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Abstract

High-quality solution NMR structures of three homeodomains from human proteins ALX4, ZHX1 

and CASP8AP2 were solved. These domains were chosen as targets of a biomedical theme project 

pursued by the Northeast Structural Genomics Consortium. This project focuses on increasing the 

structural coverage of human proteins associated with cancer.
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Introduction

The human homeodomains comprising (i) residues 209–280 of “homeobox protein 

aristaless-like 4” (ALX4) (UniProtKB accession number: Q9H161), (ii) residues 462–532 

(‘homeodomain 2’) of the “zinc fingers and homeoboxes protein 1” (ZHX1) (Q9UKY1), 

and (iii) the C-terminal domain comprising residues 1916–1982 of “caspase 8-associated 

protein 2” (CASP8AP2) (Q9UKL3) belong to the SCOP [1] ‘homeodomain-like’ 

superfamily SSF46689. ALX4(209–280) and ZHX1(462–532) belong to the very large Pfam 

[2] protein domain family Homeobox PF00046 which currently contains 25,115 members 

from eukaryotic organisms participating in 290 unique domain organizations (architectures). 

In contrast, CASP8AP2(1916–1982) has not yet been assigned to a Pfam family.

ALX4, a transcription activator, contains a single homeodomain and belongs to the ‘paired-

class’ of homeodomain proteins which bind to palindromic DNA target sequences as homo- 

or heterodimers [3]. It plays an important role in craniofacial development [4, 5] so that loss 

of ALX4 expression results in both craniofacial and epidermal defects [6, 7]: mutant 

proteins R218Q [8], Q246Stop [8], and R272P [5] either completely or partially abolish 

DNA binding ability and transcriptional activation, which cause a rare genetic disorder, 

parietal foramina 2, manifested by abnormal skull bone development. In particular, the 

premature termination of transcription of mutant R265Stop [6] leads to ‘frontonasal 

dysplasia 2’ which is also associated with mental retardation [8]. Furthermore, hyper 

methylation of ALX4 is correlated with lung [9], bladder [10], gastric [11], and colorectal 

cancers [12–14], and reduced expression of ALX4 has been suggested as a biomarker for 

breast cancer[15].

ZHX1, likewise a transcriptional repressor [16, 17], contains five homeodomains and is 

ubiquitously expressed [16]. ZHX1 interacts with nuclear factor Y subunit A (NFYA) and 

DNA methyl transferase 3B (DNMT3B) for its repression activity [18, 19]. Changes in 
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expression profiles of rat ZHX1 ortholog have been associated with glomerular disease [20, 

21]. In addition to the five homeodomains, ZHX1, which also contains of two N terminal 

C2H2 zincfingers [22], forms homodimers via homeodomain 1 [23] and can also form 

heterodimers with ZHX3 [24]. Thus far, the solution NMR structure of a polypeptide 

segment containing the two zinc fingers (PDB:2GHF) [25] as well as X-ray structures of 

homeodomains 3 (2ECB) and 4 (3NAR) [26] were solved. ZHX1(462–532), the construct 

chosen for the present study, contains homeodomain 2 which shares very low sequence 

identity (< 20 %) with the other four homeodomains.

CASP8AP2, which may function as either a transcriptional activator or repressor, contains 

one homeodomain, and is involved in apoptosis, cell cycle progression through S-phase and 

activation of histone expression [27–29]. CASP8AP2 is a prognostic marker for acute 

lymphoblastic leukemia (ALL), as expression levels of CASP8AP2 are correlated to cells 

undergoing apoptosis in ALL cells [30, 31]. CASP8AP2 interacts with a nuclear protein, 

ataxia-telangiectasia locus (NPAT), an activator of histone transcription [32] and nuclear 

receptor coactivator 2 (NCOA2), an activator in glucocorticoid receptor activation [33]. 

CASP8AP2 C-terminal deletion mutants (involving residues 1403–1962 and 1916–1962 for 

NPAT; 1709–1982 for NCOA2) do not interact with NPAT and NCOA2 [32, 33].

ALX4(209–280), ZHX1(462–532) and CASP8AP2(1916–1982) were selected by the 

Northeast Structural Genomics (NESG) Consortium (http://www.nesg.org; target IDs 

HR4490C, HR7907F, and HR8150A, respectively) for structure determination with the aim 

to provide extensive structural coverage for human cancer-associated proteins and protein 

complexes constituting the ‘Human Cancer Protein Interaction Network’ (HCPIN) [34]. 

Here we report the high-quality solution NMR structures of ALX4(209–280), ZHX1(462–

532), and CASP8AP2(1916–1982).

