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Summary

Interference occurs when the treatment of one person affects the outcome of another. For example, 

in infectious diseases, whether one individual is vaccinated may affect whether another individual 

becomes infected or develops disease. Quantifying such indirect (or spillover) effects of 

vaccination could have important public health or policy implications. In this paper we use 

recently developed inverse-probability weighted (IPW) estimators of treatment effects in the 

presence of interference to analyze an individually-randomized, placebo-controlled trial of cholera 

vaccination that targeted 121,982 individuals in Matlab, Bangladesh. Because these IPW 

estimators have not been employed previously, a simulation study was also conducted to assess 

the empirical behavior of the estimators in settings similar to the cholera vaccine trial. Simulation 

study results demonstrate the IPW estimators can yield unbiased estimates of the direct, indirect, 

total and overall effects of vaccination when there is interference provided the untestable no 

unmeasured confounders assumption holds and the group-level propensity score model is correctly 

specified. Application of the IPW estimators to the cholera vaccine trial indicates the presence of 

interference. For example, the IPW estimates suggest on average 5.29 fewer cases of cholera per 

1000 person-years (95% confidence interval 2.61, 7.96) will occur among unvaccinated 

individuals within neighborhoods with 60% vaccine coverage compared to neighborhoods with 

32% coverage. Our analysis also demonstrates how not accounting for interference can render 

misleading conclusions about the public health utility of vaccination.
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1. Introduction

1.1 Background and Motivating Example

When assessing the effect of a treatment or exposure, often it is assumed the outcomes of 

one individual are not affected by the treatment received by other individuals, i.e., there is 

no interference between individuals. However, in many contexts, the no interference 

assumption is likely violated. For example, in the context of infectious diseases, whether one 

individual is vaccinated may affect whether another individual becomes infected or develops 

disease (Halloran and Struchiner 1995). Consider the following motivating example.

An individually-randomized placebo-controlled trial was conducted in Matlab, Bangladesh 

between 1985–88 to assess the efficacy of two oral cholera vaccines (Clemens et al. 1988). 

All children (2–15 yrs old) and women (>15 yrs old) were randomly assigned with equal 

probability to one of three treatment assignments: (1) B subunit-killed whole-cell oral 

cholera vaccine, (2) killed whole-cell-only cholera vaccine, or (3) E. coli K12 placebo. 

Although all women and children were randomized, only a subset participated in the trial. 

Of the total eligible sample population (N = 121,982), 49,300 women and children received 

two or more doses of vaccine. Surveillance of the Matlab population for diarrhea was 

conducted at three diarrheal treatment centers, and data for all eligible individuals were 

obtained from the International Centre for Diarrhoeal Disease Research, Bangladesh. 

Cholera cases were defined according to the following criteria: Vibrio cholerae 01 isolation 

from fecal samples, presentation of non-bloody diarrhea, and registration at a treatment 

center upon presentation of symptoms. Risk of cholera among the total eligible study 

population was 4.52 cases per 1000 people in the first year of follow-up. In the original 

vaccine trial, efficacy (defined as percent reduction in cholera incidence in vaccinated 

individuals compared to placebo recipients) was estimated to be 62% for the vaccine with B 

subunit and 53% for the vaccine without B subunit at one year of follow-up (Clemens et al. 

1988).

Previous analyses of the cholera vaccine trial suggest that vaccination of individuals may 

have affected the outcomes of other individuals. For example, Ali et al. (2005) found spatial 

variation in vaccine efficacy was associated with spatial heterogeneity in vaccine coverage 

(i.e., the proportion of vaccinated individuals), whereby the estimated efficacy was lower in 

areas of higher vaccine coverage. They also found that risk of disease among placebo 

recipients was inversely associated with the level of vaccine coverage in their respective 

neighborhoods. These results suggest possible interference between individuals in spatial 

proximity to one another. Similarly, Root et al. (2011) found that incidence of cholera 

among placebo recipients declined with increasing vaccine coverage within an individual’s 

kinship network.
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The analysis of the Matlab cholera vaccine trial presented in this paper goes beyond the 

association-type analyses described above. Instead, inference is drawn about different 

effects of vaccination by utilizing recently developed methods for causal inference in the 

presence of interference. The results have straight-forward interpretations in terms of the 

expected number of cases of cholera averted due to vaccination, allowing investigators and 

public health officials who determine vaccine policy to better understand the direct and 

indirect effects of cholera vaccination.

