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Abstract

A common question in perceptual science is to what extent different stimulus dimensions are 

processed independently. General recognition theory (GRT) offers a formal framework via which 

different notions of independence can be defined and tested rigorously, while also dissociating 

perceptual from decisional factors. This article presents a new GRT model that overcomes several 

shortcomings with previous approaches, including a clearer separation between perceptual and 

decisional processes and a more complete description of such processes. The model assumes that 

different individuals share similar perceptual representations, but vary in their attention to 

dimensions and in the decisional strategies they use. We apply the model to the analysis of 

interactions between identity and emotional expression during face recognition. The results of 

previous research aimed at this problem have been disparate. Participants identified four faces, 

which resulted from the combination of two identities and two expressions. An analysis using the 

new GRT model showed a complex pattern of dimensional interactions. The perception of 

emotional expression was not affected by changes in identity, but the perception of identity was 

affected by changes in emotional expression. There were violations of decisional separability of 

expression from identity and of identity from expression, with the former being more consistent 

across participants than the latter. One explanation for the disparate results in the literature is that 

decisional strategies may have varied across studies and influenced the results of tests of 

perceptual interactions, as previous studies lacked the ability to dissociate between perceptual and 

decisional interactions.

A common goal in perceptual science is to determine whether some stimulus dimensions or 

components are “special,” in the sense of being processed and represented independently 

from other types of information. In vision, for example, much research has focused on 

determining whether there is independent processing of object and spatial visual information 

(e.g., Ungerleider & Haxby, 1994), different kinds of shape properties (e.g., Blais, Arguin, 

& Marleau, 2009; Stankiewicz, 2002; Vogels, Biederman, Bar, & Lorincz, 2001), different 
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semantic categories of objects (e.g., Beeck, Haushofer, & Kanwisher, 2008; Kanwisher, 

2000), identity and expression in faces (e.g., Bruce & Young, 1986; Haxby, Hoffman, & 

Gobbini, 2000), etcetera.

In the behavioral literature, a variety of concepts have been proposed to describe interactions 

in the processing of sensory dimensions (see Ashby & Townsend, 1986), each of them 

related to one or more operational definitions of dimensional interaction. Much behavioral 

research on the independence of stimulus dimensions has been performed by testing 

interactions through such operational definitions.

The best current framework for the analysis and interpretation of studies aimed at testing 

different forms of independence between stimulus dimensions is offered by general 

recognition theory (GRT; Ashby & Townsend, 1986). GRT is an extension of signal 

detection theory to cases in which stimuli vary on more than one dimension. GRT inherits 

from signal detection theory the ability to dissociate perceptual from decisional processes in 

perception, while also offering a formal framework in which different forms of dimensional 

interaction can be defined and studied.

Unfortunately, several severe restrictions of the GRT model used in the past greatly limit its 

usefulness. For the most popular experimental designs, GRT has more free parameters than 

there are degrees of freedom in the data. Thus, it is impossible to fit the full model to these 

data and so some restrictive assumptions must be imposed. Even with such assumptions, the 

small number of degrees of freedom increases the risk of over-fitting. Another restriction is 

that the model must be fit separately to the confusion matrix of each individual participant. 

For each fit, one can ask whether two dimensions interact, but what conclusion can be drawn 

if the data of 13 participants show some form of interaction and the data of 7 participants do 

not show such interaction? Finally, recent research has shown that traditional GRT analyses 

can not clearly distinguish between decisional and perceptual interactions between 

dimensions (Mack, Richler, Gauthier, & Palmeri, 2011; Silbert & Thomas, 2013).

This article describes a generalization of GRT that solves all of these problems. Briefly, the 

model we describe was inspired by individual-differences multidimensional scaling 

(INDSCAL; Carroll & Chang, 1970). The model simultaneously fits the data of all 

participants. It assumes that all participants share the same perceptual distributions, but like 

INDSCAL, it allows each participant to divide his or her attention differently between the 

two stimulus dimensions. In addition, unlike INDSCAL, the new model allows each 

participant to use unique decision bounds. As we will see, the model gives a remarkably 

accurate simultaneous account of the data from many different participants, and as a result, 

we believe it offers the strongest method currently available for studying perceptual and 

decisional interactions.

The following sections provide a more detailed description of GRT, of the types of 

interactions defined within GRT, and of the problems with traditional GRT approaches. 

Then the new generalized GRT model is presented and applied to the analysis of interactions 

between identity and emotional expression in face perception.

Soto et al. Page 2

Psychon Bull Rev. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



General Recognition Theory

Overview

As in signal detection theory, GRT assumes that the perceptual effects of a stimulus are not 

fixed, but vary across stimulus presentations according to some probability distribution. 

Some applications of GRT do not make any assumptions about the shape of such perceptual 

distributions (e.g., Ashby & Maddox, 1994; Ashby & Townsend, 1986), but most assume 

that they are multivariate normal.

The most common applications of GRT are to tasks in which stimuli are constructed from 

the factorial combination of two levels of two stimulus components, A and B, resulting in 

four stimuli: A1B1, A2B1, A1B2 and A2B2. In an identification experiment, participants are 

shown one of these four stimuli (chosen randomly) on each trial and are then required to 

identify uniquely which stimulus was presented. The data from this experiment are typically 

collected in a 4 × 4 confusion matrix, with a row for each stimulus and a column for each 

response. The entry in row i and column j lists the number of trials that the participant 

responded with the jth response when stimulus i was presented. This matrix has 12 degrees 

of freedom (4 × 3) because the sum of entries in each row is constrained to equal the number 

of times the associated stimulus was presented in the experiment.

Figure 1 shows an example of a multivariate normal GRT model for such a typical 2×2 

design. Each stimulus has a different distribution of perceptual effects, represented by an 

ellipse. The ellipse describes the shape that a scatterplot would take if many random samples 

were drawn from the associated perceptual distribution. The lines are the decision bounds 

that separate the perceptual plane into four response regions. GRT can be used to make 

inferences about perceptual and decisional interactions by studying the perceptual 

distributions and decision bounds of the best-fitting model.

GRT rigorously defines a number of different types of dimensional interaction (Ashby & 

Townsend, 1986), the most popular of which are perceptual separability, perceptual 

independence and decisional separability. Dimension A is perceptually separable from 

dimension B if the perception of A does not depend on the level of dimension B. In GRT, 

this condition holds if and only if the marginal distribution of perceptual effects along 

dimension A does not depend on the level of B. Marginal distributions for dimensions A and 

B are depicted at the bottom and left of Figure 1, respectively. It can be seen that the 

marginal distributions for B1 are the same for both levels of A. Similarly, the marginal 

distributions for B2 are also the same for both levels of A. This means that dimension B is 

perceptually separable from dimension A. On the other hand, the marginal distributions for 

dimension A are closer for level 1 of dimension B than for level 2 of dimension B. Thus, 

dimension A is not perceptually separable from dimension B.

Dimension A is decisionally separable from dimension B if the decision about the level of A 

does not depend on the perceived value of component B. In GRT this condition holds if and 

only if the decision bounds are vertical and horizontal lines. In Figure 1, dimension A is 

decisionally separable from dimension B, but dimension B is not decisionally separable 

from dimension A.
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Perceptual and decisional separabilities deal with interactions between dimensions that are 

manifest by comparing perceptual representations across stimuli. Perceptual independence, 

on the other hand, deals with dependencies that occur when a single stimulus is perceived. 

Two dimensions are perceived independently for stimulus AiBj if the perceived value on 

dimension A is statistically independent of the perceived value on dimension B. In the 

multivariate normal model, which considers only linear relations between dimensions, this 

means that two dimensions are independent for stimulus AiBj if their correlation is zero. For 

example, perceptual independence holds for all stimuli in Figure 1 except A2B2, which is the 

only one in which the contour of equal likelihood is diagonally oriented, representing a 

negative correlation between dimensions.

Once identification data are collected, two approaches can be used to analyze the resulting 

empirical confusion matrix. The summary statistics approach (Ashby & Townsend, 1986; 

Kadlec & Townsend, 1992a, 1992b) consists of computing various summary statistics from 

the confusion matrix and then checking whether these satisfy certain conditions that are 

diagnostic for perceptual separability, decisional separability, or perceptual independence. 

The model-based approach (Ashby & Lee, 1991; Thomas, 2001) consists of fitting one or 

more GRT models to the empirical confusion matrix and selecting the model that describes 

the data best. The focus of the present work is on expanding and improving the model-based 

approach.

Problems with GRT

As mentioned above, despite its usefulness, GRT suffers from several weaknesses when 

applied to the 2 × 2 identification experiment. These weaknesses are not inherent to the 

theory. They either arise exclusively when the 2×2 design is used or they stem from current 

practice in the application of GRT. Even so, these problems are not trivial, as the 2×2 design 

is the smallest design (in terms of numbers of stimuli and responses) that allows an 

evaluation of the most important types dimensional interaction. The task is simple and easy 

to learn, and the experiment does not need to be overly long to sample enough data to 

estimate each of the 16 cells in the confusion matrix accurately. The ease with which a 2×2 

experiment can be run and analyzed has made it very popular among researchers.

