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Abstract

The risk of developing colorectal cancer increases in patients with inflammatory bowel disease 

(IBD) and a growing body of evidence shows the critical role of interleukin (IL-6) in this process. 

IL-6 is both a pro- and anti-inflammatory cytokine whose effects are mediated through activation 

of STAT3. Recent studies have also demonstrated that IL-6 trans-signaling through its soluble 

receptor occurs in IBD and cancer. IL-6 trans-signaling therefore is emerging as an attractive 

approach to diminish the inflammatory signals in conditions of chronic inflammation. The purpose 

of cancer chemoprevention is to either delay the onset or progression from precancerous lesions. 

Natural compounds because of their low toxicity render themselves excellent candidates that can 

be administered over the lifetime of an individual. With the focus of managing IBD over a long 

time and preventing onset of colitis-associated cancer, we believe that there should be increased 

research focus on identifying chemopreventive compounds that can render themselves to long 

term use possibly for the lifetime of predisposed individuals. Here, we review the role of IL-6 

signaling in IBD and colitis-associated cancer and underscore the importance of searching for 

natural compounds that would target the IL-6 trans-signaling pathway as a way to diminish 

chronic inflammatory conditions in the gastrointestinal tract and possibly hamper the progression 

to colon cancer. We propose that effective screening and identification of natural chemopreventive 

compounds that target IL-6 trans-signaling has important implications for the development of 

optimal strategies against cancer development triggered by inflammation.
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1. Introduction

Inflammation, a normal physiological response to tissue injury or infection, is now 

recognized as a critical component of tumor progression in many types of malignancies 

including colorectal cancer [1–4]. Colorectal cancer is one of the most common fatal 

malignancies in the world. It is the third most frequently diagnosed cancer in both men and 

women, and was the second leading cause of cancer deaths in the United States [5]. Of great 

concern from the report is the finding that there was an increase in incidence in men and 

women under 50 years of age.

Various studies have continued to show evidence that inflammation increases the risk of 

developing colon cancer [6–9]. Inflammatory bowel Disease (IBD) is characterized by 

recurring inflammation of the gastrointestinal tract and it is a collective term for Crohn’s 

disease (CD) and ulcerative colitis (UC) [10]. Both diseases are characterized by an 

abnormal response of the immune system leading to a chronically inflamed environment. 

There is significant infiltration of immune cells that produce a variety of cytokines and 

chemokines to propagate the inflammatory response, increase proliferation, differentiation 

and inhibit apoptosis [1, 2, 8, 11]. In its most advanced stage, this environment can lead to 

development of colitis-associated cancer [12, 13]. Indeed there is a recognized increase in 

risk for colorectal cancer in patients with inflammatory bowel disease [6, 14–17]. On the 

other hand, there is also evidence showing that reducing inflammation might play a role in 

reducing progression from inflammation to cancer. For instance long-term use of anti-

inflammatory drugs reduces colon cancer risk by 40–50% [1].

An estimated 1.4 million persons in the United States suffer from IBD (http://www.cdc.gov/

ibd/). Nearly 30% of these are diagnosed during their childhood years (http://www.ccfa.org/

advocacy/IBDResearchEnhancementAct). Currently, there is no medical cure for IBD and 

therefore the patient requires a lifetime of care. More research is therefore needed to help us 

better understand the causes of uncontrolled inflammation and the immunopathogenesis of 

IBD. Currently, advocacy around the United States has led to enactment of the Inflammatory 

Bowel Disease Research Enhancement Act. In the meantime, there is an urgent need to use 

our current understanding and recent advances in the understanding of IBD, to develop 

therapeutic or preventive strategies that will halt the disease and hamper its progression to 

cancer. The advancement from inflammation to cancer is a process that could be interrupted 

by developing strategies that target various pathways and processes, therefore managing the 

disease and hindering it from becoming lethal. This review focuses on prospects of 

chemoprevention of colitis-associated cancer by targeting interleukin-6 (IL-6), as trans-

signaling by IL-6 is now believed to play a fundamental role in the development and 

maintenance of IBD and in the progression of this inflammation to colon cancer [18, 19] 

(Figure 1).
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2. Inflammation to colon cancer