1.2 Methods for Interference

Recently increasing attention has been placed on developing methods for assessing 

treatment effects in the presence of interference (see Tchetgen Tchetgen and VanderWeele 

(2012) and references therein). Inference in this setting is particularly interesting, yet 

challenging, because a treatment may have different types of effects in the presence of 

interference. One approach has been to assume individuals can be partitioned into groups 

such that interference is possible within groups but not across groups (i.e., there is no 

interference between individuals in different groups). This assumption is sometimes called 

‘partial interference’ (Sobel 2006) and should approximately hold if individuals can be 

clustered in space, time, or some other fashion.

Drawing inference about treatment effects generally requires knowledge or modeling of the 

mechanism by which individuals select or are assigned treatment. Under the partial 

interference assumption, one possible assignment mechanism is a sequential two stage 

randomization design, where in stage one groups are randomized to different treatment 

allocation strategies and in stage two individuals are randomized to treatment or control 

conditional on the strategy assigned to their group in the first stage (Hudgens and Halloran 

2008). For example, schools might be randomized to low or high vaccine coverage, and then 

students in the schools randomized to control or vaccine with vaccination probability 

dependent on whether their school was assigned to low or high coverage (Longini et al. 

2002).

In many settings, however, randomization may only occur at the group level, at the 

individual level, or neither. Tchetgen Tchetgen and VanderWeele (2012; henceforth TV) 

proposed estimators for treatment effects in the presence of interference which do not 

require randomization of individuals or groups. The estimators proposed by TV entail 

estimating mean potential outcomes by taking weighted averages of the observed responses 

where the weights include the inverse of group-level propensity scores (Rosenbaum and 

Rubin 1983). TV proved that when the group-level propensity scores are known, these 

inverse-probability weighted (IPW) estimators are unbiased. However, to date the finite 

sample properties of their proposed IPW estimators have not been evaluated when the 

group-level propensity score is unknown and therefore must be estimated, nor have these 

estimators been employed in an application.

1.3 Outline

The remainder of this paper is organized as follows. In Section 2 we introduce notation and 

provide general definitions of estimands and estimators to be used in subsequent sections. In 
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Section 3 finite sample properties of the IPW estimators are assessed in a simulation study. 

In Section 4 we use these methods to analyze the cholera vaccine trial data described in 

Section 1.1. Finally, in Section 5 we discuss our findings and highlight potential future 

methods for addressing interference.

2. Methods

2.1 Notation and Estimands

Consider a finite population of N individuals. Suppose the individuals can be partitioned into 

m groups (e.g., neighborhoods) with ni individuals in group i for i = 1, …, m, such that 

. Suppose individuals are either vaccinated (a = 1) or not vaccinated (a = 0). Let 

Aij = 1 if individual j in group i is vaccinated, and 0 otherwise. Let Ai = (Ai1, …, Aini) denote 

the vector of vaccination indicators of all individuals in group i. Let Ai,−j = (Ai1, …, Aij−1, 

Aij+1, …, Aini) denote the vector of vaccination indicators for all individuals in group i 

except individual j. Let ai and ai,−j denote realizations of Ai and Ai,−j. Let (n) be the set of 

2n possible vaccination vectors for a group of size n, such that ai ∈ (ni).

Assume there is partial interference, i.e., there is no interference between individuals in 

different groups. Let yij(ai) denote the potential disease outcome (1 if disease or infection, 0 

otherwise) for individual j in group i if Ai = ai, such that each individual in group i has 2ni 

potential outcomes. Sometimes it is helpful to express the potential outcome for individual j 

as a function of his/her vaccination status aij and the vaccination status of other individuals 

in his/her group ai,−j, in which case we write yij(aij; ai,−j). Let Yij = yij(Ai) denote the 

observed infection outcome for individual j in group i, and let Yi = (Yi1, …, Yini) denote the 

vector of observed outcomes for all individuals in group i.

For the cholera vaccine study motivating example, individuals may have chosen to 

participate or not in the trial. The potential outcomes defined above can be defined more 

generally as a function of vaccination status and participation status. In particular, let Bij = 1 

if individual j in group i chose to participate in the trial, let Bij = 0 otherwise, and define Bi = 

(Bi1, …, Bini). Let yij(ai, bi) denote the potential disease outcome for individual j in group i 

if Ai = ai and Bi = bi. We assume that participation has no effect on an individual’s outcome 

for fixed vaccination status of their group, i.e.,  for all bi, . Under 

this assumption the simpler notation yij(ai) in the preceding paragraph is sufficient to 

describe all potential outcomes for individual j in the presence of partial interference.