A number of the weaknesses vanish when GRT is applied to data from a 3×3 identification 

experiment (e.g., Ashby & Lee, 1991), which requires training 9 stimulus-response 

assignments and estimating 81 entries in the confusion matrix. However, this requires a long 

experiment (5 days in Experiment 1 of Ashby & Lee, 1991) and the possibility of disrupting 

processing due to high working memory requirements (i.e., since the participant must 

memorize 9 response labels). A further advantage of the 2×2 design over the 3×3 design is 

that only the former allows testing separability of stimulus “components” that cannot be 

ordered along continuous dimensions (e.g., there is no correct way of ordering two faces 

along an “identity” dimension). In this case, the GRT model for a 2×2 design is not 

influenced by the way in which we choose to order the levels of each component; that is, 

levels 1 and 2 in one dimension can be reversed without changing conclusions about 

dimensional interactions. This is not true of the GRT model for a 3×3 design, in which 

altering the order of the levels along a dimension is likely to alter the results of our analyses.
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As mentioned above, the first problem with applications of GRT is that the number of 

degrees of freedom provided by the data in a 2×2 experiment is too small to fit the full 

model. The full model has 20 free parameters, but the 4 × 4 empirical confusion matrix that 

results from the Figure 1 experiment has only 12 degrees of freedom. Thus, experimenters 

using the 2×2 design must fix some parameters to constant values in order to fit a GRT 

model to data. In general, fixing any parameter in the model will constrain the researcher’s 

ability to evaluate a specific form of dimensional interaction. For example, constraining the 

decision bounds to be horizontal or vertical lines has been common in previous applications 

(e.g., Silbert, 2012; Thomas, 2001) and doing so is equivalent to making the assumption that 

decisional separability holds for the task under study. Similarly, fixing all variances to the 

same value (e.g., Fitousi & Wenger, 2013; Silbert, 2012) assumes a form of perceptual 

separability in which perceptual noise along each dimension does not depend on the level of 

the other dimension. Ideally, a full characterization of the interactions between two 

dimensions should not rely on any a priori assumptions about how the dimensions interact 

(Silbert, 2012).

A second, related problem is that the small number of data points available from a 2×2 

design, relative to the number of parameters that need to be fit, means that there is always a 

risk of model over fitting. When several models are fit to the data, as we fit increasingly 

complex models we increase the likelihood that the model is fit to random error instead of 

describing real properties of perceptual and decisional processes. This can lead to variability 

in the results across participants in aspects that we might not expect to be variable, such as 

perceptual independence and separability (e.g., Fitousi & Wenger, 2013; Mestry et al., 2012; 

Silbert, 2012).

A third problem is that systematic methods for pooling results across participants have rarely 

been explored. The interpretation of the overall pattern of results from each experiment is 

usually left to the researcher’s judgment, instead of having a statistically sound basis. One 

solution to this problem has been provided by Silbert (2012), who proposed a hierarchical 

model in which the parameters governing each individual’s perceptual and decision 

processes are drawn from normal distributions, each with a different mean and variance 

hyper-parameter. This allows examining group effects by estimating the values of such 

hyper-parameters. This model, however, does not solve the first two problems mentioned 

earlier.

Finally, two recent publications have called into question the validity of conclusions about 

decisional separability that can be reached using GRT analyses. Mack and colleagues 

(Mack, Richler, Gauthier, & Palmeri, 2011) have shown through simulated data that, when 

the summary statistics approach is used, some cases of violations of perceptual separability 

are misclassified as violations of decisional separability. This issue is not critical when one 

considers that most applications of GRT use the summary statistics approach in conjunction 

with model-based analyses or other tests. A more serious challenge has been raised by 

Silbert and Thomas (2013), who showed analytically that a failure of decisional separability 

is non-identifiable in the 2×2 identification experiment. That is, if the data from an 

experiment can be fit by a GRT model in which decisional separability fails, then it is 

always possible to find a different GRT model in which decisional separability holds and 
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that predicts the exact same data pattern. This result is explained schematically in Figure 2. 

In the left panel, we see four perceptual distributions for the stimuli in a 2×2 identification 

experiment. The solid lines represent the decision bounds used by a participant in this 

experiment (the dotted lines should be ignored for now). It can be seen that decisional 

separability fails for this participant. The right panel shows that a simple transformation of 

the perceptual space (rotating and shearing) leads to a model producing the exact same 

response probabilities, but in which now decisional separability does hold. Furthermore, the 

transformation also goes from a model with perceptual separability and independence (left) 

to a model without perceptual separability or independence (right).

GRT with Individual Differences (GRT-wIND): An extension to General 

Recognition Theory

The GRT-wIND model is inspired by three-way multidimensional scaling models (for a 

review, see chapters 21 and 22 in Borg & Groenen, 2005). Data analysis using these models 

is also known as individual differences scaling, or INDSCAL, after a popular algorithm used 

to find solutions (Carroll & Chang, 1970). These models assume that the similarity data 

from a number of individuals can be explained by a common perceptual space, but that the 

relative weight or saliency of the dimensions of this space might be different for different 

people.

A schematic representation of the new GRT-wIND model is shown in Figure 3. The model 

assumes that the structure of the perceptual distributions is the same for all participants; that 

is, some aspects of perception are universal, in particular the relations between dimensions 

within stimuli (covariance of each distribution) and across stimuli (the means of each 

distribution and the ratio of their variance along a dimension). This is represented by a 

single set of perceptual distributions in the “Group model” at the top of Figure 3. On the 

other hand, it is also assumed that attentional and decisional processes could vary across 

individuals. This is represented by the three models at the bottom of Figure 3. Note first how 

all perceptual interactions are the same across individual models. On the other hand, each 

individual model has a different scaling of the variances along a particular dimension, 

representing individual attentional processes. For example, in Participant 1, variances are 

extended in the direction of the y-axis, representing the fact that this participant is paying 

little attention to dimension B. Participant 2 shows a different pattern, in which variances are 

shrunk in the direction of the x-axis, representing higher attention to dimension A. Each 

individual participant model also has a different set of two decision bounds that divide the 

perceptual space into response regions, instantiating the assumption that decision processes 

might vary across participants. For example, for Participant 3, both bounds are orthogonal to 

the dimension they divide, whereas this is not true for Participants 1 and 2.

Within the framework of GRT-wIND, perceptual separability and perceptual independence 

are phenomena that should hold or fail for all participants in any given experiment. 

Although attention might change how well an individual can discriminate a dimension, it 

should not affect the structure of perceptual interactions. On the other hand, decisional 

separability is a phenomenon that can hold in some individuals and fail in others, or even 

vary for a single individual as a function of factors such as training with a task.
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To describe the model more specifically, assume we have run a 2×2 identification 

experiment, in which stimuli vary along two dimensions A and B, each with two levels 

indexed by i=1, 2, and j=1, 2, respectively. Suppose there are N participants in the 

experiment, indexed by k=1, 2, … N. The GRT-wIND model for this experiment has 16 

group parameters, which control the distributions of perceptual effects. These distributions 

are assumed to be bivariate normal and common to all participants. Each distribution is 

described by a mean vector:

(1)

and a covariance matrix:

(2)

where ρAiBj is a correlation parameter. We can arbitrarily set μA1B1 = [0, 0] and σA1B11 = 

σA1B12 = 1, which fix the position and scale of the final solution. The remaining group 

parameters are two means and two variances for each of the other perceptual distributions (4 

× 3 = 12), plus a correlation parameter for each distribution (4).

The model also has 6 parameters that describe processes unique to each individual. Two of 

these parameters, κk and λk, control the level of attention that participant k allocates to each 

dimension. We assume that the effect of attention to one dimension is to increase the 

discriminability of stimuli along that dimension. Within the GRT framework, this can be 

done by either increasing the distance between means of distributions along the relevant 

dimension or by decreasing the variances of the distributions along the relevant dimension. 

Here, we implement attention as affecting variances, because this is consistent with previous 

modeling of attention using GRT (Maddox, Ashby & Waldron; 2002) and because it seemed 

more straightforward and easier to interpret than modifying the distances between means 

across subjects. The parameter κk > 0 represents a global level of attention. High values of 

κk decrease the values of all variances, leading to fewer confusion errors in general. The 

parameter λk is a selective attention parameter that ranges from 0 to 1. A value of λk = 0.5 

represents equal attention to each dimension. High values of λk decrease the variances on 

dimension A and increase the variances on dimension B, representing selective attention to 

A. The opposite is true for low values of λk. The covariance matrix for the distribution of 

perceptual effects of AiBj in participant k is equal to:

(3)

It can be seen that both parameters together determine the ability of a subject at 

discriminating each dimension relative to the group’s ability. When κkλk is greater than 1, 
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the variance along dimension A is smaller than in the group model, leading to less overlap 

between perceptual distributions, representing higher individual discriminability on 

dimension A. A value of κkλk less than 1 increases the variance along dimension A relative 

to the group model, leading to more overlap between perceptual distributions on that 

dimension, and lower individual discriminability. Similarly, κk(1−λk) > 1 decreases the 

variance along dimension B and κk(1−λk) < 1 increases the variance along dimension B 

relative to the group solution.

The other four individual parameters describe the linear decision bounds that are assumed to 

be unique to each participant. Each single bound can be written as a discriminant function:

(4)

where hAk represents the discriminant function used to classify component A by the kth 

subject. A similar equation can be used to describe hBk, the discriminant function used to 

classify component B by the kth subject. Only two of the three parameters bAk1, bAk2, and 

cAk are free however, because any line can be described by two parameters. Thus, the 

parameters bAk1 and bBk2 were fixed to a value of 1.0. The discriminant function has the 

property that it returns positive values for points (x1, x2) falling on one side of the bound (the 

first response area) and negative values for points on the other side of the bound (the second 

response area). Because the two-dimensional model has two linear bounds (hAk and hBk), 

four parameters are required to describe those bounds for each individual.

In the appendix, we describe procedures to estimate the parameters of a GRT-wIND model 

from identification data using maximum likelihood estimation. We also describe how to run 

statistical tests for perceptual independence, perceptual separability and decisional 

separability once the model has been fit to data. Traditionally, these tests are performed by 

fitting different GRT models to the same data and comparing them through a likelihood ratio 

test or through information criteria (Thomas, 2001; see Ashby & Soto, in press). The large 

number of parameters in a GRT-wIND model can make this strategy inconvenient, because 

fitting each single model to the data is computationally expensive. Here we recommend a 

different strategy, described in more detail below, in which maximum-likelihood parameter 

estimates are tested against expected values from null hypotheses using a Wald test (Wald, 

1943).