Colonic inflammation may pave the way for colitis-associated cancer [12]. Inflammation is 

usually in response to tissue injury or presence of foreign invaders, in which case the body 

initiates an inflammatory response, designed to heal the afflicted tissue (Figure 1). The 

review of Coussens and Werb [1] is an excellent source for details of this complex process 

characterized by a multifactorial network of chemical signals required to initiate and 

maintain a host response. The normal inflammatory process (acute) is self-limiting and the 

pathological (chronic) inflammatory conditions result from dysregulation of any of the 

factors critical in triggering and maintaining the inflammatory response [1]. The abnormal 

sustained inflammatory response in chronic inflammatory conditions may start as a response 

to tissue injury or the presence of foreign invaders and in some cases it is merely an 

autoimmune process. Research is not conclusive on what triggers the abnormal 

inflammatory response but there is evidence for various factors [20]. Genetic contribution is 

considered an important factor [21]; for instance a susceptibility gene nucleotide-binding 

oligomerisation domain 2/caspase recruitment domain 15 (NOD2/CARD15) that was 

identified as a risk factor [22, 23] is reported to account for about 20% of the genetic 

predisposition to CD [24]. More susceptibility genes including, DLG5, OCTN1 and 2, 

TLR4, CARD4 (NODI) IL23R, IRGM, PTGER4, ATG16L1, HLA, IBD5 have been 

identified through whole genome association studies, genome-wide linkage studies, fine-

mapping as well as candidate gene studies [24–30]. Other factors include, but not limited to, 

defects in the mucosal barrier, environmental factors including smoking, geography, 

sanitation, hygiene, work environment as well as pathogenic microorganisms, changes in the 

gastrointestinal microbiota and any factor that could cause alterations in the function of the 

immune system [31–33]. However, the greatest relative risk of IBD is found among first-

degree relatives (http://www.cdc.gov/ibd/). The relative risk of IBD to siblings compared to 

general population risk ranges from 30 to 40 for CD and from 10 to 20 for UC [34].

Inflammatory Bowel Diseases are associated with T-cell activation [35] and consequently a 

lot of research has focused on these cells. T cells play an important role in short-term 

effector immunity as well as in directing other immune cells. An imbalanced mucosal T cell 

response has been identified in both CD and UC [36]. Research shows that there are 

persistently elevated levels of activated T cells in the mucosa of CD and UC patients [37]. 

CD4+ effector T cells associated with CD and UC are categorized as T helper type 1 (TH1) 

and T helper type 2 (TH2) and a recently identified category of T cells (TH-17 cells) that 

produce interleukin 17 and are highly pro-inflammatory [38]. CD is regarded as a Thl-

mediated inflammatory disorder since lamina propria cells from patients with CD 

overproduce cytokines associated with a Thl response [35, 39]. On the other hand UC is 

regarded as a Th2-like disease since cells from patients with UC overproduce cytokines 

associated with the Th2 response [35, 39]. Activated T-cells are resistant to apoptosis, 

produce cytokines, activate macrophages, which once activated, produce additional 

inflammatory growth factors and cytokines [1, 40].

Cytokines contribute to amplifying and sustaining the ongoing mucosal inflammation and 

therefore play a central role in modulating inflammation [20, 40–42]. Indeed the profile of 

cytokines persisting at an inflammatory site is important in the development of chronic 
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disease [1, 43]. Cytokines profoundly affect endothelial, epithelial and mesenchymal cells in 

the local microenvironment. They mediate their effects through binding to specific 

membrane bound receptors expressed on target cells [41]. The body can also mitigate by 

inducing an inflammatory response that includes producing anti-inflammatory cytokines or 

using the soluble forms of the receptors for the proinflammatory cytokines as cytokine 

scavengers, thereby quenching cytokine signaling. However, interleukin 6 (IL-6) is an 

exception as its soluble receptor does not quench but rather promotes cytokine signaling in a 

process called trans-signaling [19, 41]. To further underscore the importance of IL-6 among 

the pro-inflammatory cytokines, recent evidence suggests that the development and 

perpetuation of IBD relies, in part, on IL-6 trans-signaling [18].