Various vaccine effects can be defined according to differences in average potential 

outcomes associated with a particular group allocation strategy and individual treatment 

assignment. Here we consider allocation strategies, denoted by α or α′, corresponding to 

different levels of vaccine coverage. Define the individual average potential outcome for 

individual vaccine assignment a and group-level vaccination coverage α by ȳij(a; α) = 

 yij(a; ai,−j)π(ai,−j; α), where π(ai,−j; α) denotes the conditional probability Pr(Ai,−j = 

ai,−j|Aij = a) under vaccine coverage α. Assume under allocation strategy α individuals 

receive vaccine independently from each other with probability α such that 
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. The marginal individual average potential outcome 

can be defined similarly as ȳij(α) =  yij(ai)π(ai; α), with 

. Define the group average potential outcomes as 

. Population average potential outcomes are defined as 

, and marginal group and population average potential outcomes 

are defined as  and , respectively.

Following Halloran and Struchiner (1995) and Hudgens and Halloran (2008), the direct 

effect of vaccination corresponds to the difference in the risk of infection when an individual 

is vaccinated compared to when an individual is not vaccinated, all other things being equal. 

Formally, define the population average direct effect when vaccine coverage is α as 

. Indirect effects of vaccination correspond to the difference in 

infection risk of an unvaccinated individual under two different levels of vaccine coverage. 

The population average indirect effect is formally defined as . 

Indirect effects can be defined analogously for vaccinated individuals (a = 1), but for 

simplicity only indirect effects in unvaccinated individuals are considered in the sequel. The 

total effects of vaccination combine both direct and indirect effects, and correspond to the 

difference between the risk of infection for unvaccinated individuals under one vaccine 

coverage level compared to the risk of infection for vaccinated individuals under another 

vaccine coverage level. Specifically, the population average total effect is defined by 

. The overall effect of vaccination corresponds to the difference 

in the risk of infection under one group allocation strategy relative to another strategy, i.e., 

. If there is no interference between individuals, then the direct, 

indirect, and total effects do not differ across allocation strategies α and α′, the indirect 

effects equal zero, and the total effects equal the direct effects (Hudgens and Halloran 2008). 

In the next section we consider estimators that, under certain assumptions, can be used to 

draw inference from observational data about average potential outcomes under different 

allocation strategies α and α′ and, in turn, the four effects defined above.

2.2 Estimators

In the absence of randomization at the group and/or individual level, TV proposed IPW 

estimators of the direct, indirect, total, and overall effects. The IPW estimators are 

constructed by weighting the observed individual responses Yij by the inverse of the group-

level propensity score, i.e., the probability a group of individuals receives a particular 

vaccination vector (defined below). When this group-level propensity score is known, TV 

proved the IPW estimators are unbiased under two assumptions: conditional independence 

and positivity. Under the conditional independence assumption

(1)
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where yi denotes the potential outcomes for all individuals in group i, and Xi = (Xi1, …, 

Xini) is an ni × p matrix with Xij a 1 × p vector of covariates for individual j in group i. The 

right side of (1) is the group-level propensity score used in constructing the IPW estimators. 

Under the positivity assumption

(2)

Assumptions (1) and (2) are group-level generalizations of the usual no unmeasured 

confounders and positivity assumptions made at the individual level in the analysis of 

observational studies when interference is not present.

In general in observational studies the true propensity score will not be known. In this 

particular setting TV proposed fitting mixed effects models to estimate the propensity 

scores. For the cholera vaccine trial, individuals were randomized to vaccine or not, such 

that whether or not an individual was vaccinated was determined by his/her choice to 

participate in the trial as well as his/her randomization assignment. Therefore, to estimate 

the group-level propensity scores, the individual probability of trial participation will be 

estimated using a mixed effects logit model, and this will be combined with the known 

probability of vaccine assignment (2/3) conditional on participation in the trial. We assume 

that the decision of an individual to participate in the trial was independent of their vaccine 

assignment, which is plausible because by design individuals had no way of knowing their 

randomization assignment prior to deciding whether or not to participate in the trial. Recall 

Bij is an indicator of participation for individual j in group i. The joint probability of 

vaccination for a group is modeled as

(3)

where hij(bi) = Pr (Bij = 1|Xij, bi) = logit−1 (Xijϕa + bi) is the probability of participation in 

the trial conditional on covariates Xij for individual j and random effect bi for group i, fb(·; 

ϕb) denotes the density function of bi which is assumed bi ~ N(0, ϕb), and ϕ = (ϕa, ϕb) 

denotes the vector of model parameters.