The GRT-wIND model solves all the problems with the traditional application of GRT that 

were identified in the introduction. First, the full model can be fit to the data from any 

identification experiment, as long as the number of participants is large enough. This is 

because each additional participant in the experiment contributes more data points than the 

number of new parameters that must be estimated for that individual, increasing the total 

number of degrees of freedom. For the 2×2 design, each new participant adds data with 12 

new degrees of freedom and requires the estimation of only 6 new parameters, so with N ≥ 3 

it is possible to fit the full model, including the 16 group parameters.

Second, there is less risk of over-fitting using an GRT-wIND model than using a traditional 

GRT model, especially with small designs such as the popular 2×2 experiment. This is 
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because in most cases it is feasible to gather data from many participants and obtain a large 

number of degrees of freedom. Using the 2×2 design, a sample size of 10 leads to 44 degrees 

of freedom after fitting the full model. A sample size of 20 leads to 104 degrees of freedom 

after fitting the full model.

Third, because perceptual distributions are assumed to be universal, all conclusions about 

perceptual factors are shared by the whole group of participants. Thus, analyses of 

perceptual separability and independence do not lead to disparate results for different 

individuals. Furthermore, individual differences in behavior are modeled as differences in 

attention and decision processes instead of as random error (Silbert, 2012). This allows us to 

study these individual differences and perhaps to test the model’s assumptions.

Finally, GRT-wIND does not suffer from the problem of non-identifiability of decisional 

separability in the 2×2 identification experiment, except in the extreme and unlikely case in 

which all participants in the study use decision bounds that are parallel to one another. If 

violations of decisional separability are found and individual decision bounds have slightly 

different slopes, then it is not possible to find an equivalent model (i.e., producing the same 

response probabilities) in which decisional separability holds for all participants, unless the 

assumption of universal perception is violated. This can be seen in Figure 2, where the 

dotted line represents the decision bound for a second participant in the experiment. Note 

how the transformation applied in the right panel, leading to decisional separability for the 

first participant does not lead to the same result for the second participant. The result would 

be the same with any other pair of decision bounds, unless they are parallel. Two separate 

transformations can be found that would independently lead to decisional separability for 

each participant, but the resulting model would assume different perceptual representations 

across participants. In the appendix, we offer a formal proof of the proposition that 

decisional separability is non-identifiable in the Gaussian GRT model with two or more 

bounds per dimension if and only if all bounds for each dimension are parallel to one 

another. We note that this condition for non-identifiability applies not only to GRT-wIND, 

but also to the traditional GRT model for designs larger than 2×2.

In the rest of this article, we apply GRT-wIND to study interactions between identity and 

emotional expression in face perception, with two goals in mind. The first is to explore how 

well GRT-wIND can describe data from an identification experiment compared to the 

traditional application of GRT. If the assumptions of the model are correct, then it should fit 

the data as well or better than individual GRT models, and deviations from a perfect fit 

should be randomly distributed. The second goal is to determine whether and how identity 

and expression interact during face perception, using for the first time an approach that 

clearly dissociates between different forms of independence and between perceptual and 

decisional factors.

An application to face perception

Researchers in face perception have shown much interest in the issue of whether or not 

identity and emotional expression are processed independently. This interest is largely due 

to the fact that influential theories of face recognition have proposed either completely 
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independent (Bruce & Young, 1986) or partially independent (Haxby et al., 2000) 

processing of these important dimensions.

Most studies addressing this issue have not found complete independence of identity and 

emotion. Some studies that used the Garner filtering task (Garner, 1974) found an 

asymmetric pattern of interactions, in which identity is separable from expression, but 

expression is not separable from identity (Baudouin, Martin, Tiberghien, Verlut, & Franck, 

2002; Schweinberger, Burton, & Kelly, 1999; Schweinberger & Soukup, 1998; for a 

comparative/evolutionary analysis of this effect, see Soto & Wasserman, 2011). This 

asymmetric interaction is also supported by the overall pattern of results from experiments 

using a face adaptation paradigm (Ellamil, Susskind, & Anderson, 2008; Fox & Barton, 

2007; Fox, Oruç, & Barton, 2008; Pell & Richards, 2013). However, other studies have 

found interference in the processing of each dimension when there are variations in the other 

(Fitousi & Wenger, 2013; Ganel & Goshen-Gottstein, 2004; for facilitation effects, see 

Yankouskaya, Booth, & Humphreys, 2012), or a lack of such interference effects (Etcoff, 

1984).

One problem with these previous studies is that they did not dissociate between different 

types of perceptual and decisional interactions. Furthermore, it has been shown that only 

some forms of integrality lead to an interference effect in the filtering task, whereas others 

cannot be observed using this test (Ashby & Maddox, 1994). Recently, Fitousi and Wenger 

(2013) applied GRT to the analysis of interactions between emotional expression and 

identity, and found no violations of perceptual independence in any of their participants, but 

violations of either perceptual or decisional separability in all participants. However, these 

results were obtained using the traditional GRT framework, so they are prone to all the 

shortcomings outlined previously.

Here, we take a new look at this problem by analyzing data from a 2×2 identification design 

using GRT-wIND. This is done with two goals in mind: (1) to evaluate the performance of 

GRT-wIND in describing real identification data, and (2) to analyze interactions between 

identity and emotional expression while distinguishing among different types of 

independence and dissociating perceptual from decisional processes.

Method

Participants—Twenty-six undergraduates at the University of California Santa Barbara 

were recruited to participate in this experiment. Each participant was given class credit for 

participation.

Stimuli and apparatus—The stimuli were four grayscale images of male faces (see 

Figure 8), part of the California Facial Expression (CAFE) database (Dailey, Cottrell, & 

Reilly, 2001). Images in this database were obtained from individuals trained to produce 

correct expressions according to the Facial Action Coding System (FACS; Ekman, Friesen, 

& Hager, 1978). Each face showed one of two identities with either a neutral or sad 

emotional expression. The identities were chosen in an attempt to avoid differences in 

discriminability between the two identities and the two emotions (Ganel & Goshen-

Gottstein, 2004). The faces were shown through an elliptical aperture in a homogeneous 
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gray screen; this presentation revealed only inner facial features and hid non-facial 

information, such as hairstyle and color.

Stimulus presentation, feedback, response recording and response time measurement were 

controlled using MATLAB augmented with the Psychophysics Toolbox (Brainard, 1997), 

running on a Macintosh computer. Responses were given on a standard Macintosh 

keyboard: the “d” key for identity one with sad expression, the “f” key for identity one with 

neutral expression, the “j” key for identity two with sad expression, and the “k” key for 

identity two with neutral expression.

Procedures—The experiment lasted about 45 minutes and was composed of 12 blocks of 

50 trials for a total of 600 trials. Participants were told that there were 4 stimuli and each 

stimulus corresponded to one of the assigned response keys; their task was to learn the 

mapping between stimuli and response keys. Participants were not verbally instructed about 

the correct response for each stimulus because, in our experience, instruction is of little help 

to master difficult discrimination tasks such as the one used here. Furthermore, participants 

still need to go through a practice period in order to eliminate the effects of initial perceptual 

learning from the data (see Lehky, 2000) and they could learn the stimulus-response 

mapping during this period. A trial proceeded as follows: a crosshair appeared on the screen 

for 200 ms prior to stimulus presentation. The stimulus was presented for 16.667 ms (at the 

refresh rate of the monitor, 60 Hz). After the presentation participants were to give a 

response using one of the four assigned response keys. Feedback was displayed in the 

middle of the screen beginning 500 ms after the response was collected and consisted of the 

word “Correct” in green font color or “Incorrect” in red font color. If a response was too late 

(more than 5 seconds), participants saw the words “Too Slow”. Feedback remained on 

screen for 500 ms, after which there was a 1 second intertrial interval. The participants were 

allowed to rest between blocks if they wished.

Results

The data from two participants were excluded from the analysis because their performance 

was at chance by the end of the experiment. GRT is a model of asymptotic performance, not 

of learning, so it is important to discard data during the learning period when estimating 

individual participant confusion matrices. Toward this end, learning curves were obtained by 

averaging performance within a moving window of 101 trials, starting with the average of 

trials 1 to 101, moving the window one trial up in each step (2–102, 3–103, and so on), and 

ending with the average of trials 500 to 600. An exponential function was fit to the resulting 

500 average points that comprised the learning curves using least-squares estimation. The 

point in the best-fitting exponential curve where the slope was smaller than 0.001 for the 

first time was used as a cutoff: only data after this point were used to build individual 

confusion matrices. This cutoff ranged from trial 53 to 320 across participants, with a mean 

of 150.5.

Table 1 shows the average confusion matrix, obtained by transforming individual confusion 

matrices into response proportions and averaging those proportions across participants 
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(individual confusion matrices can be found in the supplementary material). The numbers in 

parentheses represent the minimum and maximum proportion found across subjects.

Model fit to the data—GRT-wIND was fit to the data from individual confusion matrices 

using the procedures outlined in the appendix. To facilitate finding the global maximum of 

the likelihood function instead of a local maximum, the optimization was run 60 times, each 

time with different random starting values for the parameters. The solution with highest 

maximum likelihood was chosen as the best-fitting GRT-wIND model.

The best-fitting GRT-wIND model was used to estimate response probabilities for each cell 

in each participant’s confusion matrix. Figure 4 shows these estimated probabilities plotted 

against the corresponding observed response proportions. The data from each participant is 

plotted using a different symbol. The diagonal dotted line represents a perfect fit. It can be 

seen that there is a high level of correspondence between the 384 (i.e., 24 participants × 16 

values in each matrix) observed and estimated values. In fact, the model accounted for 

99.52% of the variance in the data (r = .9976). More importantly, the deviations from a 

perfect fit shown in Figure 4 (i.e., the differences between observed and predicted values, or 

residuals) seem to be randomly distributed around the dashed line across all values of the 

estimated probabilities. This observation was statistically confirmed by the results of a 

Durbin-Watson test, which indicated that the serial correlation in the residuals was not 

significantly different from zero, DW = 1.976, p > 0.5. A non-random distribution of 

residuals should produce a serial correlation different from zero. This suggests that all 

systematic variability in the data was captured by the model.