3. IL-6 and Regulation of its Expression

Various names have been used for IL-6 because of its multiple biological activities [44–46]. 

IL-6 has been shown to function as a hepatocyte-stimulating factor to induce acute phase 

reactions, and B-cell stimulatory factor to induce antibody production, in addition to 

inducing T-cell growth and cytotoxic T-cell differentiation. IL-6 is pleiotropic [45–51]. The 

term Interleukin-6 was assigned once it was clear that the various activities of differently 

named molecules were linked to the same gene on chromosome [7, 46].

Human IL-6 consists of 184 amino acids with two potential N-glycosylation sites and four 

cysteine residues [47]. IL-6 is secreted as a heterogeneous set of proteins with molecular 

mass ranging from 19 to 70 kDa. IL-6 is glycosylated and/or phosphorylated in post-

translational modifications that may be tissue-specific and may also influence the biologic 

activity of IL-6 [52, 53]. The predominant isoforms have mass of 23 to 30 kDa. The 23–25-

kDa species are O-glycosylated and that the 28- to 30-kDa species are both O- and N-

glycosylated [52, 54]

IL-6 is produced by many cell types including, lymphoid cells, such as T cells, B cells, and 

non-lymphoid cells, monocytes, fibroblasts, endothelial cells, epithelial cells, several kinds 

of tumor cells as well as cells of the adipose tissue [45, 47, 51]. IL-6 has pleiotropic effects 

on various target cells although some of its activities are also mediated by other cytokines 

[45]. The expression of IL-6 under normal physiologic conditions is tightly controlled [19]. 

Expression of IL-6 is highly inducible in response to a variety of signals. These include 

antigenic stimulation with lipopolysaccharide (LPS) and other bacterial products, viral 

infection, agents that activate protein kinase C, agents that increase intracellular cAMP, 

various cytokines such as interleukin 1 (IL-1), platelet-derived growth factor (PDGF), tumor 

necrosis factor (TNF) and in conditions characterized by inflammation [47, 55]. 

Glucocorticoids, on the other hand, downregulate IL6 gene expression, thereby providing a 

negative feedback pathway on the inflammatory response [47, 55]. Promoter polymorphism 

is another factor that not only affects the expression of the IL-6 gene but may also influence 

susceptibility to chronic disorders involving IL-6 activity [56–60]. For instance, colon 

cancer risk is associated with an interaction between rs 1800795 and rs 1800796 IL6 

polymorphisms and the use of aspirin /NSAIDs [61].
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4. IL-6 and Colitis-associated Colon cancer

IL-6, a major modulator of inflammation [62], is essential for inflammation-associated 

carcinogenesis [63]. An increase in IL-6 is associated with an increase in biomarkers of 

inflammation severity [42, 46] and cancer progression (Figure 2). IL-6 trans-signaling sets 

IL-6 apart from other pro-inflammatory cytokines, which explains accumulating evidence 

about its potential pathological role in IBD and the development of colitis associated cancer. 

There is evidence for continuous stimulation of IL-6 production in IBD and levels of IL-6 

and the soluble IL-6 receptor (sIL-6R) are elevated in both serum and intestinal tissue from 

patients with IBD [18, 20, 64–66]. The increased serum concentrations of IL-6 and sIL-6R 

have been correlated to clinical activity of the disease. IL-6 levels are also increased in the 

serum of patients suffering from colon cancer [67–69] and IL-6 levels correlate with tumor 

load and size in colorectal cancer. In vitro IL-6 stimulates growth of primary and metastatic 

human colon carcinoma cells [70]. IL-6, along with TGFβ, is also important in 

differentiation of TH17 cells from naive precursors [38, 71]. TH17 cells induce severe 

autoimmunity, which might explain the inconsistencies seen in the Thl/Th2 theory in the 

development of IBD [39] and other autoimmune diseases such as rheumatoid arthritis [71]. 

IL6 contributes to enhanced T cell survival and resistance to apoptosis in IBD [36]. 

Consequently, a humanized anti-IL-6R monoclonal antibody induces intestinal T cell 

apoptosis in patients with active CD [72, 73].