When the group-level propensity scores (3) are unknown and must be estimated, the IPW 

estimators of the group-level average potential outcomes are:

(4)

(5)

where ϕ̂ is an estimator of ϕ (discussed further below). The estimators for population 

average potential outcomes and marginal population average potential outcomes are 
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 and . Estimators for direct, 

indirect, total, and overall effects are given by:

(6)

In the results below these estimators were computed with ϕ̂ estimated by fitting a mixed 

effects logit model of the probabilty of participation using maximum likelihood. Mixed 

effects models were fit using the glmer function in the lme4 package (Bates, Maechler and 

Bolker 2011), and the denominators of (4) and (5) were evaluated numerically using the 

integrate function in R (R Core Team 2013).

TV did not provide variance estimators of the estimators given in (6), although they did 

suggest that large sample variance estimators should be straightforward to obtain under 

standard regularity conditions. In Web Appendix A the large sample distributions of the 

estimators in (6) are derived using M-estimation theory (Stefanski and Boos 2002). The 

estimators are shown to be consistent and asymptotically normal, and sandwich-type 

variance estimators are derived. In the sequel, the variance estimator given in equation (5) of 

Web Appendix A is used to compute Wald type confidence intervals (CIs) for the different 

effects.

3. Simulation Study

A simulation study was implemented to assess the accuracy of the IPW estimators (6) in 

scenarios similar to the cholera vaccine trial. The steps taken in the simulation study are 

listed below.

(0) The simulated population, which was held fixed across simulation runs, 

consisted of 10,000 individuals who were randomly allocated to one of 500 

neighborhoods (median: 20 people per neighborhood, IQR: 17 – 23). Let yij(a, 

k) represent the cholera status of individual j given individual j receives 

treatment a and k individuals in neighborhood i excluding individual j are 

vaccinated. For each individual, yij(a, k) was generated by randomly sampling 

from a Bernoulli distribution with expectation logit−1(0.500−0.788a

−2.953αi−0.098Xij1−0.145Xij2+0.351aαi) where αi = (a+k)/ni, Xij1 represented 

an individual’s age (in decades), and Xij2 represented an individual’s distance to 

the nearest river (in km). Individual ages were randomly generated using an 

exponential distribution with mean 20; ages above 100 were set to 100 and then 

ages were divided by 10 (making the units decades). Neighborhood distances to 

river were randomly generated using a log-normal distribution such that the log 

distance mean and standard deviation were 0 and 0.75, respectively. Individual-

level distances were then generated by adding random variation to 

neighborhood-level distances in the form of normal random deviates with mean 
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0 and standard deviation of 0.05; individual-level distances below 0 were set to 

0. The parameter values for the above outcome model were chosen based on 

logistic regression modeling of the cholera vaccine trial data. Under this 

parameterization if no individuals were vaccinated in a neighborhood, the risk of 

infection for individuals age 20 (Xij1 = 2) living one km to the nearest river (Xij2 

= 1) was approximately 0.54. The average potential outcomes for individual j in 

neighborhood i were then calculated as

and ȳij(α) = αȳij(1; α) + (1 − α)ȳij(0; α). Finally the causal estimands of 

interest as defined in Section 2.1 were computed.

(1) For each individual the indicator of participation in the trial Bij was randomly 

generated from a Bernoulli distribution with mean logit−1 (0.2727 − 0.0387Xij1 

+ 0.2179Xij2 + bi), where Xij1 and Xij2 were from step 0, and bi was a 

neighborhood-level random effect generated from a Normal distribution with 

mean 0 and variance ϕb = 1.0859. As in step 0, the choice of parameter values 

was based on fitting a logistic mixed effects model to the cholera vaccine trial 

data. For individuals with Bij = 1, treatment assignment Aij was generated from a 

Bernoulli distribution with mean 2/3. Otherwise, if Bij = 0, then Aij = 0.

(2) Based on the potential outcomes generated in step 0 and the treatment 

assignment from step 1, the observed outcomes were set to 

, and the estimates  and 

were calculated for a ∈ {0, 1} and α ∈ [0.2, 0.8] using the IPW estimators (4)–

(5). Then, the direct, indirect, total, and overall effect estimates (6) were 

calculated, along with the corresponding sandwich-type variance estimates 

given in Web Appendix A and Wald CIs.

(3) Steps 1–2 were repeated 1000 times.