An important goal of the present experiment was to compare how well GRT-wIND would 

explain identification data compared to traditional GRT models. Unfortunately, a 

straightforward comparison is difficult in this case because, as indicated earlier, the full 

traditional GRT model cannot be fit to the data from a 2×2 identification experiment. 

Perhaps the best comparison would then be between the best-fitting GRT-wIND model 

found using the procedures proposed here and the best-fitting traditional GRT model found 

using the procedures commonly used in the literature. In the traditional model-based 

application of GRT (e.g., Ashby & Lee, 1991; Ashby, Waldron, Lee, & Berkman, 2001; 

Thomas, 2001), a number of different GRT models are fit to the data of each participant in a 

study. The different models are obtained by fixing different parameters to specific values, 

representing assumptions about perceptual independence, perceptual separability and 

decisional separability. For example, a model assuming perceptual independence would 

have all correlation parameters fixed to zero. Once the models are fit to data, model 

selection procedures are used to decide which one best describes the data for that particular 

individual (for a review, see Ashby & Soto, in press). Thus, in traditional GRT applications 

the perceptual representations are allowed to vary across individuals. GRT-wIND imposes 

the constraint that such representations should be the same for all people. If the assumption 

of universal perception is not true, then we would expect that using different models for 

different individuals would provide a better fit to data than using the GRT-wIND model.

To compare GRT-wIND to the traditional model-based approach, we fit the hierarchy of 

models shown in Figure 5 to the data from each participant, using maximum likelihood 
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estimation. The hierarchy shown in Figure 5 was recommended previously to perform 

model-based GRT analyses (Ashby & Soto, in press) and is similar to those found in 

previous studies that have applied GRT to the 2×2 identification experiment (e.g., Thomas, 

2001). Because there are only 12 degrees of freedom in the data, some parameters were 

fixed for all models: variances were set to one and decisional separability was assumed for 

both dimensions. In Figure 5, m represents the number of free parameters in the model, PS 

stands for perceptual separability, PI for perceptual independence, DS for decisional 

separability and 1_RHO describes a model with a single correlation parameter for all 

distributions. To facilitate finding the global maximum of the likelihood function, the 

optimization was run 20 times for each model, each time with different random starting 

values for the parameters, and the solution with highest maximum likelihood was chosen as 

the best solution.

Arrows in Figure 5 connect models that are nested within each other. The model selection 

procedure starts at the top of the hierarchy and compares nested models through a likelihood 

ratio test (see Appendix). If this test indicates significant differences in fit, the lower model 

is selected and the process continues. This process results in a small set of candidate non-

nested models, which are compared using the corrected Akaike Information Criterion (AICC, 

see Appendix).

To compare how well GRT-wIND accounted for the data in each individual confusion 

matrix compared to the best-fitting traditional GRT model, we computed estimated response 

probabilities from both models and correlated them with the observed response proportions 

of each participant. From these correlations we computed the percentage of variance in the 

individual data explained by each model. Figure 6 shows the results of this analysis in the 

form of a scatterplot, with each dot representing one participant. The position of the dot 

along the abscissa represents the fit of the traditional GRT model, whereas the position 

along the ordinate represents the GRT-wIND fit. The diagonal represents equal fits for both 

models. Both models account for a high percentage of variance, but GRT-wIND provides a 

better fit than the best-fitting traditional GRT model for 18 out of the 24 participants. This 

number of successes is significantly higher than chance according to a sign test, p < .05, 

Cohen’s g = .25. The success of GRT-wIND is especially impressive here, given that the 

number of free parameters in GRT-wIND (i.e., 160) was less than the sum of the number of 

parameters of the best-fitting traditional GRT models (i.e., 166, see Table 2).

To complement the previous analysis, which focused on model fits to each individual 

confusion matrix, we also computed a global AICC measure for the best-fitting traditional 

GRT model using the sum of the log-likelihoods of all 24 models (one for each confusion 

matrix), and the sum of their number of free parameters. This allowed a direct comparison of 

the overall fit of traditional GRT models against GRT-wIND, taking into account both fit to 

the data and model flexibility. The AICC for the the traditional GRT models was 11,439, 

much higher than the AICC of 11,216 obtained for the GRT-wIND model. The probability 

that GRT-wIND is a better model than the traditional GRT models to describe these data, 

computed using AIC weights (Burnham & Anderson, 2004), was ≈1.0. In sum, we conclude 

that GRT-wIND provided a better fit to the data than the best-fitting traditional GRT 

models. Note here that although many traditional GRT models were not tested, the best-
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fitting GRT models were found using a model hierarchy (Figure 5) and procedures that are 

representative of applications found in the literature.

Table 2 lists the best-fitting GRT model for each participant, together with the 

corresponding number of free parameters of each model. On average, the GRT-wIND model 

has 6 free parameters for each participant (160 parameters / 24 participants). It can be seen 

from Table 2 that the best-fitting GRT model for most participants (17) had a larger number 

of degrees of freedom than this average. Note also how violations of perceptual 

independence are found consistently across participants (except for Participant 16), but 

conclusions about perceptual separability resulting from fitting individual models are highly 

variable. Twelve participants show no violations of perceptual separability for both 

dimensions, eight participants show violations only for emotion, three participants show 

violations only for identity, and one participant shows violations for both dimensions. Thus, 

GRT-wIND can fit the data from the present experiment better than individual GRT models, 

using fewer free parameters and, as we will see in the following section, avoiding the 

problem of inconsistent conclusions about perceptual separability.

Tests of perceptual interactions—There are several approaches that allow testing 

hypotheses about dimensional interactions within the framework of maximum likelihood 

estimation. One approach that has been used in the past with GRT is to fit several versions 

of the model and then select the one that offers the best account of the data according to 

some criterion (such as likelihood ratio tests or AIC, see Appendix). This is the approach 

that we used in the previous section to find the best traditional GRT model for each 

participant. Unfortunately, fitting GRT-wIND is computationally intensive (each model fit 

took 48–72 hours in a single processor of our computer cluster), as it involves solving an 

optimization problem in a very high-dimensional space (160 parameters in the present 

study), so fitting as many models as shown in Figure 5 is not feasible.

However, one of the main reasons for using such a large number of models in the past has 

been that the full GRT model could not be fit, precluding researchers from testing a single 

hypothesis about dimensional interaction without making additional assumptions. Fitting 

many models is a way to select the best set of assumptions among the models that can be fit. 

In the framework of GRT-wIND, it is possible to fit the full model and then test in isolation 

any assumptions of interest by focusing only in the restrictions imposed by those 

assumptions. Thus, testing as many models as in Figure 5 is not only unfeasible within the 

framework of GRT-wIND, but also unnecessary.

In sum, we can focus on a few restricted models, one for each type of dimensional 

interaction that we want to test. Again, one way to proceed is by fitting each model to the 

data and performing model selection against the full GRT-wIND model. However, this 

strategy would still take considerable computing time and resources. More importantly, in 

our experience the likelihood function of GRT-wIND has many local maxima, and fitting 

multiple GRT-wIND models increases the risk of getting stuck in these local maxima for at 

least one of these models. This could lead to the unfair comparison of a true maximum-

likelihood model against a local-maximum model. Local maxima should be avoided for each 

model, by running the optimization algorithm with as many starting parameter values as 
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possible (here we used 60), or through other means that also demand additional computing 

resources. To test for the most important forms of dimensional interaction, this would mean 

fitting six different GRT-wIND models many times.

We believe that a better use of limited computing resources is trying to find the true 

maximum likelihood for the full model and then directly testing estimated parameters. In the 

appendix, we describe methods to do exactly this using a Wald test. This test can be 

computed after fitting only the full model to data and is easy for most researchers to 

interpret, as it relies on p-values and the familiar Chi-Square distribution. Thus, this test has 

the additional advantage of being familiar to most experimental psychologists, more so than 

performing model selection through AIC and related methods.

Figure 7 shows the group perceptual distributions obtained from the best-fitting GRT-wIND 

model. The face corresponding to each distribution is shown next to its contour of equal 

likelihood. As described above, the shape of the contours give important information about 

dimensional interactions.

First note that three of the four perceptual distributions seem to have a correlation parameter 

considerably different from zero (i.e., the contours are tilted), indicating violations of 

perceptual independence. The Wald test of perceptual independence confirmed that these 

violations were significant, χ2(4) =49.68, p < .001.

Next, note that violations of perceptual separability are also apparent in Figure 7. 

Specifically, there are clear violations of perceptual separability of identity from emotion. 

Figure 7 shows what seems to be a mean-shift integrality: the means of the distributions for 

both identities are shifted down for the sad emotional expression compared to the neutral 

emotional expression. Furthermore, the variance of the distribution of identity 1 seems much 

higher for the sad expression than for the neutral expression, and vice-versa for the 

distribution of identity 2. These results were confirmed by the Wald test, which indicated 

significant violations of perceptual separability of identity from expression, χ2(4) =803.63, p 

< .001.

On the other hand, violations of perceptual separability of emotional expression from 

identity are less clear. The means for each level of emotion are aligned across levels of 

identity, but the variances seem to differ, especially the variances of the distributions for the 

sad expression. The Wald test indicated that deviations of perceptual separability of 

emotional expression from identity were not significant, χ2(4) =.67, p > .5.

Analysis of attentional and decisional factors—Figure 8 shows a scatterplot in 

which the coordinates of each dot represent the estimates of the two attention parameters for 

each participant. The figure also shows estimates of the probability distribution of each 

attention parameter (i.e., kernel estimates). Note that if a participant was using exactly the 

distributions depicted in Figure 7, then κk should be equal to 2.0 and λk should be equal to 

0.5. The level of global attention, represented by the parameter κk, varies widely across 

participants without a clear mode in the distribution. The level of selective attention to 

emotional expression, represented by λk, has a clear mode around 0.5 and is asymmetric 
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around that mode, with more subjects showing selective attention to emotional expression 

(λk > 0.5) than subjects showing selective attention to identity (λk < 0.5). The difference 

between the distributions of κk and λk suggests that there was more variability in the general 

attention of participants to the task than in the selective attention to one dimension versus 

the other. In other words, most participants allocated roughly equal amounts of attention to 

the two dimensions, but they differed wildly in their overall discriminability. This difference 

could be motivational, but it could also reflect differences in the ability of participants to 

discriminate among different faces.

