHs, respectively (Fig-

ure 2A). Also noteworthy is the tight

clustering of bacterial read numbers in

different samples within each lab, suggest-

ing the attribution of bacterial contamina-

tion to laboratory practices and/or the

environment. Similar to our findings in the

DLBCL data, the levels of bacterial reads

across centers did not correlate with the

levels of human ribosomal RNA contam-

ination, indicating that these differences

were not due to polyA-selection disparities

(Figures S3–S7). Finally, differences in

read levels for different bacterial taxa were

found across labs (Figure 2B–2E and

Figure S8), including the presence of high

Xanthomonadaceae read numbers in all

five LCL datasets from Lab 1 (Figure 2E

[inset]). In contrast, the read levels for

endogenously expressed Epstein-Barr virus

transcripts were similar across labs for

each LCL (Figure 2F).

Contamination Levels

Based on our own observations as well

as the observations of others [27,28] we

think that bacterial contamination is a

relevant issue that needs to be extensively

addressed for NGS-based pathogen detec-

tion and diagnostic approaches. The

amplitudes of contaminating bacterial

reads in RNA-seq datasets are likely high

enough to be a confounding factor. For

example, our analysis of the data from the

CRC study that previously reported the

association between Fusobacterium and

CRC [2] showed an average of 861

Fusobacterium RPMHs in the tumor

samples (Table 1). This is comparable to

the levels of P. denitrificans SD1 and

Enterobacteriaceae found in the Human

BodyMap study (859 and 689 RPMHs,

respectively) (Table 1). This observation is
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Table 1. Bacterial profile among various human RNA-seq datasets.

TCGA BodyMap CRC

Normal Tumor

Human Reads 773,34566,104 883,34963,309 757,77568,420 757,46668,640

Bacterial Reads 1,406.06100 1,789.06242 11,106.063,430 9,517.063,489

Acinetobacter 1.160.1 1.360.2 4.261.2 7.861.8

Fusobacterium 6.462.6 0.060.0 53.0629.0 861.06491

Paracoccus denitrificans SD1 396.0635 859.06201 1.660.7 1.160.63

Propionibacterium acnes 16.063.9 14.063.4 164.0622 360.0669

Pseudomonas 6.160.5 3.060.5 2,232.06393 1,788.06322

Enterobacteriaceae 668.0694 689.06166 166.0675 191.0674

The average of five RNA-seq datasets (File S1) represent values for TCGA. Similarly, the average of thirteen RNA-seq datasets (File S2) represent values for BodyMap.
Colorectal (CRC) RNA-seq datasets were obtained from Castellarin et al. accession number SRP007584 (File S3). All values shown as mean6SEM.
doi:10.1371/journal.ppat.1004437.t001

Figure 1. Seven RNA-seq DLBCL cell line datasets sequenced in two different studies (CCLE and CGCI) were analyzed using RNA
CoMPASS. (A) Bacterial reads per human mapped reads. For insets, human and ribosomal reads are normalized to total reads. Green columns
represent the average RNA-seq reads from the CCLE dataset, while red columns represent the average RNA-seq reads from the CGCI dataset. (B) Mean
bacterial RPMHs for each cell line analyzed in the CCLE (green) and CGCI (red) studies with the corresponding mean ribosomal reads (upper graph).
(C) Mean RPMHs of various taxa for each cell line analyzed in the CCLE (green) and CGCI (red) studies. *, p,0.05.
doi:10.1371/journal.ppat.1004437.g001
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more notable considering the fact that the

data from the BodyMap study was derived

from polyA-selected RNAs, whereas the

data from the CRC data was generated

using ribodepleted RNA (which does not

select against bacterial reads).

Is Contamination a Threat to All
Microbial Sequencing Studies?

There are several different approaches

to sequencing-based microbial examina-

tion that vary based on the starting

material; for example, RNA versus DNA,

or the investigation of relatively pure

microbial samples versus the assessment

of heterogeneous samples in which the

microbial genetic material is a minor

component (such as much of the clinical

Figure 2. Metatranscriptomic profiles of five RNA sequencing datasets vary across laboratories. Five lymphoblastoid cell line (LCL) RNA-
seq datasets, sequenced at six sequencing centers across Europe, were analyzed using RNA CoMPASS. Various classification groups within the
bacteria domain for each sample were compared across sequencing centers (A) bacteria, (B) Actinobacteria, (C) Firmicutes, (D) environmental
samples, and (E) Proteobacteria. (F) As a control, Epstein-Barr Virus (EBV) read numbers were also analyzed. All reads are normalized to million
mapped human reads. The five LCL RNA samples are represented by unique respective colors. *, P,0.05; **, P,0.01; ***, P,0.001; ****, P,0.0001.
doi:10.1371/journal.ppat.1004437.g002
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human tissue-based work). The impact of

contamination on data interpretation

varies depending on the approach because

different methodologies inherently traject

different signal-to-noise ratios. Contami-

nation is less relevant for studies utilizing

relatively homogeneous microbial commu-

nities, but it can be a confounding factor in

the assessment of samples in which the

predominant genetic material is human

(for example, tumor biopsies) or in which

the offending microbe is in the minority.

A somewhat less obvious effect on signal

to noise ratio is the difference between

sequencing RNA versus DNA. Assuming

contamination that occurs downstream

from the nucleic acid preparation step,

there is a larger impact of contaminating

microbial DNA on RNA sequencing

relative to DNA sequencing approaches.

This difference arises due to the inefficien-

cies in converting RNA to cDNA. Since

contaminating DNA does not require this

step, the signal-to-noise ratio for RNA-seq

is lower than for DNA-seq.