The plots in Figure 1 display the average of the 1000 IPW estimates of the direct, indirect, 

total, and overall effects, as well as the corresponding true effects (calculated based on the 

population generated in step 0 above). Figure 1A shows the direct effects as a function of 

group-level allocation strategies, i.e., α. Figures 1B–1D depict the indirect, total, and overall 

effects of vaccination across all combinations of α and α′. The true direct effects decline 

with increasing vaccine coverage α, while indirect, total, and overall effects increase with α′ 

across all values of α. Note that plots for  and  are symmetric in absolute 

value because Ŷipw(0; α) − Ŷipw(0; α′) = −{Ŷipw(0; α′) − Ŷipw(0; α)} and Ŷipw(α) − Ŷipw(α′) 

= −{Ŷipw(α′) − Ŷipw(α)}. In general, the empirical bias of the IPW estimators was 

negligible. Similarly, the average sandwich-type variance estimates approximately equaled 

the empirical variance, and the empirical coverage of the Wald 95% CIs was close to the 

nominal coverage probability (see Web Table 1).
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For each simulation we also computed naive estimators based on simple averages of 

observed outcomes for comparison with the IPW estimators. For each group we computed 

the average observed outcomes  for each level 

of treatment a = 0, 1, where I(·) is the usual indicator function. The average overall outcome 

 was also computed, and these group level averages were then averaged 

across groups having vaccine coverage approximately equal to α. Specifically, we let 

 and 

, where 

 denotes the observed vaccine coverage in neighborhood i and h = (0.8 − 

0.2)/50 = 0.012. The estimators Ỹ(a; α) and Ỹ(α) were evaluated at the same values of a and 

α as the IPW estimators. Naive estimates for the direct, indirect, total, and overall effects 

were then computed by substituting Ỹ(a; α) for Ŷipw(a; α) and Ỹ(α) for Ŷipw(α) in (6). The 

empirical bias of the naive estimators (Web Figure 1) was substantially larger than the bias 

of the IPW estimators (Figure 1). These results are not surprising given that, unlike the IPW 

estimators, the naive estimators make no attempt to adjust for possible confounding (in this 

case by age Xij1 and distance to a river Xij2).

As an alternative to the IPW estimators that does attempt to adjust for confounding, outcome 

model-based estimators of the different vaccine effects were also computed for each 

simulated data set. In particular, as in Ali et al. (2005) the following population average 

logistic regression model logit(Pr[Yij = 1]) = β0 + β1Aij + β2αi + β3Aijαi + β4Xij1 + β5Xij2 was 

fit using generalized estimating equations assuming an independence working correlation 

structure between individuals within the same neighborhoods (groups). The coefficients 

from the logistic regression model could not directly be interpreted in terms of the estimands 

of interest because the vaccine effects given in Section 2.1 are defined as counterfactual risk 

differences. Therefore, following Austin (2010), the predicted risk of Yij = 1 was computed 

for each individual for a = 0, 1 and α ∈ [0.2, 0.8] based on the fitted model. These 

individual predicted risks were averaged across individuals within groups, and then the 

group averages were averaged across groups to obtain estimates of Ȳ(a; α) and Ȳ(α), which 

were then substituted for Ŷipw(a; α) and Ŷipw(α) in (6). Like the naive estimators, the 

outcome model-based estimators were substantially more biased than the IPW estimators 

(Web Figure 2).

Finally, to examine sensitivity of the IPW estimators to misspecification of the propensity 

score model, for each simulation the IPW estimators were also computed based on an 

incorrectly specified propensity score model wherein the river distance covariate (Xij2) was 

erroneously omitted. Results in Web Figure 3 show that negligible bias was introduced 

when the propensity score model was incorrect, demonstrating the IPW estimators may in 

some circumstance be fairly robust to such model misspecification. However, it is difficult 

to draw general conclusions from a single simulation study, and one might expect the bias of 

the IPW estimator to be dependent on the strength of association of the omitted covariate(s) 

with participation and risk of cholera infection.
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4. Analysis of the cholera vaccine trial

4.1 Data

As in Ali et al. (2005), individuals were considered to be trial participants if they received 

two or more doses of either vaccine or placebo. Unvaccinated individuals included eligible 

non-participants and placebo recipients. Vaccinated individuals included recipients of B 

subunit-killed whole-cell oral cholera vaccine and killed whole-cell-only vaccine, with no 

distinction made in the analysis between the two types of vaccine (N = 49,300). A total of 

121,982 eligible individuals from 6,415 baris, i.e., clustered patrilineal households were 

included in the analysis (Figure 2A).

4.2 Neighborhood Definition

Because group membership was not predefined in this individually randomized trial, groups 

(neighborhoods) were defined according to the spatial clustering of baris. Discrete 

neighborhoods were determined according to a single linkage agglomerative clustering 

method (Everitt et al. 2011). Each individual therefore belonged to a neighborhood defined 

by the spatial distribution of baris. We assumed no interference between individuals in 

different neighborhoods. The total number of neighborhoods was pre-specified to equal 700, 

which resulted in a median of 64 (IQR: 21 – 191) eligible individuals per neighborhood 

(Figure 2B). A sensitivity analysis was conducted to address how neighborhood scale, i.e., 

group definition, could influence results. Specifically, the analysis was repeated using 

cluster definitions in which the pre-determined total number of groups equaled 400 and 1100 

(Figure 2C–D).