Finally, the Pearson correlation between the two attentional parameters was not significant: r 

= .16, t(22) = 0.78, p > .1). This suggests that the two parameter estimates captured different 

aspects of a participant’s performance in the task.

An interesting question is whether the variability in individual parameters is the outcome of 

a single distribution of attentional and decisional strategies, or alternatively whether it is the 

outcome of two or more clearly distinguishable subgroups of people using different 

strategies in the task. If the second alternative was true, perhaps a better way to model these 

data would be through a mixture model (Lee & Wetzels, 2010; Navarro, Griffiths, Steyvers, 

& Lee, 2006), which would be more parsimonious (i.e., fewer free parameters) and less 

prone to overfitting than GRT-wIND. The presence of subgroups of participants using a 

common attentional or decisional strategy should be detectable from the parameter 

distribution: subgroups should result in multimodal distributions for these parameters. The 

distributions observed in Figure 8 appear unimodal, which was confirmed by dip tests of 

unimodality (Hartigan & Hartigan, 1985) that were non-significant both for the distribution 

of global attention, D = .05, p > .5, and the distribution of selective attention, D = .04, p > .5.

To analyze individual decision strategies, the parameters from the best-fitting discriminant 

functions (Equation 4) were used to compute, for each dimension, the intercept of the 

decision bound and its degrees of clockwise rotation from vertical (on the emotional 

expression dimension) or horizontal (on the identity dimension). Note that these rotation 

values both equal zero when decisional separability holds, with values higher or lower than 

zero representing deviations from decisional separability. Similarly, the intercept represents 

the point where the decision bound crosses the relevant dimension; that is, its position along 

the relevant dimension.

Figure 9A shows a scatterplot in which the coordinates of each dot represent the degrees of 

clockwise rotation from the decisional separability bound for a single participant. Decision 

bounds for emotional expression cluster around 10 degrees of clockwise rotation from 

vertical, with all of them being greater than zero. The results from Figure 9A suggest that 

deviations from decisional separability of expression from identity were common and 

similar across participants. The results of Wald tests (α = .05) on each individual slope 

indicated that the observed violations of decisional separability were significant in 22 of the 

24 participants. A dip test of unimodality for the distribution of slopes was not significant, D 

= .07, p > .5, suggesting a single underlying distribution of decisional strategies across the 

group of participants.
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Decision bounds for identity are more heterogeneous, with many of them clustering around 

zero degrees of rotation from horizontal, but others having quite high positive values. The 

results suggest deviations from decisional separability of identity from expression for some, 

but not all participants. The results of Wald tests (α = .05) on individual slopes revealed 

significant violations of decisional separability in only 4 of the 24 participants. The dip test 

for unimodality was not significant, D = .08, p > .1.

The scatterplot in Figure 9A shows that there was no relation between the orientation of the 

two decision bounds across participants, which was confirmed by a non-significant Pearson 

correlation between these values, r = .15, t(22) =.69, p > .1. This result suggests that the 

decisional strategies employed by participants to classify each dimension were independent 

from each other.

Figure 9B shows a scatterplot where the coordinates of each dot represent intercepts of the 

decision bounds for a single participant. These values were not significantly correlated 

across participants, r = .25, t(22) =1.19, p > .1. The distributions observed in Figure 9B 

appear unimodal, which was confirmed by non-significant dip tests of unimodality for the 

distribution for expression, D = .06, p > .5, and the distribution for identity, D = .05, p > .5.

Although the analyses presented in this section did not find evidence of subgroups of 

participants using different decisional or attentional strategies, it is still possible that 

subgroups exist which differ in other aspects of processing, such as perception of identity 

and expression. The existence of such subgroups would violate one of the most important 

assumptions behind GRT-wIND: that perceptual representations have a similar structure 

across individuals. If subgroups exist, then they should produce a multimodal distribution 

for measures of model-fit, with one mode having a high fit value, representing participants 

whose behavior is well-explained by the model, and one or more modes having a lower fit 

value, representing participants whose behavior is not well-explained by the model. Figure 

10 shows the percentage of the variance in each participant’s data explained by GRT-wIND, 

together with a kernel density estimate for the distribution of measures of fit. The 

distribution seems to be bimodal, with most participants clustering between 0.99 and 1.00, 

but a small group of three participants having a lower value of model-fit between .96 and .

97. However, the distribution was not significantly different from unimodal according to a 

dip test, D = .05, p > .5.

A closer examination of the results for these three subjects gave clues as to exactly what was 

different about them in relation to the rest of the group. A look at Figure 6 reveals that for at 

least one of these participants (participant 12), whose point in the plot lies right next to the 

diagonal, the individual GRT model did not provide a substantially better fit than GRT-

wIND. This suggests that perhaps there was something about this participant’s data that 

violated the assumptions of GRT in general and not GRT-wIND in particular.

The other two participants (participants 1 and 15) showed a clearly higher fit value for the 

individual GRT model than for GRT-wIND. For participant 1, this was likely the result of 

over-fitting: the individual GRT model required 10 parameters to provide such good fit to 
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the data, which is considerably more than the average of 6 parameters required by GRT-

wIND.

Participants 1 and 12 showed rather poor performance in the task (see supplementary 

material), which was reflected in the two lowest values for κk in the sample (below 1.0, see 

Figure 8). One possibility is that some of the data from these participants comes from an 

early learning stage that could not be detected by our criteria for data exclusion. Such 

learning performance cannot be captured by any GRT model, as these are models of 

asymptotic performance.

The results of participant 15 are more difficult to explain this way, which suggests that 

perhaps this participant did use processes that could not be captured by GRT-wIND. This 

participant showed a good fit by an individual GRT model without an extremely high 

number of degrees of freedom (8). None of the estimated parameters for this participant 

were outliers, and there are patterns in his/her data that seem different from most other 

participants, such as a high frequency of responding “identity 2 neutral” when presented 

with “identity 1 neutral” (see supplementary material).

Evaluation of common assumptions in previous GRT models—As indicated 

previously, traditional GRT analyses for the 2×2 identification design require making a 

number of assumptions in order to evaluate dimensional interactions. An advantage of GRT-

wIND is that the full model and restricted models that incorporate assumptions can be fit to 

the same data. As a consequence, the GRT-wIND framework allows us to evaluate, for a 

given dataset, how valid different assumptions are and how they can affect conclusions 

about dimensional interaction. Here, we perform such analysis for two of the most common 

assumptions in previous applications of GRT: equal variances for all distributions and 

decisional separability in both dimensions (e.g., Ashby & Soto, in press; Thomas, 2001; 

Fitousi & Wenger, 2013).

To determine the validity of the assumption of equal variances, we performed a Wald test of 

the null hypothesis that all variances in the model were equal to one, as the variances for the 

first distribution were fixed to this value. The test did not show significant violations of the 

assumption that the variances were equal to one, χ2(6) =.84, p > .5.

To evaluate the consequences of assuming equal variances for tests of dimensional 

interactions, a restricted model with all variances fixed to 1.0 was fitted to the data. The 

optimization was performed 20 times, each time with a different set of starting parameter 

values. Then the analysis of interactions using Wald tests was performed on the obtained 

maximum likelihood estimates. The AICC for this restricted model was equal to 11,257, 

which is higher than the AICC of 11,216 found for the full model. Thus, the full model does 

seem to capture structure in the data that cannot be captured by a model assuming equal 

variances.

There are several explanations for the contradictory results of the Wald test and the AIC 

comparison in this analysis. The most obvious explanation is that the two methods were 

developed with different goals in mind: the Wald test was designed to test null hypotheses 
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about maximum likelihood estimates, whereas the AIC was designed to choose among a set 

of models the one that yields the best balance between fit to the data and model complexity. 

This, combined with the fact that the AIC comparison does not take into account sampling 

variability (see Preacher & Merkle, 2012) means that there is no reason to expect the two 

methods to yield the same results in all applications. A more practical issue is that 

estimation error could have affected the covariance values that were input to the Wald test, 

or the maximum likelihood estimates for the restricted model.

Regardless of whether or not the assumption about equal variances was violated by our data, 

an important question is to what extent making this assumption could affect the estimates of 

other parameters in the model and the results of tests of separability and independence.

Figure 11A displays the maximum likelihood solution for the restricted model. It can be 

seen that violations of perceptual separability that are apparent in the full model, such as the 

mean-shift integrality described earlier, almost disappear in the restricted model. 

Furthermore, the assumptions have an effect on the analysis of interactions through the 

Wald test. Using the full model, we found significant violations of perceptual separability of 

identity from expression, but such violations were not found using the restricted model, 

χ2(4) =0.78, p > .5. As with the full-model analysis, there were no significant violations of 

perceptual separability of expression from identity, χ2(4) =3.79, p > .1, but the violations of 

perceptual independence were significant, χ 2(4) =51.02, p < .001.

The tests of violations of decisional separability of expression from identity led to the same 

result for the full and restricted model in 18 participants, but 6 participants who showed such 

violations with the full model did not show them with the restricted model. The tests of 

violations of decisional separability of identity from expression were consistent for the full 

and restricted model in only 10 participants, with 13 participants who did not show 

violations with the full model showing them with the restricted model and one participant 

who did show violations with the full model not showing them with the restricted model. In 

sum, the model assuming equal variances led to less apparent violations of decisional 

separability of expression from identity, and to more apparent violations of decisional 

separability of identity from expression.

The results of Wald tests of decisional separability carried out with the full model were 

presented earlier. They indicated that individual bounds for emotional expression deviated 

significantly from decisional separability in most participants, whereas bounds for identity 

deviated significantly from decisional separability in only a few participants (see Figure 9). 

