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Abstract

In multiple regression under the normal linear model, the presence of multicollinearity is well 

known to lead to unreliable and unstable maximum likelihood estimates. This can be particularly 

troublesome for the problem of variable selection where it becomes more difficult to distinguish 

between subset models. Here we show how adding a spike-and-slab prior mitigates this difficulty 

by filtering the likelihood surface into a posterior distribution that allocates the relevant likelihood 

information to each of the subset model modes. For identification of promising high posterior 

models in this setting, we consider three EM algorithms, the fast closed form EMVS version of 

Rockova and George (2014) and two new versions designed for variants of the spike-and-slab 

formulation. For a multimodal posterior under multicollinearity, we compare the regions of 

convergence of these three algorithms. Deterministic annealing versions of the EMVS algorithm 

are seen to substantially mitigate this multimodality. A single simple running example is used for 

illustration throughout.

1 Posterior Resolution of the Likelihood

Suppose we observe data that consists of y, an n × 1 response vector, and X = [x1,…, xp], an 

n × p matrix of p potential standardized predictors that are related by a Gaussian linear 

model

(1.1)

where β = (β1,…,βp) is a p × 1 vector of unknown regression coefficients, and σ is an 

unknown positive scalar. (We assume throughout that y has been centered at zero to avoid 

the need for an intercept). For this setup we shall also suppose that only an unknown subset 

of the coefficients in β are zero, and that the goal is the identification and estimation of this 

subset. Of particular interest to us will be addressing this problem in the presence of 

multicollinearity, where it is well known that the maximum likelihood estimator (also the 

least squares estimator) is an unreliable and unstable estimator of β.
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A fundamental Bayesian approach to this variable selection problem is obtained by 

introducing a “spike-and-slab” Gaussian mixture prior on β. Conditionally on a random 

vector of binary latent variables γ = (γ1,…, γp)′, γi ∈ {0, 1}, this prior is defined by

(1.2)

where R is a preset covariance matrix and

(1.3)

for 0 ≤ υ0 < υ1, George and McCulloch (1993). This prior on β is then combined with 

suitable priors on α, σ and γ. Typical default choices include the relatively noninuential 

inverse gamma prior on σ2, π(σ2) = IG(ν/2, νλ/2) with ν = λ = 1, and the exchangeable beta-

binomial prior on γ, obtained by coupling the iid Benoulli form π(γ | θ) = θ|γ|(1 − θ)p−|γ|, 

, with a uniform prior on θ ∈ [0, 1]. We will restrict attention to these choices 

throughout.

Under (1.2), the βi components of β are marginally distributed as

(1.4)

a mixture of a “spike distribution” N(0, σ2υ0) and a “slab distribution” N(0, σ2υ1). For the 

purpose of variable selection, the idea is to set υ0 small and υ1 large, so that the induced 

posterior will segregate the βi coefficients into those that are attributed to the spike 

distribution and so are inconsequential, and those that are attributed to the slab distribution 

and so are important. As an alternative to setting υ1 to be a large fixed value, one may 

instead add a prior π(υ1) to induce heavy-tailed slab distributions.

We shall be interested here in considering the effect of the two particular choices, R = Ip and 

R = (X′X)−1. The choice R = Ip, under which the components of β are independently 

distributed, serves to decrease the posterior correlation between these components. The g-

prior (Zellner, 1986) related choice R = (X′X)−1, which is proportional to the correlation 

structure of the likelihood estimates of β, serves to reinforce this structure in the posterior. 

These two choices have opposite effects on the posterior correlation.

After integrating out α, the induced marginal posterior distribution on β is of the form

(1.5)

where the model posterior π(γ | y) puts more weight on those models which are more likely 

to have generated y. The form of each conditional component of (1.5),

(1.6)

shows how the likelihood L(β, σ | y), which does not at all depend on γ, is filtered to 

determine the distribution of β for each of the subset models determined by γ.
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Insight into the effect of the spike-and-slab prior (1.2) on the posterior components through 

(1.6) is clearest when R = Ip. In this case, L(β, σ | y) is multiplied by

(1.7)

where ϕσ2υ(·) is the N(0, σ2υ) density function. Thus, L(β, σ | y) is downweighted when both 

βi is large and γi = 0. In particular, when υ0 = 0, L(β, σ | y) is multiplied by 0 when both βi ≠ 

0 and γi = 0, effectively conditioning on βi = 0. In contrast, L(β, σ | y) is relatively unaffected 

by those βi for which γi = 1, as long as they are not too extreme as determined by υ1.