4.3 Analysis

Because individuals who did not participate in the trial are included in this analysis, methods 

suitable for an observational study design, such as IPW type approaches, are necessary to 

draw valid inference about the effects of vaccination. To implement the IPW estimators 

from Section 2.2 using the cholera vaccine trial data, a logistic mixed effects model of the 

probability of participating in the trial was fit to estimate the group-level propensity scores 

(3). Following VanderWeele and Shpitser (2011), we considered for inclusion in the 

propensity score model measured baseline covariates that were believed to possibly cause 

participation, cholera infection, or both. Based on this criterion and analyses examining 

associations of covariates with participation or cholera infection, the untestable no 

unmeasured confounders assumption (1) was assumed to hold conditional on age and 

distance to the nearest river. Analyses suggested that the associations between the log odds 

of participation and the covariates age and river were non-linear; therefore quadratic age and 

river terms were also included in the propensity score model. The fitted propensity score 

model indicated that the odds of trial participation was significantly associated with age (for 

age in decades centered at 28 years, ϕ̂
a,age = −0.060, estimated standard error  and 

ϕ̂
a,age2 = 0.032, ) and distance to the nearest river (ϕ̂

a,river = 0.147,  and 

ϕ̂
a,river2 = 0.020, ), and that there was significant correlation between individuals in 

the same neighborhood (ϕ̂
b = 1.20, ). The Tchetgen Tchetgen-Coull (2006) 

diagnostic test suggested the normal random effects model provided adequate fit (p = 0.13). 

Estimators (4) and (5) can be viewed as weighted averages of individual observed responses 
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with weights wij = π(Ai,−j; α)/Pr(Ai|Xi; ϕ̂) and wi = π(Ai; α)/Pr(Ai|Xi; ϕ̂). For the primary 

results presented below, wij ranged from 1.08 to 3.74 and wi ranged from 0.92 to 1.16 for the 

values of α considered. Sensitivity analyses were conducted by considering group-level 

propensity score models including other covariates in addition to age and distance to the 

nearest river. Group level propensity score estimates were used to compute the IPW 

estimates (6) of the direct, indirect, total and overall effects for vaccine coverage values α 

and α′ between 0.30 and 0.60. The ranges of α and α′ were chosen because 75% of 

individuals were members of neighborhoods with vaccine coverage between 30% and 60%.

4.4 Results

IPW estimates of the direct, indirect, total, and overall effects based on 700 neighborhoods 

are shown in Figure 3. The estimates are given in units of cases of cholera per 1000 

individuals per year. The direct effect estimates (Figure 3A) generally decrease with 

increasing α. The largest estimate of the direct effect occurs at 32% vaccine coverage level: 

, 95% CI 2.48, 8.12. In other words, in neighborhoods with 32% vaccine 

coverage we would expect 5.30 fewer cases of cholera per 1000 person-years among 

vaccinated individuals compared to unvaccinated individuals. In contrast, the smallest direct 

effect estimate occurs at 60% coverage: , 95% CI −1.11, 2.33. These two 

inferences about the direct effect come to very different conclusions about the vaccine, in 

terms of both the magnitude and significance of its effect, illustrating the limitations of 

analyses that only consider direct effects when interference may be present. Moreover, were 

only  and the corresponding CI considered, the vaccine would be dismissed as 

having no utility. Analyses based on  and the other effect estimates below indicate 

this conclusion would be incorrect.

The indirect effect estimates are displayed in the contour plot in Figure 3B. Not surprisingly 

the estimates tend to increase with α′ − α. The largest estimate of the indirect effect occurs 

between 60% and 32% coverage levels: , 95% CI 2.61, 7.96. That is, 

we would expect 5.29 fewer cases of cholera per 1000 person-years in unvaccinated 

individuals within neighborhoods with 60% coverage compared to within neighborhoods 

with 32% coverage.

The total effect estimates in Figure 3C exhibit quite a different pattern from the indirect 

effect estimates, reflecting the direct effect of the vaccine. Whereas the indirect effect 

estimates along the line α = α′ in Figure 3B necessarily equal zero, the total effect estimates 

along the line α = α′ in Figure 3C necessarily equal the direct effect estimates in Figure 3A. 