What is left is determining to what extent this assumption could affect the results of tests of 

other forms of interaction.

We fitted a restricted GRT-wIND model that assumed decisional separability in both 

dimensions to the data. As before, the optimization was performed 20 times, each time with 

a different set of starting parameter values. The AICC for this restricted model was equal to 

11,267, which is higher than the AICC of 11,216 found for the full model. Thus, in this case 

the AIC comparison confirms the results of the Wald tests, showing reliable evidence that 
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the full model captures structure in the data that cannot be captured by a model assuming 

decisional separability.

Figure 11B displays the maximum likelihood solution for the restricted model. In this case, 

violations of perceptual separability of identity from emotion are still present in the 

restricted model and are significant according to the Wald test, χ2(4) =171.77, p < .001. 

Furthermore, the restricted model shows violations of separability of emotion from identity 

that are less apparent in the full model. Such violations turned out to be statistically 

significant, χ2(4) =2,239.27, p < .001. As with the full model, violations of perceptual 

independence were also statistically significant, χ2(4) =163.11, p < .001.

To summarize the most important results of this section, both the assumption of equal 

variances and the assumption of decisional separability led to changes in the conclusions 

reached through GRT-wIND about perceptual separability and decisional separability. 

Perceptual independence, on the other hand, was consistently violated in all analyses. These 

results suggest that common assumptions made in model-based analyses using GRT can 

have an important influence in the results of such analyses. As GRT-wIND does not require 

such assumptions, we recommend its use over traditional GRT models to analyze the data 

from 2×2 identification designs.

Discussion

This article presents an extension to GRT that overcomes many of the weaknesses that result 

from the traditional method via which GRT is applied to the analysis of dimensional 

interactions. This new GRT-wIND model assumes that the structure of perceptual 

representations for a set of stimuli is shared among all people, whereas attention to specific 

stimulus dimensions and decision strategies vary across individuals. The model was 

successfully applied to the analysis of new data from an identification experiment in which 

facial stimuli varied in identity and emotional expression. The model was able to describe 

these data better than traditional GRT models, despite having fewer free parameters, while 

also allowing tests of all types of independence defined within GRT. The results from our 

analyses of dimensional interactions revealed that identity is not perceptually separable from 

emotional expression, whereas deviations of perceptual separability of expression from 

identity were both small and not statistically significant. There were also clear violations of 

perceptual independence. Violations of decisional separability for both dimensions were 

common, but more participants showed statistically reliable violations in the case of 

expression than in the case of identity.

All GRT analyses of dimensional interactions require assumptions. For example, decisional 

separability is usually assumed when there are not enough degrees of freedom to fit a full 

GRT model. Assuming decisional separability is also a way to deal with the non-

identifiability in the 2×2 identification experiment (Silbert & Thomas, 2013). Modeling 

identification data with GRT-wIND offers the advantage that no assumptions are required 

regarding perceptual separability, decisional separability, or perceptual independence. 

Instead, an assumption is made that all experimental participants share the same perceptual 

distributions. This assumption is not only plausible; without it, the analysis of perceptual 
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independence would be a trivial endeavor: if different individuals perceived a set of stimuli 

in fundamentally different ways, then there would be no answer (or rather, multiple answers) 

to the question of whether or not two dimensions are processed independently.

A second assumption of GRT-wIND is that there is variability across people in their 

attention to stimulus dimensions and in their decisional strategies. This is fundamentally 

different from a recent hierarchical GRT model that, like GRT-wIND, incorporates group 

parameters (Silbert, 2012). This hierarchical model proposes that individual differences are 

due to random variability around group parameters, not reflecting a psychologically 

meaningful process. More research is necessary to understand which model is correct in this 

regard. If individual attentional and decisional strategies discovered through GRT-wIND can 

predict individual differences in other parameters, then it would be possible to make a case 

for its assumptions. On the other hand, GRT-wIND offers a practical advantage over the 

hierarchical GRT model: the latter suffers from a number of the shortcomings with 

traditional GRT models identified in the introduction, including being unable to dissociate 

all types of dimensional interaction identified in the theory (Ashby & Townsend, 1986).

The analysis of interactions between identity and expression in face perception using GRT-

wIND suggested that expression is perceptually separable from identity, but identity is not 

perceptually separable from expression. This result is particularly important, because 

perceptual separability is the concept that seems more similar to the idea of “independence” 

evaluated by previous studies. Most of those previous studies have found the opposite result, 

with identity having a large influence in processing of expression and expression having a 

small or nonexistent influence in processing of identity (e.g., Baudouin et al., 2002; Ganel & 

Goshen-Gottstein, 2004; Schweinberger et al., 1999; Schweinberger & Soukup, 1998; Soto 

& Wasserman, 2011). An important difference between previous studies and the present 

experiment is that using GRT-wIND allowed us to dissociate perceptual and decisional 

factors in dimensional interaction. One explanation for prior experimental results is that they 

might reflect the outcome of decisional rather than perceptual processes. In the present 

study, violations of decisional separability were common for both face dimensions, and 

more consistent across participants in the case of expression. Such consistent violations of 

decisional separability might be what most previous studies captured. Furthermore, decision 

strategies can vary depending on instructions and experimental procedures (e.g., Ashby et 

al., 2001), which could explain the variability in the results of previous research.

On the other hand, an important limitation of the present experiment is that it included only 

two identities and a single emotional expression. Perhaps a different pattern of results will 

arise with other expressions or with different identities; more research will be necessary to 

reach a strong conclusion about the interaction between identity and emotion. Such research 

should include comparisons between familiar and non-familiar identities (e.g., Ganel & 

Goshen-Gottstein, 2004), manipulation of the discriminability of each dimension (e.g., 

Schweinberger & Soukup, 1998) and testing the generality of the results by using several 

different identities and emotional expressions. However, because the present experiment 

established that violations of decisional separability can be easily found in a face 

identification task, all future research should aim to dissociate decisional factors from the 

analysis of perceptual separability and independence.
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Another limitation of the present study is that the application of GRT-wIND to an 

identification design only allows an analysis of response frequencies. This is different from 

most previous studies using the Garner interference task, which focus on the analysis of 

response times. Analysis of response times is possible within the framework of GRT-wIND, 

but it would require both additional assumptions and additional experiments. Perhaps the 

simplest way to incorporate response times into any GRT model is to assume that response 

time decreases with the distance between the perceptual effect of a stimulus and the decision 

bound (see Ashby & Maddox, 1994). Unfortunately, this results in a well-defined model 

only for experiments with a single decision bound per participant, where each response time 

corresponds to a single distance-to-bound. For the identification experiment reported here, 

one decision bound is required for each dimension, so a single response time would be some 

function of two distances-to-bound. In order to model response times using GRT, one 

strategy is to run both an identification and a speeded-categorization experiment using the 

same stimuli and participants (Maddox & Ashby, 1996). The data from the identification 

experiment is used to find parameters of the perceptual distributions for a set of stimuli, as 

we have done here. These parameters are then used to build a model of response times for 

the classification experiment. An advantage of GRT-wIND is that, because it assumes 

common perceptual distributions across participants, it allows these two experiments to be 

performed on two separate groups, making it much easier to perform such two-stage studies. 

We are currently working on implementing this extension of GRT-wIND, which is beyond 

the scope of the present work.

The only previous study addressing dimensional interactions between identity and 

expression using GRT (Fitousi & Wenger, 2013) found that, for unfamiliar faces such as 

those studied here, perceptual separability of emotional expression was violated whereas 

perceptual separability of identity was not violated. This is the opposite to what we found 

here. One possible explanation for these disparate results is that the limited degrees of 

freedom in the data forced Fitousi and Wenger to make some simplifying assumptions that 

could have biased their results. These authors assumed equal variances in all the GRT 

models that they tested. We found that this assumption was invalid for our data and that it 

affected the outcome of tests of perceptual separability. Furthermore, the most general 

model that Fitousi and Wenger could have tested, given the small number of degrees of 

freedom in their data, must have included additional simplifying assumptions. 

Unfortunately, we do not know what those assumptions are, because the authors do not 

report what models they included in their analysis.

More generally, it seems important at this point to give some guidance as to how researchers 

should interpret disparate conclusions about separability and independence reached through 

traditional GRT models and GRT-wIND. A GRT model for the 2×2 identification design 

requires a number of parameters to explain the data from a single participant. Traditional 

GRT models do not allow estimation of all these parameters, so many of them must be fixed 

by the researcher. On the other hand, GRT-wIND allows estimation of all the parameters 

necessary to explain the data from a single participant. When the same parameters that are 

held fixed in GRT models are allowed to vary in GRT-wIND, this affects the values 

estimated for the parameters shared by both models. For example, given a specific data set 

from a single participant, if the slope parameter for the bound in dimension B is fixed to 1 in 
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a GRT model, but the estimated value in GRT-wIND is 2, then the values of other 

parameters (in particular, the means and variances along dimension B) will differ for the two 

models, to accommodate the fact that different slopes must explain the same data. This will 

happen to varying degrees, regardless of whether or not our estimate of the slope in GRT-

wIND turns out to be significantly different from the value of 1 assumed in the GRT model.

Fixed parameters in traditional GRT models are equivalent to assumptions about separability 

and independence. GRT-wIND is free of such assumptions, at the cost of assuming that 

different people perceive a set stimuli in a fundamentally similar way. In practice, when a 

researcher finds that GRT and GRT-wIND lead to different conclusions about a particular 

data set, if the assumptions of GRT-wIND can be justified, then the conclusions reached 

through GRT-wIND should be preferred. As we have shown here, analysis of the 

distribution of parameters and measures of fit can help to determine whether the main 

assumptions of GRT-wIND are violated in a given data set.