The translation of the likelihood information into distinct components via (1.5) facilitates the 

identification of those submodels best supported by the data. The enhanced clarity provided 

by the posterior is especially pronounced in the presence of multicollinearity, as illustrated 

by the simple simulated example described in the next section.

2 Motivating Example with Multicollinearity

We constructed n = 100 observations on p = 2 predictors according to Np(0, Σ) with 

 and ρij = 0.9|i−j|. Setting β = (1, 0)′, we then generated responses from Nn(Xβ, 

σ2In) with σ2 = 3. The resulting maximum likelihood estimate (MLE) β̂
MLE = (0.55, 0.38)′ is 

at the center of the likelihood surface depicted in Figure 1(a). The instability of the MLE due 

to the collinearity between the predictors has led it to misallocate the signal across the 

coordinates.

Now consider what happens when we add the spike-and-slab prior with υ0 = 0, υ1 = 1000 

and R = I2. The posterior π(β | y) has translated the likelihood information through (1.5) to 

the π(γ | y) weighted sum of the four π(β | γ, y) components corresponding to γ = (0, 0)′, (1, 

0)′, (0, 1)′, (1, 1)′, respectively. By using υ0 = 0, which yields a point mass at zero for the 

spike distribution, these four components support β values of the form (0, 0)′, (β1, 0)′, (0, 

β2)′ and (β1, β2)′, respectively.

These components can be identified as the four regions of posterior accumulation in Figure 

1(b), which depicts the four posterior modes and associated posterior student-t contours (and 

95% HPD intervals for the 1-dimensional regions). The probability mass is distributed 

among these components according to the posterior model probabilities π[(0, 0)′|y] < 0.001, 

π[(0, 1)′|y] = 0.187, π[(1, 0)′ | y] = 0.764 and π[(1, 1)′ | y] = 0.049. The global mode β̂
MAP = 

(0.91, 0.00)′, a much better estimate than the MLE, is sitting atop the (β1, 0) component, 

which has been most heavily weighted by π(γ | y) for this data. We note in passing that 

replacing R = I2 by R = (X′X)−1 here, yields virtually the same posterior as in Figure 1(b).

It will also be of interest to get some insight into the effect of using υ0 > 0, so let us also 

consider what happens when we change υ0 = 0 to υ0 = 0.005 in the above. As before, the 

posterior π(β | y) is the weighted sum of the four π(β | γ, y) components corresponding to γ = 

(0, 0)′, (1, 0)′, (0, 1)′, (1, 1)′, respectively. However because υ0 > 0 employs a continuous 

spike distribution, none of these posterior components rule out any β values. Instead, the 
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first three posterior components are distinguished only by more heavily weighting β values 

close to (0, 0)′, (β1, 0)′, (0, β2)′.

Under the independence prior choice R = I2, these components can still be identified as the 

four regions of posterior accumulation in Figure 2(a). However, in contrast to Figure 1(b), 

they are now all full dimensional and not quite as cleanly separated. Nonetheless, the global 

mode βM̂AP = (0.88, 0.03)′, is still a much better estimate than the MLE, sitting atop the γ = 

(1, 0)′ component, which again has been most heavily weighted by π(γ | y) for this data. This 

posterior has still been effective at mitigating the effect of multicollinearity.

When we instead consider the g-prior choice R = (X′X)−1, it is interesting to see how the 

posterior π(β | y), now depicted in Figure 2(b), has changed. The four components now 

appear as an intermediate change between the υ0 = 0 posterior in Figure 1(b) and the υ0 > 0 

posterior in Figure 2(a). The g-prior structure has served to maintain the multicollinear 

structure in the components corresponding to γ = (0, 0)′, (1, 0)′, (0, 1)′, keeping them more 

similar to their lower dimensional counterparts in Figure 1(b). With this posterior, the global 

mode β̂
MAP = (0.901, 0.001)′ is now even closer to the true β = (1, 0)′.

3 EM Algorithms for Posterior Mode Identification

As a practical matter, identification of the posterior mode under the spike-and-slab prior 

formulation can be challenging when the number of predictors is large. For this purpose, EM 

algorithms can provide a fast deterministic search alternative to stochastic search approaches 

such as SSVS George and McCulloch (1993, 1997). In this section, we describe three such 

EM algorithms which are designed for different choices of υ0 and R. The first of these was 

proposed by Rockova and George (2014) (hereafter RG14) for (υ0 > 0, R = Ip), involving 

closed form E-step and M-step updates. The other two are new algorithms designed for the 

cases (υ0 > 0, R = (X′X)−1) and (υ0 = 0, R = Ip), respectively, and exploit mean-field 

approximations in the E-step.