Materials and methods

ALX4(209–280), ZHX1(462–532), and CASP8AP2(1916–1982) were cloned, expressed, 

and purified following protocols [35–37] established by the NESG (see Supplementary 

Material and http://www.nmr2.buffalo.edu/nesg.wiki for details). The corresponding pET 

expression vectors [NESG HR4490C-209–280-NHT.2, HR7907F-462–532-AV6HT.2 and 

HR8150A-1916–1982-AV6HT.3] have been deposited in the PSI Materials Repository 

(http://psimr.asu.edu/). Protein samples for ALX4(209–280), ZHX1(462–532), and 

CASP8AP2(1916–1982), were prepared at 0.9. 0.4 and 0.8 mM concentrations, respectively, 

in 90% H2O/10% D2O containing 10 mM Tris-HCl, 100 mM NaCl, 10 mM DTT, 50 M 

DSS, 0.02% NaN3 at pH 6.5 for ALX4 (209–280), or 20 mM MES, 100 mM NaCl, 10 mM 

DTT, 5 mM CaCl2, 50 M DSS, 0.02% NaN3 at pH 7.5 for ZHX1(462–532) and 

CASP8AP2(1916–1982), respectively. Additional [5% 13C; U-15N]-labeled samples enabled 

stereospecific assignments of the methyl groups of Val and Leu residues [38]. Isotropic 

overall rotational correlation times of ~7, ~ 6, and ~5 ns for ALX4(209–280), ZHX1(462–

532), and CASP8AP2(1916–1982), respectively, were inferred from average 15N spin 

relaxation times (see Supplementary Material and http://www.nmr2.buffalo.edu/nesg.wiki), 

indicating that all three proteins are monomeric in solution. This finding was confirmed with 
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analytical gel-filtration (Agilent Technologies) and static light scattering (Wyatt Technology 

Co.) (Figs. S1 – S3).

NMR data were acquired at 25 °C on Varian INOVA 600 or 750 MHz spectrometers 

equipped with cryogenic 1H{13C,15N} probes. The total measurement times for ALX4(209–

280), ZHX1(462–532), and CASP8AP2(1916–1982) were ~9, ~8, and ~7 days, respectively. 

Nearly complete sequence-specific 1H, 15N and 13C resonance assignments (Table I; Figs. 

S4, S5, and S6) were obtained using G-matrix Fourier transform (GFT) triple resonance 

experiments for targets ALX4(209–280) and CASP8AP2(1916–1982), and with 

conventional triple-resonance NMR experiments for ZHX1(462–532) (Supplementary 

Material) using the automated resonance assignment program AutoAssign 2.3.0 [39, 40], 

followed by manual assignment of side-chain resonances. Chemical shifts, NOESY peak 

lists, and time domain NMR data were deposited in the BioMagResBank [accession 

numbers 18805, 18714, and 18352 for ALX4(209–280), ZHX1(462–532), and 

CASP8AP2(1916–1982), respectively].

Structure calculations were performed using standardized methods of the NESG consortium 

[41, 42] (http://www.nmr2.buffalo.edu/nesg.wiki). The process included consensus analysis 

of automated NOESY cross peak assignments provided by the programs CYANA [43, 44] 

and AutoStructure 2.2.1 [45] based on 1H-1H NOE-derived upper limit distance constraints, 

and analysis of backbone dihedral angle constraints derived from chemical shifts using the 

program TALOS+ [46] for residues located in well-defined regular structure elements. 

Stereospecific assignments of methylene protons were performed with the GLOMSA 

module of CYANA and the final structure calculations were performed with CYANA 

followed by refinement of selected conformers in an “explicit water bath” using the program 

CNS [47]. Structure validation of the resulting 20 refined conformers was performed with 

the Protein Structure Validation Software (PSVS) server 1.4 [48] and the agreement of 

structures and NOESY peak lists was verified using the AutoStructure/RPF 2.2.1 

package[41].

Results and discussion

High-quality NMR structures of ZHX1(462–532), ALX4(209–280), and CASP8AP2(1916–

1982) were obtained (Fig. 1a, Fig. S7, Table I) and their coordinates were deposited in the 

Protein Data Bank (PDB) [49], respectively, on 09/14/2012 (accession code 2LY9), 

10/24/2012 (2M0C), and 03/27/2012 (2LR8). The three structures exhibit the well-known 

[50] fold of homeodomains (Fig. 1a) consisting of three α-helices (Table I) and are quite 

similar: the root mean square deviations (RMSDs) calculated for the mean coordinates of the 

backbone heavy atoms N, C, and C’ of the three -helices are 0.9, 1.8, and 1.6 Å, 

respectively, for ALX4(209–280) and ZHX1(462–532), ALX4(209–280) and 

CASP8AP2(1916–1982), and ZHX1(462–532) and CASP8AP2(1916–1982).

A structure based sequence alignment using the DALI server [51] reveals that ALX4(209–

280) shares 26% sequence identity (over 61 aligned residues) and 19% sequence identity 

(over 58 residues) with ZHX1(462–532) and CASP8AP2(1916–1982), respectively. 