The experiment reported here used extremely short presentation times (about 16.67 ms), 

which might raise the concern that participants did not base their responding on high-level 

facial features, but on low-level differences among the images such as large areas with 

different contrast. There are at least three reasons to believe that this was not the case in the 

present study. First, images were standardized in several ways to avoid use of low-level 

image properties. The original images were histogram-equalized and we eliminated non-

facial features by showing faces through an oval window. Second, previous research 

suggests that faces can be discriminated with presentation times as short as 100 ms at the 

same level of performance as with presentation times of 1,000 ms, and they can still be 

discriminated to a good level well below 100 ms (e.g., Lehky, 2000). Furthermore, such 

results were obtained using a more difficult task than the one used here, involving stimulus 

masking (which disrupts visual processing after presentation of the mask), smaller 

differences between faces (achieved through morphing) and no feedback. Third, our own 

personal experience with the task confirmed that identification is easily achieved on the 

basis of identity and emotion after a short adaptation time.

In recent years, researchers have showed increasing interest in using GRT to analyze 

dimensional interactions in face perception (e.g., Cornes, Donnelly, Godwin, & Wenger, 

2011; Fitousi & Wenger, 2013; Mestry et al., 2012; Richler, Gauthier, Wenger, & Palmeri, 

2008). Such applications are promising, because GRT offers a number of advantages over 

other approaches, including a dissociation between perceptual and decisional processes and 

the possibility of defining vague concepts–such as configural and holistic face processing–

within a formal framework.

These advantages of GRT might prove to be extremely useful to answer important open 

questions about the interaction among face dimensions. For example, the structural 

reference hypothesis (Ganel & Goshen-Gottstein, 2004; Ganel, Valyear, Goshen-Gottstein, 

& Goodale, 2005) proposes that emotional expression is coded as dynamic variations from 

the invariant structure of faces. This invariant structure influences the way in which each 

individual expresses emotion. Because familiarity with a face should lead to better 

knowledge of the structure of a face, the structural reference hypothesis predicts that 
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familiarity should lead to a larger interference of identity on expression processing, a 

prediction that has been confirmed using a Garner filtering task (Ganel & Goshen-Gottstein, 

2004). However, familiarity with a face can also lead to changes in decisional bias, 

particularly if a face has been experienced more times showing one particular expression 

(e.g., Jim Carrey is typically happy, whereas Tommy Lee Jones is typically serious). Thus, 

the results from a filtering task are difficult to interpret unless it can be shown that the effect 

of familiarity is on perceptual representations instead of decisional biases.

The increased interest in the application of GRT to the study of face perception and other 

areas of perceptual science has been undermined recently by papers reporting shortcomings 

with the GRT framework (Mack et al., 2011; Silbert & Thomas, 2013). An important 

contribution of the present work is the description of an extended GRT framework, GRT-

wIND, which overcomes most shortcomings in traditional applications of GRT. This new 

framework can easily be applied to analyze data from the most commonly used experimental 

designs without sacrificing the ability to test any forms of independence defined by GRT, 

which makes it an important addition to the toolbox available to researchers in perceptual 

science.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Here we prove that the problem of non-identifiability of decisional separability described by 

Silbert and Thomas (2013) only occurs in GRT-wIND in the special case in which the 

decision bounds of all participants for each dimension are parallel to each other. We also 

describe procedures to: (1) estimate the parameters of a GRT-wIND model from 

identification data using maximum likelihood estimation, (2) run statistical tests for 

perceptual independence, perceptual separability and decisional separability, and (3) 

estimate parameters and test different types of independence as in previous applications of 

GRT.

Identifiability of decisional separability in the 2×2 GRT-wIND model

Silbert and Thomas (2013) showed analytically that a failure of decisional separability is 

non-identifiable in the Gaussian GRT model for a 2×2 identification experiment. That is, if 

the data from an experiment can be fit by a GRT model in which decisional separability 

fails, then it is always possible to find a different GRT model in which decisional 

separability holds and that predicts the exact same data pattern. We call this result the 

Silbert-Thomas non-identifiability, or STn for short.

We start by summarizing the proof offered by Silbert and Thomas (2013). Their theorem 

states that “Any perceptually separable but decisionally nonseparable configuration can be 

transformed to a configuration that is perceptually nonseparable, decisionally separable, 

and equivalent with respect to predicted response probabilities” (p. 17). Thus, they focus on 

the case in which the original configuration exhibits perceptual separability but violations of 

decisional separability. However, the more general result is that decisional separability is 

nonidentifiable in this model. As the authors indicate, “Any arbitrary (and, in general, not 

perceptually separable) linear bound model without decisional separability can be rotated 

and sheared to produce a model with decisional separability […], failure of decisional 

separability is never identifiable in this model” (pp. 4–5).

The proof for this theorem starts with a configuration without decisional separability and 

that has been translated so that the origin of the xy-plane coincides with the intersection of 

the two decision bounds hA and hB. The angle between hB and the x-axis is represented by ϕ 

and the angle between the bounds hA and hB is represented by ω. Decisional separability 

holds when ϕ = 0 and ω = π/2. Rotation of the original configuration by ϕ degrees brings hB 

to be parallel to the x-axis (and orthogonal to the y-axis), achieving decisional separability of 

component B from A. The horizontal shear transformation has the property of changing the 

angle between all lines in the plane except those parallel to the x-axis. Thus, for any value of 

ω, a horizontal shear transformation can be found that brings this angle to π/2 while keeping 

hB parallel to the x-axis, thus achieving decisional separability of component A from B 

while also keeping decisional separability of component B from A.

The rotation and shear transformations can be represented by the transformation matrices L1 

and L2, respectively, which combine to produce:
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(A1)

This is an area-preserving affine transformation. The change-of-variables theorems for 

densities guarantees that probabilities will be preserved under such transformation 

(Billingsley, 2013). This means that the predicted probabilities of correct responses in the 

original configuration and the decisionally-separable configuration are the same, as the 

values of the integrals involved do not change. The means and covariance matrices in the 

decisionally-separable configuration can be computed from the original means and 

covariance matrices by using the formulas:

(A2)

(A3)

In the remainder of this section, we show the conditions under which decisional separability 

is non-identifiable in GRT models with more than one bound per dimension. GRT-wIND 

and n×m GRT models with n>2 and m>2 are special cases of this general class. We start by 

identifying the conditions under which STn holds for a model with 2 bounds per dimension. 

It is then straightforward to see that the same conditions apply for any larger number of 

bounds per dimension.

Theorem

In a Gaussian GRT model with two dimensions and two linear bounds per dimension, where 

the ith bound for dimension A is represented as hAi and the jth bound for dimension B as hBj, 

the non-identifiability of decisional separability identified by Silbert and Thomas (2013) is 

true if and only if hA1 || hA2 and hB1 || hB2.

Proof

We first prove that if hA1 || hA2 and hB1 || hB2, then STn holds. As with the proof of STn, we 

start with a configuration without decisional separability that has been translated so that the 

origin of the xy-plane coincides with the intersection of hA1 and hB1. We represent the angle 

between hBj and the x-axis as ϕj and the angle between of hAi and hBj as ωij. Because hB1 

and hB2 are parallel to each other, but not parallel to the x-axis, they intersect the latter at 

congruent angles; that is, ϕ1 = ϕ2. Thus, rotation of the original configuration by ϕ1 degrees 

brings both hB1 and hB2 to be parallel to the x-axis and orthogonal to the y-axis, achieving 

decisional separability of component B from A. After rotation, it is still true that hA1 || hA2 

and hB1 || hB2, because rotation preserves parallelism. This means that ωij = ω for all i and j. 

Thus, a single shear tranformation can bring this angle to π/2, achieving decisional 

separability of component A from B while also keeping decisional separability of 

component B from A.
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To complete the proof, we must show that if STn holds, then hA1 || hA2 and hB1 || hB2. For 

STn to hold, a decisionally-separable configuration must exist that can be found by applying 

an affine transformation L to an original configuration without decisional separability. By 

definition, in this decisionally-separable configuration hA1 ⊥ x, hA2 ⊥ x, hB1 ⊥ y and hB2 ⊥ 

y. Because two lines that are both perpendicular to a third line are parallel to each other, with 

all lines in the same plane, hA1 || hA2 and hB1 || hB2 in the decisionally-separable 

configuration. To go from the decisionally-separable configuration to the original 

configuration, we must apply the transformation L−1. This inverse transformation exists 

because both shear and rotation are invertible transformations. The inverse of an affine 

transformation is itself an affine transformation that conserves parallelism, so application of 

L−1 to the decisionally-separable transformation conserves the property that hA1 || hA2 and 

hB1 || hB2. Thus, if STn holds, then bounds must be parallel in the decisionally-separable 

configuration as well as in the original configuration.

This completes the proof for the case in which there are two linear bounds per dimension. A 

corollary is that for models with more than two bounds per dimension, STn holds if and only 

if each bound in one dimension is parallel to each of the other bounds in that specific 

dimension.

Here we have exclusively dealt with part (i) of the theorem proposed by Silbert and Thomas 

(2013). Part (ii) of this theorem proposes that a configuration with mean shift integrality and 

decisional separability is unidentifiable from a configuration with perceptual separability 

and without decisional separability. This theorem also deals with the non-identifiability of 

decisional separability, so as before it only holds for models with more than one bound per 

dimension if those bounds are parallel. Furthermore, an additional condition for this theorem 

to hold is that all covariance matrices in the model must be identical (Thomas & Silbert, in 

press). This in general is not the case in GRT-wIND or in traditional GRT models for 

designs larger than 2×2, which allow for estimation of different variances and covariances 

for each perceptual distribution.

In conclusion, STn is not generally true in GRT-wIND or any other model with more than 

one bound per dimension. The non-identifiability of decisional separability arises in such 

models only under very specific circumstances.

Maximum likelihood estimation for GRT-wIND

The data from each participant in an identification experiment are summarized in a 

confusion matrix, with rows corresponding to each stimulus in the experiment, columns 

corresponding to each response, and response frequencies reported in each cell of the matrix. 