The EM algorithm has been previously considered in the context of Bayesian shrinkage 

estimation under sparsity priors (Figueiredo (2003)), Kiiveri (2003), Griffin and Brown 

(2012, 2005). Literature on similar computational procedures for spike-and-slab models is 

far more sparse. EM-like algorithms for point mass variable selection priors were considered 

by Hayashi and Iwata (2010) and Bar et al. (2010), which approximate the E-step by 

neglecting the correlation among the selection indicators. The EM algorithm for the point 

mass prior that we describe below uses a mean-field approximated E-step, which takes into 

account the fact that the selection indicators can be dependent. A similar dependence also 

occurs in the case (υ0 > 0 and R = (X′X)−1). There we again take advantage of the mean 

field approximation, which induces “dependent thresholding” for variable selection rather 

than univariate thresholding along individual coordinate axes.

3.1 The EMVS Algorithm for υ0 > 0 and R = Ip

For the problem of model identification, RG14 proposed EMVS, an approach based on a 

fast closed form EM algorithm that quickly identifies posterior modes of π(β, θ, σ2 |y) under 

a spike-and-slab prior with υ0 > 0 and R = Ip. The modal β values are then thresholded to 
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identify nearby high posterior γ models under the posterior for which υ0 = 0. We refer to this 

EM algorithm as the EMVS algorithm.

As described in detail in RG14, the EMVS algorithm proceeds by iteratively maximizing the 

objective function

(3.1)

where ψ(k) = (β(k), θ(k), σ(k)) and 𝖤γ|·[·] denotes expectation conditionally on [ψ(k), y]. At the 

kth iteration, an E-step is first applied, computing the expectations in (3.1), followed by an 

M-step that maximizes over (β, θ, σ) to yield the values of ψ(k+1) = (β(k+1), θ(k+1), σ(k+1)).

The E-step expectations are obtained quickly from the closed form expressions

(3.2)

and

(3.3)

Note that these closed form expressions are available when υ0 > 0 but not when υ0 = 0.

For the M-step maximization, the β(k+1) value that globally maximizes Q is obtained by the 

generalized ridge estimator

(3.4)

where  is the p × p diagonal matrix with entries , the well-known 

solution to the ridge regression problem

(3.5)

In problems where p >> n, the calculation of (3.4) can be enormously reduced by using the 

Sherman-Morrison-Woodbury formula to obtain an expression which requires a n × n matrix 

inversion rather than a p × p matrix inversion. Alternatively, as described in George et al. 

(2013), the solution of (3.5) can be obtained even faster with the stochastic dual coordinate 

ascent algorithm of Shalev-Shwartz and Zhang (2013).

The maximization of Q is then completed with the simple updates
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(3.6)

and

(3.7)

3.2 An Approximate EM Algorithm when υ0 > 0 and R = (X′X)−1

When υ0 > 0 and R = (X′X)−1, an EM algorithm with a fast closed form E-step is no longer 

available. However, as we now show, an EM algorithm for variable selection becomes 

feasible with deterministic mean field approximations.

The expectation of the complete data log-likelihood here requires computation of both the 

first and second moments of the vector of latent γ indicators. This is better seen from the 

following expression for the objective function

(3.8)

The expectation of the quadratic form in the fourth summand can be written as

(3.9)

(3.10)

The first and second conditional moments of γ above are with respect to the following 

conditional distribution which, based on (1.2), resembles a Markov Random Field (MRF) 

distribution on a completely connected graph with self-loops, i.e.

(3.11)

where
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(3.12)

and

(3.13)

Note that the distribution (3.11) deviates slightly from a traditional MRF distribution, which 

assumes that the matrix B has zeroes on the diagonal. Nevertheless, the exact computation 

of 𝖤γ|·γ and 𝖤γ|·γγ′ is still feasible in small problems. However, for applications involving 

moderate to large numbers of predictors, approximate computation will be needed.

It is interesting to point out the effect of the g-prior on simultaneously selecting variables 

that are related. For standardized predictors, X′X is proportional to the sample correlation 

matrix. A pair (i, j) of highly collinear predictors will have a large entry (X′X)(i,j) in absolute 

value, which can be potentially magnified by the current parameter estimates  and . 

For example, for large positive (X′X)(i,j), large  and  of the same sign will lead to a 

large negative B(i,j) entry, which will in turn lower their probability of co-occurence at the 

kth iteration.