In general, the contours in Figure 3C have a roughly vertical orientation, indicating that the 

estimated risk of cholera when vaccinated tends to be the same regardless of coverage, i.e., 

Ŷ(1; α′) is relatively constant as a function of α′. The hyperplane below the line α = α′ in 

Figure 3C includes the contour where the total effect estimate equals zero, corresponding to 

situations where being vaccinated in a low coverage neighborhood affords the same 

estimated risk of cholera as being unvaccinated in a high coverage neighborhood. On the 

other hand, the largest total effect estimate  (95% CI: 2.98, 8.82) 

corresponds, as one might expect, to being vaccinated in a high coverage (60%) 
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neighborhood relative to being unvaccinated in a low coverage (32%) neighborhood. In 

contrast to inference about , the total effect estimate  is an order of 

magnitude greater and the corresponding 95% CI easily excludes the null value of zero, 

suggesting a significant total vaccine effect.

Estimates of the overall effects (Figure 3D) exhibit a similar pattern to the indirect effect 

estimates. The largest overall effect estimate  (95% CI: 2.06, 5.86) 

provides a single summary measure of the neighborhood-level effect of vaccination. In 

words, 3.96 fewer cases of cholera per 1000 individuals per year are expected if 60% of 

individuals are vaccinated compared to if only 32% are vaccinated.

Effect estimates obtained using alternative group definitions (i.e., 400 and 1100 total 

neighborhoods) were similar and within the 95% CIs from the 700 neighborhoods analysis 

(Figure 4). Estimates were also similar when using an alternative propensity score model 

that conditioned on age (linear and quadratic), distance to the nearest river (linear and 

quadratic), distance to the nearest treatment center (linear), and religion (Hindu versus non-

Hindu); see Web Figure 4.

5. Discussion

The Matlab cholera vaccine trial analysis presented in this paper extends previous 

association-type analyses of population-level vaccine efficacy (Ali et al. 2005, 2009; Root et 

al. 2011) to inference about the different causal effects of the vaccine(s). Such inference 

quantifies the expected number of cholera cases prevented for different levels of vaccine 

coverage in both vaccinated and unvaccinated individuals, providing clearer interpretation of 

and additional insight into the population-level impact of vaccination for investigators and 

policy makers. The analysis in this paper also demonstrates the importance of considering 

both individual and group-level vaccine effects when interference may be present. 

Otherwise, an analysis that focuses only on the individual (i.e., direct) effect may fail to 

recognize a vaccine with potential public health benefit.

A two-stage randomized trial as described in Section 1.2 would be an ideal study design for 

drawing inference about different vaccine effects in the presence of interference. However, 

in many settings two-stage randomization may not be feasible, in which case alternative 

analytical strategies that adjust for the lack of randomization at one or both stages are 

needed to estimate the effects of vaccination. In contrast to two-stage randomized trials, in 

individually randomized vaccine trials the group-level vaccine coverage will depend on the 

proportion of individuals within groups that elect to participate in the trial (assuming the 

vaccine is not available otherwise), which may vary between groups. For instance, Ali et al. 

(2009) found significant heterogeneity in the spatial distribution of vaccine coverage across 

villages in the cholera vaccine trial area. Such heterogeneity may be associated with the 

infection risk of individuals within the groups, and thus comparisons between groups with 

different vaccine coverage levels may be susceptible to confounding. The methods 

employed in our analysis use inverse probability weighting to control for such confounding. 

In particular, we found that age and distance to the nearest river were associated with trial 

participation and cholera infection, and thus assumed the no unmeasured confounders 
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assumption (1) held conditional on these covariates. Sensitivity analysis to this assumption 

suggested the results were fairly robust to the choice of confounders included in the 

propensity score model.

Nonetheless, it is always possible in observational studies that unmeasured confounding 

exists. Predicting the impact of such confounding on the IPW estimates of the cholera 

vaccine’s effects is challenging. At the individual level, if in the absence of vaccination trial 

participants would have been at lower risk for developing cholera than non-participants 

(conditional on measured covariates), then we might predict the direct effect estimates to be 

positively biased. This might have occurred if individuals who participated in the trial 

tended to also take additional precautionary measures to lower their risk of acquiring cholera 

relative to non-participants. On the other hand, if in the absence of vaccination trial 

participants would have been at greater risk for developing cholera than non-participants, 

then we might predict the direct effect estimates to be negatively biased. This might have 

occurred if trial participants correctly self-identified themselves as being at high risk of 

acquiring cholera relative to non-participants. Similarly, at the group level, if in the absence 

of vaccination those neighborhoods with high trial participation rates would have had lower 

(higher) cholera incidence on average, then we might expect estimates of the indirect effect 

IE(α, α′) to be positively (negatively) biased for α ≤ α′.

There are several avenues of possible future research related to drawing inference about 

treatment effects in the presence of interference. We demonstrated that IPW estimators 

proposed by Tchetgen Tchetgen and VanderWeele (2012) performed well in simulations. 