Inhibition of IL-6 signaling suppresses the growth of colon cancer [6, 74]. The proliferative 

and survival effects of IL-6 are largely mediated by the transcription factor STAT3, which is 

constitutively activated in colon cancer [75]. In addition, IL-6 is a critical tumor promoter 

during early colitis-associated colon tumorigenesis [8]. IL-6 protects normal and 

premalignant intestinal epithelial cells (IECs) from apoptosis, in addition to enhancing 

proliferation of tumor-initiating cells. Exogenous administration of IL-6 to mice during 

tumor initiation results in increased tumor burden and multiplicity, while administration 

during the late stages of colitis associated cancer growth increases tumor burden [8]. TGF-β, 

a negative regulator of mucosal inflammation in the intestine, works in part through down-

regulation of IL-6 induced tyrosine phosphorylation of STAT1 and STAT3 [6, 76]. TGF-β 

receptor II is also frequently mutated in intestinal epithelial cells of patients with colon 

cancer [77]. IL-6 is continuing to attract attention due to its influence on tumor-initiating 

cells in various cancers. In cases of a disfunctional TGF-β pathway, the ability of cancer 

stem cells (CSCs) to give rise to human hepatocellular cancer is attributable to IL-6 

signaling [78, 79]. IL-6, secreted by mesenchymal stem cells (MSCs), increases the number 

of colorectal tumor initiating cells and promotes tumor formation [80]. Cells, including 

embryonic, cancer and mesenchymal stem cells which do not express the membrane bound 

IL-6R are only responsive to IL-6 in the presence of sIL-6R [81, 82]. The ability of IL-6 to 

induce differentiation of neural stem cells is attributed to sIL-6R [83]. Cancer stem cells are 

critical for the initiation, propagation, treatment resistance and metastasis of multiple 

cancers including colon cancer. Therefore, the potential role of IL-6 in CSC propagation 

makes IL-6 status a significant predictor of poor prognosis for cancer patients. However, 

IL-6 mediated STAT3 signaling also plays a protective role in IBD [18]. For instance, 

severity of DSS-induced mucosal inflammation is increased in both IL-6 knockout mice and 
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in mice lacking STAT3 in intestinal epithelial cells while the number of tumors is reduced 

[6, 7]. In addition, increased IL-6 levels in the gut mucosa counteracts some of the injurious 

effects of sepsis and endotoxemia [84, 85, 86 55]. Classic IL-6 signaling through the 

membrane bound IL-6 receptor (Figure 1) is responsible for the anti-inflammatory and 

regenerative response of intestinal cells to the stressor, while the IL-6 trans-signaling 

through the sIL-6R is responsible for the pro-inflammatory properties of IL-6, promoting 

apoptotic resistance of T cells hence leading to progression of the disease [18,87].

5. IL-6 signaling

IL-6 is a member of a cytokine superfamily whose signaling mechanism requires the 130-

kDa signal transducing protein, gp130 [48]. Binding of IL-6 to its cognate receptor (IL-6R) 

is not sufficient to transduce a signal and requires interaction with the membrane bound 

gp130 to induce signal transduction [45, 46, 48]. There are two types of IL-6 signaling, 

classic signaling and trans-signaling (Figure 4). In the classic signaling, IL-6 binds to its 

membrane bound IL-6R (mIL-6R, 80-kDa). The expression of mIL-6R is mainly confined to 

hepatocytes, neutrophils, monocytes, macrophages as well as some lymphocytes [82], while 

gp130, is widely expressed on many cell types. In trans-signaling IL-6 binds to the naturally 

occurring soluble form of the IL-6 receptor (sIL-6R, 50-kDa) forming a complex (IL-6/

sIL-6R). IL-6/sIL-6R associates with gp130 to induce signal transduction in cells that lack 

the membrane-bound IL-6R and would not ordinarily respond to IL-6 [6, 46, 71, 82, 88, 89]. 

Association of IL-6/IL-6R (IL-6/sIL-6R) with gp130 results in activation of Janus kinases 

(JAKs). The JAKs then phoshorylate gp130 leading to recruitment and subsequent 

phosphorylation of STAT3 and other molecules as well as activation of various pathways 

including SHP-2/Ras, and PI3k/Akt [13, 45, 49, 90]. gp130 is shared by several other 

cytokine receptors including those of IL-11, leukemia inhibitory factor (LIF), ciliary 

neurotrophic factor (CNTF), Oncostatin M (OSM), cardiotrophin-1 (IL-6-type cytokines). 