3.2.1 Mean Field Approximated E-step—For the E-step calculations, we deploy a 

variant of a mean field approximation which outputs approximations to 𝖤γ|·γi for i = 1,…, p 

as a solution to a series of nonlinear equations. Proceeding as in RG14, the approximations 

𝖤̂
γ|·γi = μi can be obtained by solving

Because the vector a and matrix B can involve rather large numbers, it will be useful in 

practice to perform the approximation with reparametrized values a★ = a/C and B★ = B/C2 

to obtain . The solution can be transformed back by noting . The 

constant C can be for instance chosen as the maximum of the absolute value of the entries in 

the matrix B and the vector a. The matrix of second posterior moments can then be 

approximated by 𝖤 ̂
γ|·[γγ′] = 𝖤 ̂

γ|·[γ]𝖤 ̂
γ|·[γ′], because the approximating distribution assumes a 

completely disconnected graph.

3.2.2 The M-step—The M-step proceeds by jointly updating (β,σ,θ), which is equivalent 

to updating (β,σ) and θ individually. Only the updates for the regression parameters and 

residual variance require slight modification:
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and

3.3 An Approximate EM Algorithm when υ0 = 0 and R = Ip

We now describe a variant of the EM algorithm for the point-mass prior (υ0 = 0), assuming 

that the covariates are a priori independent (R = Ip). Here, the joint prior distribution (1.2) is 

degenerate for all models of dimension smaller than p.

Our derivation proceeds by first rewriting the likelihood for every model γ as

(3.14)

where . The objective function for the EM algorithm then becomes

(3.15)

The expectation of the quadratic form in the first summand can be written as

As in the EM algorithm for the g-prior, we compute the first and second posterior moments 

of the latent inclusion indicators. The E-step can again be obtained with a mean field 

approximation, this time using a slightly different MRF distribution

(3.16)

where

(3.17)

and
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(3.18)

Focusing on the vector of sparsity parameters a, negative parameters  for covariates, 

which correlate positively with the outcome, induce smaller baseline inclusion probabilities 

exp(ai)/[1+ exp(ai)]. This behavior will become more evident from the plots of convergence 

regions in the next section.

The M-step update of the joint vector of regression coefficients

can be unstable, when entries in the approximated 𝖤γ|·[Γ] approach zero. In such instances, it 

will be useful to set  directly to zero, when the conditional inclusion probability is 

smaller than a pre-specified threshold. This sparsification step induces more stability, while 

rendering the exclusion of each covariate throughout the iterations reversible.

The residual variance is then updated according to

4 Geometry of EM Convergence Regions

Despite attractive features such as rapid convergence, economy of storage and 

computational speed, our EM algorithms may converge to local modes rather than the global 

mode of main interest. Overcoming this tendency can be especially challenging in 

multimodal posterior landscapes, such as those induced by our spike-and-slab priors, where 

performance becomes heavily dependent on the choice of a starting value. To shed some 

light on the extent to which this occurs with our EM algorithms, we studied this aspect of 

their performance on the simple example with two correlated predictors from Section 2. 

Note that the posterior multimodality there has been exacerbated by the strong collinearity 

between the predictors.

For a regular grid of values on [−0.5, 1.5] × [−0.5, 1.5], we ran each of our three EM 

algorithms, starting at each point on the grid and recording the mode to which the algorithm 

converged. These results are displayed in Figure 3(a) for υ0 = 0.005 and υ1 = 1000 with R = 

I2, in Figure 3(b) for υ0 = 0.005 and υ1 = 1000 with R = (X′X)−1 and in Figure 3(c) for υ0 = 

0 and υ1 = 1000 with R = I2. Numbering the modes 1, 2, 3 and 4, each starting value has 

been assigned same number as its EM destination mode. This results in a partition of the 

grid into four regions, delineating the regions of attraction for each mode.

These three figures confirm the susceptibility of the EM algorithms to starting values. The 

convergence towards the global mode (here mode 3) is not guaranteed unless the starting 
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value belongs to the small region of attraction around it. The geometry of the convergence 

regions differs depending on the variant of our EM algorithm. The independence covariance 

matrix R = I2 yields nearly rectangular regions corresponding to thresholding univariate 

directions. The point-mass prior υ0 = 0 penalizes the directions of sign inconsistency 

between the starting value and the sample correlation between the variable and the response. 

The g-prior R = (X′X)−1 performs dependent thresholding along multivariate directions, 

rather than coordinate axes.