Let S1, S2, …, Sn denote the n stimuli in an identification experiment and let R1, R2, …, Rn 

denote the n responses. Let rij denote the frequency with which the participant responded Rj 

on trials when stimulus Si was presented. Finally, there are N participants in the experiment, 

indexed by k=1, 2, …,N. Given a set of parameter values for the model, the likelihood of this 

confusion data is computed in two steps.
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In the first step, the predicted confusion matrix of each participant is computed using 

standard methods. For example, the predicted probability that a participant responds Rj on 

trials when stimulus Si was presented, denoted by P(Rj|Si), is computed by integrating the 

volume of the Si perceptual distribution in response region Rj. A numerical approximation to 

this multiple integral can be computed efficiently using Cholesky factorization (Ennis & 

Ashby, 2003; for a tutorial overview, see Ashby & Soto, in press).

The second step is to compute the log of the likelihood function for participant k:

(A4)

These log-likelihoods are then summed across all participants:

(A5)

The maximum likelihood estimates of the parameters in a GRT-wIND model are those that 

maximize the expression in Equation A5.

Statistical tests of independence with GRT-wIND

The large number of parameters in a GRT-wIND model makes the computational cost of 

using likelihood ratio tests and model selection procedures prohibitive. Thus, we 

recommend a deviation from the custom of computing such tests in GRT analyses. The 

strategy used here consists of fitting the full GRT-wIND model and testing maximum-

likelihood parameter estimates against expected values from null hypotheses using a Wald 

test (Wald, 1943).

Let θ̂ be a column vector containing the maximum likelihood parameter estimates. The Wald 

test can be used to test any null hypothesis that can be expressed in the form of linear 

restrictions on θ̂:

where R is a matrix with number of columns equal to the number of parameters and number 

of rows equal to the number of restrictions being tested, and q is a column vector with 

number of rows equal to the number of restrictions being tested. For example, if we wanted 

to test the hypothesis that θ1̂ = 0, then R would have a single row (we are testing a single 

restriction) with a +1 in the first cell of that row and zeros in all other cells, while q would 

have a single cell with a zero in it. If we want to additionally test the hypothesis that θ̂2 − θ̂
3 

= 10, then we would add a second row to R with a +1 in the second column (corresponding 

to +θ̂2) and −1 in the third column (corresponding to −θ̂
2), while q would now have a second 

cell with the value 10 in it.
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Null hypotheses are tested using the Wald statistic:

(A6)

where []T represents matrix transpose. The statistic W has a chi-squared distribution with 

degrees of freedom equal to the number of restrictions being tested (the length of q). 

Computing W requires the covariance matrix of the maximum likelihood estimates, which 

can be estimated using the Hessian of the log-likelihood function at the solution:

(A7)

Usually the Hessian in Equation A4 can be obtained from the same optimization software 

that is used to obtain the parameter estimates that maximize the log-likelihood, but better 

estimates are obtained from numerical differentiation software. In this study, we used the 

DERIVEST suite (D’Errico, 2006) to obtain estimates of the Hessian.

For the 2×2 identification design used here, the restrictions imposed on the model by 

perceptual separability of dimension A from dimension B are the following:

The restrictions imposed in the model by perceptual separability of dimension B from 

dimension A are the following:

The restrictions imposed in the model by perceptual independence in each of the perceptual 

distributions are the following:

The Wald test allows tests of decisional separability for the whole group or for each 

participant individually. Here, we focus on the latter kind of test. Testing whether decisional 

separability of dimension A from dimension B holds in participant k involves a single 

restriction:

Soto et al. Page 31

Psychon Bull Rev. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Testing whether decisional separability of dimension B from dimension A holds in 

participant k involves the following restriction:

Model fit and selection in the traditional GRT approach

To fit any GRT model to data (e.g., the models in the hierarchy shown in Figure 5), the 

confusion matrix from a single participant is used to find the values of the free parameters 

that maximize Equation A1.

A popular method to test assumptions about independence and separability is to fit a 

restricted and an unrestricted version of the model to data. The restricted model contains a 

number of parameters that are set to values reflecting the assumption under test. For 

example, testing perceptual independence would require setting all ρ parameters to zero. The 

same parameters would be free to vary in the unrestricted model. Once both models are fit to 

data, the likelihood of the data at the solutions (LU and LR for the unrestricted and 

unrestricted versions, respectively) can be used to run a likelihood ratio test, by computing 

the following statistic:

(A8)

which follows a Chi-squared distribution with degrees of freedom equal to the difference in 

number of free parameters between the two models.

The likelihood ratio test can only be applied to select between two nested models. To select 

between two non-nested models, it is possible to use the Akaike information criterion (AIC, 

Akaike, 1974) for model comparison. Here we use a version of AIC corrected for a bias 

problem present when the number of data points is small compared to the number of free 

parameters (see Burnham & Anderson, 2004):

(A7)

where m is the number of free parameters in the model and n2 is the number of cells in the 

confusion matrix. The first two terms in Equation A7 correspond to the traditional definition 

of AIC and the last term corresponds to the correction factor. A smaller value of AIC 

represents a better fit of the model to the data.

In the present study, as in previous model-based applications of GRT (e.g., Ashby & Lee, 

1991; Ashby et al., 2001; Fitousi & Wenger, 2013; Thomas, 2001), a hierarchy of models 

was fit to the data from each participant (see Figure 5). The procedure starts at the top of the 

hierarchy and compares nested models through likelihood ratio tests until the test results in a 
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non-significant increase in fit. If more than one candidate model survives this process, the 

model with the smallest AICC is selected.
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Figure 1. 
Example of a multivariate normal GRT model for an experiment with 2 dimensions and two 

levels in each dimension (2×2 design). Ellipses represent contours of equal likelihood for the 

perceptual distribution of a specific stimulus. The univariate normal distributions represent 

marginal distributions.
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Figure 2. 
Example of how, in the 2×2 design, a simple transformation of the perceptual space can 

render a GRT model with violations of decisional separability into a different GRT model 

yielding the same response probabilities and no violations of decisional separability. A 

second set of decision bounds is included to show why the same is not true for GRT-wIND.

Soto et al. Page 35

Psychon Bull Rev. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Schematic representation of the GRT-wIND model.
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Figure 4. 
Scatterplot depicting observed response proportions against predicted response probabilities. 

The data from different participants is plotted with different symbols. The diagonal line 

represents a model with perfect fit.
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Figure 5. 
Hierarchy of GRT models fitted to individual confusion data. The number of free parameters 

is symbolized by m. PI stands for perceptual independence, PS for perceptual separability, 

DS for decisional separability and 1_RHO for a single correlation in all distributions.
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Figure 6. 
Comparison of percentage of variance in the data from each individual confusion matrix 

explained by GRT-wIND and the best individual GRT model. Each circle represents results 

from a single participant.
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Figure 7. 
Best-fitting configuration of perceptual distributions from the experiment reported here. 

Ellipses are contours of equal likelihood. Face images associated with each perceptual 

distribution are shown.
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Figure 8. 
Scatterplot showing the values of the estimated attentional parameters. Kernel density 

estimates for the distribution of values of each parameter estimate are shown at the top and 

right of the scatterplot.
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Figure 9. 
Scatterplots summarizing the best-fitting GRT-wIND bounds. Panel A shows degrees of 

clockwise rotation from the decisional separability bounds, and Panel B shows the intercepts 

of each bound. Kernel density estimates for the distribution of values of each parameter are 

shown at the top and right of the corresponding scatterplot.
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Figure 10. 
Kernel density estimate for the distribution of percentage of variance explained by GRT-

wIND.
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Figure 11. 
Best-fitting configuration of perceptual distributions for the restricted GRT-wIND models 

fitted to the experimental data. Panel A shows the restricted model in which all variances are 

equal to one. Panel B shows the restricted model that assumes decisional separability for 

both dimensions. Ellipses are contours of equal likelihood. Face images associated with each 

perceptual distribution are shown.
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Table 1

Average confusion matrix. Numbers in cells represent average response proportions and ranges (min/max).

Stimuli

Responses

Neutral-ID1 Sad-ID1 Neutral-ID2 Sad-ID2

Neutral-ID1 0.888 (0.711/1.0) 0.051 (0.0/0.235) 0.04 (0.0/0.184) 0.021 (0.0/0.103)

Sad-ID1 0.049 (0.0/0.196) 0.895 (0.707/0.992) 0.019 (0.0/0.081) 0.037 (0.0/0.131)

Neutral-ID2 0.047 (0.0/0.25) 0.018 (0.0/0.098) 0.879 (0.607/0.974) 0.056 (0.007/0.2)

Sad-ID2 0.051 (0.0/0.419) 0.092 (0.0/0.419) 0.131 (0.0/0.403) 0.727 (0.147/0.964)
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Table 2

Best-fitting GRT model (from those shown in Figure 5) for each participant in the experiment. PI stands for 

perceptual independence, PS for perceptual separability, DS for decisional separability and 1_RHO for a 

single correlation in all distributions.

Participant Best-fitting model Number of free parameters

1 {PS(Identity), DS} 10

2 {PS, DS} 8

3 {1-RHO, PS(Identity), DS} 7

4 {1-RHO, PS(Identity), DS} 7

5 {PS, DS} 8

6 {1-RHO, PS, DS} 5

7 {1-RHO, PS, DS} 5

8 {1-RHO, PS(Emotion), DS} 7

9 {PS, DS} 8

10 {1-RHO, PS(Identity), DS} 7

11 {1-RHO, DS} 9

12 {1-RHO, PS, DS} 5

13 {PS, DS} 8

14 {1-RHO, PS(Emotion), DS} 7

15 {PS, DS} 8

16 {PI, PS(Identity), DS} 6

17 {1-RHO, PS, DS} 5

18 {PS, DS} 8

19 {1-RHO, PS(Identity), DS} 7

20 {1-RHO, PS, DS} 5

21 {1-RHO, PS(Identity), DS} 7

22 {1-RHO, PS, DS} 5

23 {1-RHO, PS(Identity), DS} 7

24 {1-RHO, PS(Emotion), DS} 7
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