Therefore, the pleiotropic effects of IL-6 on target cells are also mediated by other cytokines 

partly explaining the molecular mechanisms of redundancy in cytokine functions [45, 48].

Most soluble cytokine receptors (sCRs) prevent cytokines from binding to their membrane 

receptors and thereby inhibit cytokine signaling [91]. However, in addition to IL-6, two 

other cytokines, IL-11 and ciliary neurotrophic factor, in the IL-6 superfamily of cytokines 

display some trans-signaling activity [41, 89, 92]. The IL-11 receptor (IL-11R) shows many 

structural and functional similarities with IL-6R [93]. IL-11 signaling through interacting 

with IL-11R induces dimerization of membrane bound gp130 and subsequent signal 

transduction. Similarly the IL-11 through its soluble receptor (sIL-11R) is able to associate 

with gp130 on cells that don’t express mIL-11R [94]. Both IL-6 and IL-11 induce gp130-

mediated STAT3 activation during colitis-associated cancer [7], suggesting the need to 

focus on IL-6 trans-signaling. Soluble IL-6R acts as an agonist, always amplifying IL-6 

signaling, while sIL-11R can act both as an agonist and an antagonist [94]. For instance, 

sIL-11 antagonizes IL-11 signaling in cells expressing the membrane bound IL-11R [94]. In 

addition, IL-11 binds to sIL-HR with a low affinity and the concentration of IL-11 required 

for signaling through the sIL-11R is greater than that required for cells expressing 

membrane bound IL-11R [94]. This implies that classic IL-11 signaling is favored over 

IL-11 trans-signaling. Hence IL-11 trans-signaling may not amplify IL-11 signaling as seen 
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with IL-6 trans-signaling. The role of IL-11 in IBD is not very clear. It is implicated in 

linking inflammation to cancer [7, 95]. On the other hand, its role might be to stimulate 

intestinal epithelial cells, which leads to STAT3 phosphorylation and increased regeneration 

of the epithelial cells [18]. Moreover there is no strong evidence for the existence of a 

naturally occurring sIL-11R at least not to the extent of sIL-6R [95]. T cells don’t express 

membrane-bound IL-11R but do express membrane bound IL-6R, which can act as a source 

of sIL-6R to cause continuous IL-6 signaling in intestinal epithelial cells [18]. Also, IL-6 

binds to sIL-6R with the same affinity as the membrane bound receptor [96], and to date, no 

antagonistic activity has been reported for soluble IL-6R.

6. Role of IL-6 Trans-signaling in IBD and Colitis-associated Cancer

The role played by the IL-6 trans-signaling pathway in conditions of chronic inflammation is 

now becoming clearer. IL-6 and its soluble receptor (sIL-6R) are present at very high levels 

in both serum and intestinal tissue from IBD patients [18, 65, 66, 97].

There is strong evidence showing the importance of IL-6 trans-signaling in IBD and colitis 

associated colon cancer. TGF-β receptor II is frequently mutated in intestinal epithelial cells 

of patients with colon cancer [77], leading to dysfunctional TGF-β signaling. The effect of 

TGF-β, a negative regulator of mucosal inflammation, is modulated in part by IL-6 trans-

signaling. In a AOM/DSS model, mice with impaired TGF-β signaling, having a mutated 

TGF-β receptor, show larger tumors and higher IL-6 expression than the wild type whereas 

TGF-β over-expressing mice show smaller tumors and lower IL-6 expression than their wild 

type counterparts [74]. In this case, TGF-β signaling in infiltrating T cells suppress IL-6-

mediated STAT-3 activation in tumor cells thereby preventing tumor progression in vivo 

[74]. Important to note is that these tumor cells do not express the membrane bound IL-6R 

and are therefore dependent on IL-6 trans-signaling via the sIL-6R [74]. This implies that 

TGF-β production in tumor infiltrating T lymphocytes suppresses tumor growth by 

inhibition of IL-6 trans-signaling in an AOM/DSS model. This underscores the importance 

of IL-6 trans-signaling in inflammation derived colon cancer.