However, it is well known that IPW estimators having a Horvitz-Thompson-type form can 

be highly variable. Future research could explore the utility of stabilized IPW estimators 

having a Hajek-estimator-type form in this setting. Additionally, the IPW estimators 

employed in this study require the unverifiable assumption of no unmeasured confounders; 

further research could develop formal methods for assessing the sensitivity of these 

estimators to unmeasured confounders. Following Ali et al. (2005), in the cholera vaccine 

trial analysis presented in Section 4 no distinction was made between the two types of 

vaccines. An analysis that distinguishes between the different vaccines and the placebo 

would require extending the methods employed in this paper to allow for more than two 

levels of Aij.

Partial interference, i.e., no interference between individuals in different groups, is another 

key assumption of the IPW estimators. We examined the impact of the partial interference 

assumption in the cholera vaccine trial through a sensitivity analysis and found that results 

obtained using different neighborhood scales were similar. Although we defined 

neighborhoods using a single-linkage agglomerative clustering method, other clustering 

techniques (e.g., complete linkage agglomerative clustering, arithmetic average clustering, 

centroid clustering, non-hierarchical k-means clustering) could have also been employed to 

differentiate between spatial neighborhoods (Everitt et al. 2011). Future research could 

entail relaxing the partial interference assumption. For instance, following Ali et al. (2005), 

one approach might entail allowing each individual to have their own possibly unique set of 

individuals with whom they interfere; e.g., the potential outcomes of individual j might be 

allowed to depend only on the treatment received by individuals within a 500 m circular area 
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of the residence of individual j. Hierarchical models of interference might also be considered 

that posit different levels of interference, e.g., between individuals within the same 

household and also between individuals within the same neighborhood but different 

households. The extent to which the observable data can be used to identify the form of 

interference or test assumptions about the assumed interference structure is an open 

question.

An additional extension of the work presented here might include incorporating a monotone 

treatment response assumption. In certain settings it may be plausible to assume that the 

vaccine does no harm, either directly or indirectly. For example, a no direct harm 

assumption might suppose ȳ(0; α) ≥ ȳ(1; α), i.e., the risk of infection when an individual is 

not vaccinated is at least as great as when vaccinated, conditional on a group allocation 

strategy. A no indirect harm assumption might suppose for a = 0, 1 that ȳ(a; α) ≥ ȳ(a; α′) 

for any two strategies α, α′ such that α < α′, i.e, the risk of infection is a monotonically 

decreasing function of coverage conditional on the individual vaccination status. IPW 

estimators could then be constructed which satisfy constraints imposed by the monotone 

treatment response assumptions. For example, assuming no indirect harm, the estimator of 

the indirect effect  would be guaranteed to be non-negative for all α < α′. These 

and other similar assumptions might be considered in the future development and 

application of IPW estimators for assessing treatment effects in the presence of interference.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

IPW estimates of (A) direct , (B) indirect , (C) total , and (D) 

overall  effects from the simulation study. Solid lines represent the true effects, 

and dashed lines represent average effect estimates obtained using the IPW estimators. The 

histogram in (A) represents the distribution of vaccine coverage observed from the 

simulated data. Note that plots for  and  are symmetric in absolute value 

because Ŷ(0; α) − Ŷ(0; α′) = −{Ŷ(0; α′) − Ŷ(0; α)} and Ŷ(α) − Ŷ(α′) = −{Ŷ(α′) − Ŷ(α)}.
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Figure 2. 
Definition of neighborhoods from geo-referenced data. Household clusters, i.e., baris, which 

are represented as gray dots in (A), were partitioned into distinct neighborhoods, i.e., groups, 

according to a single-linkage agglomerative clustering procedure. The rectangle in (A) is 

magnified in (B), (C), and (D). The total number of groups was set to (B) 700 

neighborhoods for the main analysis, and (C) 400 and (D) 1100 neighborhoods for the 

sensitivity analysis.
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Figure 3. 

IPW estimates of (A) direct , (B) indirect , (C) total , and (D) 

overall  effects based on the cholera vaccine trial data. In (A) the light gray region 

represents approximate pointwise 95% confidence intervals and the histogram below depicts 

the distribution of observed neighborhood vaccine coverage.
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Figure 4. 

IPW estimates of (A) direct , (B) indirect , (C) total , and 

(D) overall  effects based on the cholera vaccine trial data. The solid line gives 

the estimates using the 700 neighborhood partition. The dashed and dotted lines correspond 

to estimates using the 400 and 1100 neighborhood partitions. The gray regions around the 

effect estimates represent approximate pointwise 95% confidence intervals using the 700 

group partition.
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