So why not just sequence DNA? There

are certainly advantages to sequencing

DNA, including its greater stability and

the ability to retrieve genetic material from

archived samples. Nevertheless, there are

also advantages to sequencing RNA for

some applications. There is an abundance

of publicly available RNA-seq datasets that

are potentially useful for future pathogen

studies. Another advantage is relevant to

the study of human biopsies in which the

microbial material is a minor component of

the sample. The bacterial-to-human tran-

scriptome size ratio is typically greater than

the bacterial-to-human genome size ratio

because of the abundance of extra human

DNA that is poorly or not expressed. In

these cases, it is more cost effective to assess

the microbial component through RNA

sequencing. An added benefit of RNA-seq

for clinical diagnosis is the ability to

simultaneously obtain information on ex-

pressed pathogenic and resistance markers

that can inform treatment options.

In the end, when it makes sense for a

particular study, one way to obviate the

impact of potential contamination is to use

a viable approach that maximizes the

signal-to-noise ratio. On the other hand,

when methods are required that have

inherently lower expected signal-to-noise

ratios, alternative approaches are neces-

sary to combat this issue.

Dealing with Contamination
Issues

For some cases, contamination can

potentially be dealt with bioinformatically.

One approach would be to utilize a

repository of common contaminating or-

ganisms (although this could potentially

result in oversight of a relevant organism

that happens to be a common contami-

nant). Alternatively, for investigations in

which negative controls are available

(and/or suitable), statistics can be used to

prove an association (although contami-

nation could result in the requirement for

larger sample sets than would otherwise be

necessary to attain statistical significance).

Despite the utility of informatics ap-

proaches to alleviate contamination issues

in some cases, minimizing contamination

sources is more cost effective and will

minimize the chances of data misinterpre-

tation.

Interestingly, contamination has already

had an impact on the very databases that

are used for bioinformatics work. Laur-

ence et al. identified Bradyrhizobium
sequences in assembled genomes in the

NCBI Genome database [27]. Bradyrhi-
zobium species, along with other microbes,

have been reported in ultrapure water

systems and may help explain the presence

of this microbe in several deposited

genome assemblies. Another group found

Leucobacter sp. sequences in assembled

genomes of Caenorhabditis sp. [28]. These

two cases exemplify the need to sequence

contaminant genomes in order to exclude

them from the host genome assembly.

Furthermore, in a recent study, Xu et

al. discovered National Institutes of

Health-Chongqing virus (NIH-CQV) in

patients with seronegative hepatitis using

NGS [29]. However, two later studies

demonstrated that the presence of parvo-

like hybrid virus (PHV) and NIH-CQV

was actually contamination from silica

column-based nucleic acid extraction kits

and not bona fide viral infection, indi-

cating that contamination is not restricted

to bacterial sequences [30–32]. Subse-

quently, in a follow-up study, the authors

of the initial report confirmed that the

finding of NIH-CQV in human plasma

was due to contamination from the

columns [33]. This example underscores

the importance of rigorously validating

novel pathogen discoveries, and when

possible, identifying any potential con-

taminating sources.

The route between clinical specimen

collection to the sequencing reaction is

complex with many candidate points of

contamination, ranging from specimen

contamination in the operating room to

storage, sample processing, RNA prepara-

tion, library preparation, etc. Another key

consideration is the purity of library

preparation reagents, many of which

(e.g. ligases, polymerases, nucleotides) are

purified from bacteria during their manu-

facture. Depending on the level of purity

for these reagents, there is the potential for

different levels of bacterial genetic material

to be present. Nevertheless, the analysis of

the data from the highly controlled

GEUVADIS study suggests that laborato-

ry standard operating procedures (SOPs)

specific to different sequencing centers is

also a critical consideration.

The relative contribution of this pano-

rama of potential contamination sources

needs to be parsed in future, expressly

designed studies. Until these sources are

better understood, we propose the follow-

ing recommendations:

1) Detection studies, especially with a

diagnostic focus, should incorporate

stringent SOPs across the entire

experimental pipeline from sample

collection to sequencing.

2) Highly purified metabolic enzymes

and other reagents used in sequence

library preparation should be used

whenever possible.

3) Standards for the curation of micro-

bial sequences submitted to Genbank

and other large-scale databases should

be established in order to assess

completeness and quality of the as-

sembled genomes.

4) Contamination controls such as mock

sequence library preparations should

be used to help guide the development

of appropriate and effective SOPs for

metagenomic and metatranscriptomic

studies.

Supporting Information

Figure S1 Bacterial reads across
RNA-seq datasets.

(TIFF)

Figure S2 Various bacterial species
reads across RNA-seq datasets.

(TIFF)

Figure S3 (A) Human and (B) ribo-
somal reads per million total reads
for ERS008772.

(TIF)

Figure S4 (A) Human and (B) ribo-
somal reads per million total reads
for ERS008773.

(TIF)

Figure S5 (A) Human and (B) ribo-
somal reads per million total reads
for ERS008774.

(TIF)
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Figure S6 (A) Human and (B) ribo-
somal reads per million total reads
for ERS008775.
(TIF)

Figure S7 (A) Human and (B) ribo-
somal reads per million total reads
for ERS008776.
(TIF)

Figure S8 Major bacterial contrib-
utors to Proteobacteria taxa.

(TIFF)

Table S1 Databases.

(DOCX)

File S1 TCGA datasets.

(XLS)

File S2 Bodymap datasets.

(XLS)

File S3 CRC normal and tumor
dataset.

(XLS)
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