5 Mitigating Multimodality with Deterministic Annealing

In order to increase the chances of converging to the global mode, Ueda and Nakano (1998) 

propose a deterministic annealing EM variant (DAEM) based on the principle of maximum 

entropy and an analogy with statistical mechanics. In our context, the DAEM algorithm aims 

at finding a maximum of the negative of the free energy function 

 where 0 < t < 1. The problem of optimizing the 

logarithm of the incomplete posterior distribution is embedded as a special case for t = 1.

The parameter 1/t corresponds to a temperature parameter and determines the degree of 

separation between the multiple modes of Ft(·). Large enough values smooth the function to 

have only one minimum. As the temperature decreases, multiple modes begin to appear and 

the function gradually resembles the true log incomplete posterior. The influence of poorly 

chosen starting values can be weakened by keeping the temperature high at the early stage of 

computation, gradually decreasing it during the iteration process. Alternatively, the free 

energy function can be optimized for a decreasing sequence of temperature levels 1/t1 > 1/t2 

> ⋯ > 1/tk, where the solution at 1/ti serves as the starting point for the computation at 

1/ti+1. Provided that the new global maximum is close to the previous one, this strategy can 

increase the chances of finding the true global maximum. We will investigate how the 

tempering affects the ability to converge towards the region of attraction of the global mode.

While the M-step of the DAEM algorithm remains unchanged, the E-step requires the 

computation of the expected complete log posterior density with respect to a distribution 

which is proportional to the current estimate of the conditional complete posterior given the 

observed data raised to the power t. This distribution is particularly easy to derive for 

mixtures (Ueda and Nakano, 1998). We begin by describing this distribution for the EMVS 

algorithm with υ0 > 0 and R = Ip, in which case this corresponds to a Bernoulli distribution 

with inclusion probabilities

(5.1)

The EMVS algorithm with annealing then proceeds by substituting (5.1) for (3.2). At high 

temperatures (t close to zero) the probabilities (5.1) become nearly uniform distribution. 

This leads to a nearly equal penalty on all the coefficients regardless of their magnitude (the 
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diagonal elements of the ridge matrix equal , inducing a 

unimodal posterior.

To gauge the effectiveness of deterministic annealing on the EMVS algorithm for υ0 = 0.005 

and υ1 = 1000 with R = I2, we recomputed the domains of attraction for t = 0.2 in Figure 

4(a) and for t = 0.1 in Figure 4(b) for our simple example. Comparison with from Figure 

3(a) shows how annealing has dramatically improved the geometry of the convergence 

regions. By substantially increasing the region of attraction towards the best mode (number 

3), annealing has here increased the chances of converging to the global solution.

Deterministic annealing for the case of the g-prior (υ0 > 0, R = (X′X)−1) and the point-mass 

prior (υ0 = 0, υ1 = 1000, R = I2) proceeds by finding the marginals of a MRF distribution, 

raised to the power of the inverse temperature parameter

(5.2)

The mean field approximation can be used just as before (Section 3.2.1), but with the 

sparsity and connectivity matrix multiplied by t. However, because the entries in both a and 

B can be prohibitively large, the tempering here will only be effective for very small t. This 

is particularly true for the continuous g-prior, where both a and B involve quantities 

depending on 1/υ0, which can be very large.

The effectiveness of deterministic annealing for these two EM algorithms is displayed in 

Figure 5. Applied to our simple example, deterministic annealing has not been very effective 

in increasing the region of attraction toward the global mode.

6 Discussion

We have illustrated how the destabilizing inuence of multicollinearity in variable selection 

problems can be mitigated by introducing a spike-and-slab prior. Such priors induce 

posteriors which filter the likelihood information into a weighted sum of cleanly separated 

posterior modes corresponding to subset models. In order to locate the highest posterior 

mode, we presented three variants of EM algorithms for variable selection and considered 

the geometry of their convergence regions in multimodal landscapes. Whereas 

multicollinearity induces diffculties when using point-mass priors or dependent prior 

covariances, the EMVS algorithm for a continuous spike-and-slab prior with an independent 

prior covariance matrix fares superbly when coupled with deterministic annealing.
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Figure 1. 
Likelihood surface and multimodal posterior landscapes under the point-mass spike-and-slab 

prior
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Figure 2. 
Posterior landscapes under continuous spike and slab priors
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Figure 3. 
Geometry of EM convergence regions
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Figure 4. 
Geometry of convergence regions using deterministic annealing.

Ročková and George Page 16

Metron. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. 
Geometry of convergence regions using deterministic annealing.
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