ZHX1(462–532) shares 11% with CASP8AP2(1916–1982) (over 56 residues) (Fig.1b). A 
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search of the PDB for structurally similar proteins using the DALI server [51] yielded, as 

expected for structures of homeodomains [50], a very large number of highly significant hits 

with Z-scores > 4.0 [i.e. 244, 229, and 468 for ALX4(209–280), ZHX1(462–532), and 

CASP8AP2(1916–1982), respectively]. Remarkably, however, the highest scoring hit (Z-

score 9.0) for ALX4(209–280) was a structure comprising residues 87 to 144 of the 

aristaless homeodomain protein [52] (Q06453), Al(87–144), from Drosophila melanogaster 

bound to DNA (PDB ID: 3LNQ: RMSD of 1.9 Å for the C atoms of 58 structurally aligned 

residues). The corresponding structure based sequence alignment reveals a high sequence 

identity of 78% for the two domains (Fig. 1b). Like ALX4, Al belongs to the ‘paired-class’ 

of homeodomain proteins which bind to palindromic DNA target sequences as homoor 

heterodimers [3]. Specifically, ALX4(209–280) binds to the palindromic repeat target 

sequence comprising 5'- TAAT-3' [53] preferably with three intervening nucleotides (5' –

TAAT NNN ATTA-3'), while Al binds to a consensus DNA sequence of 5’-(T/

C)TAATTAA(T/A)(T/A)G-3’[54]. Since the sequence alignment (Fig. 1b) shows that all 

residues interacting with the DNA duplex in the structure of the Al(87–144)-DNA complex 

[52] are conserved in ALX4(209–280), it appears quite likely that ALX4(209–280) binds to 

DNA in a very similar manner [52] (Fig. 1c). This finding suggests that this particular 

homeodomain-DNA interaction motif evolved before mammals evolved. Consistently, the 

sequence of human ALX4(209–280) is entirely conserved in all known mammalian 

genomes (see Supporting Information). Even though highly significant DALI hits were 

obtained also for ZHX1(462–532) [likewise Al(87–144) with Z-score = 8.8, RMSD – 1.5 Å, 

sequence identity 28%] , and CASP8AP2(1916–1982) [e.g., mouse 2610100B20RIK gene 

product homologous to Myb DNA binding protein; 1UG2; Z-score = 6.9; sequence identity: 

43%], similar insights into the corresponding DNA interactions could not be derived 

because atomic resolution structures of DNA-complexes of homologues are not available.

Structural insights into Al(87–144)-DNA interactions (Fig. 1c) allow one to hypothesize that 

the ALX4 mutation R218Q [8] results in a malignant phenotype because the ALX4-DNA 

interaction is weakened and corresponding transcriptional activation impeded: the side chain 

of Arg 218 is expected to form hydrogen bonds with bases A and T in the minor groove 

which are removed in mutant protein. In contrast, mutant protein R272P [5] might result in a 

malignant phenotype because ALX4 homo- and/or heterodimer formation is affected. Arg 

272 is located in the C-terminal flexible tail which is not expected to interact with DNA. 

However, this polypeptide segment plays a role for the formation of ALX4 dimer formation 

[3, 55] and the prolyl residue might restrict the conformational flexibility of this segment 

possibly required for protein-protein complex formation. Note that in the Q246Stop mutant 

the homeodomain is not formed, which abolishes DNA binding [8].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ALX4 Aristaless-like 4

ZHX1 Zinc fingers and homeoboxes protein 1

CASP8AP2 Caspase 8 associated protein 2

Al Aristaless

HCPIN Human Cancer Pathway Interaction Network

DSS 4,4-dimethyl-4-silapentane-1-sulfonate sodium salt

DTT Dithiothreitol

NESG Northeast Structural Genomics Consortium

NOE Nuclear Overhauser effect

PDB Protein Data Bank

RMSD Root mean square deviation
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Fig. 1. 
a: Overlay of the ribbon representations of ALX4 (209–280) (green), ZHX1 (462–532) 

(red), and CASP8AP2 (1916–1982) (blue). b: Structure based sequence alignment of 

ALX4(209–280), Al(87–144), ZHX1(462–532) and CASP8AP2(1916–1982) Residues 

involved in protein-DNA interactions in the Al homeodomain DNA complex (PDB ID: 

3LNQ) are indicated with the # symbol. c: Superposition of ALX4(209–280) (green) onto 

Al(87–144) (pink) bound to double-stranded DNA. Side chains involved in protein-DNA 

interactions are shown as stick representations. The corresponding interacting residues in 
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ALX4 are also shown (except for those located in the termini). Mutations of ALX4 residues 

Q246 and R265 (shown in black) have been implicated in parietal foramina 2 and 

frontonasal dysplasia 2, respectively [8].
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