IL-6 trans-signaling in colonic epithelial cells plays a crucial role in the development of 

colitis-associated cancer in a murine model of colitis-associated premalignant cancer 

(CApC) and chronic colitis (CC) [9]. Epithelial cells of CC and CApC show increased levels 

of membrane-bound gp130. Moreover, sgp130 fusion protein, a specific IL-6 trans-signaling 

inhibitor, suppressed colitis associated premalignant cancer, demonstrating that IL-6 trans-

signaling in epithelial cells plays a crucial role in the development of colitis-associated 

cancer [9].

IL-6 trans-signaling plays a major role in increasing the resistance of mucosal T cells against 

apoptosis in Crohn’s disease [98]. Treatment with sgp130 fusion protein, specific for sIL-6R 

suppresses TNBS-induced colitis by inducing apoptosis of lamina propria T cells [98]. 

Furthermore, blockade of IL-6 trans signaling in mucosal T cells isolated from colonic 

specimens of patients with Crohn’s disease causes T-cell apoptosis, indicating that the IL-6 

trans-signaling mediates the resistance of T cells to apoptosis in Crohn’s disease [98]. It is 

evident that defective T cell apoptosis mediated by IL-6 trans-signaling contributes to the 
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perpetuation of chronic intestinal inflammation [98–101]. Use of anti-IL-6R monoclonal 

antibody, which targets both classic and trans-signaling, in various murine models of colitis 

suppresses established colitis by inducing lamina propria T cell apoptosis [42, 102]. Both 

classic and trans-signaling induce activation of STAT3 (Figure 4), which mediates anti-

inflammatory as well as proinflammatory signals [18]. Activation of STAT3 mediates 

resistance against apoptosis through induction of anti-apoptotic genes such as Bc12 and 

BclXL [36]. STAT3 activation therefore is a critical point in regulating the anti-apoptotic 

and pro-inflammatory effects in pathological inflammatory conditions, but it is not an 

attractive therapeutic target. Nonspecific targeting of STAT3 in IBD would not be useful 

because of blocking the necessary anti-inflammatory mechanisms as well [7, 36]. Moreover, 

deletion of STAT3 in intestinal epithelial cells (IEC) increases susceptibility to DSS and 

subsequent mucosal inflammation [7]. In fact, IL-6 knockout mice also develop 

inflammation even though at less severity compared to the inflammation in the mice with 

STAT3 depleted IECs [7], indicating that IL-6 is not the only STAT3-inducing protector 

[18]. Therefore, STAT3 plays a critical role in shaping the inflammatory response elicited 

by pro-inflammatory signals and anti-inflammatory signals [7]. However, over activation of 

STAT3 as in the case of IL-6 trans-signaling has the potential of fueling gastrointestinal 

inflammation and eventual carcinogenesis.

The role of IL-6 signaling in IBD and colitis-associated cancer is both protective and 

harmful, a double-edged sword (Figure 3A, B). Classic IL-6 signaling through the mIL-6R 

activates STAT3 leading to intestinal epithelial cell proliferation and inhibition of epithelial 

cell apoptosis thus playing a therapeutic role leading to regeneration of intestinal epithelial 

cells after damage from stressors [18]. Whereas, IL-6 trans-signaling through sIL-6R 

activates STAT3 leading to inhibition of T-cell apoptosis resulting in persistently high levels 

of activated T-cells which continue to produce factors like cytokines that contribute to 

amplifying and sustaining the ongoing mucosal inflammation [18]. In its most serious case, 

this environment paves way to colitis-associated cancer.

IL-6 signaling has beneficial effects of IL-6 [43] with regenerative effects in mucosal 

inflammation resulting from its stimulation of proliferative pathways and maintenance of 

normal homeostasis, dependent on signals via the mIL-6R [19]. IL-6 trans-signaling via the 

sIL-6R, is the main driving force of chronic inflammation and associated pathophysiological 

inflammatory conditions [103].

Undoubtedly the expression IL-6 is important for host defense although we should also 

consider the redundancy in the IL-6 family of cytokines. However, it is clear that the 

agonistic sIL-6 receptor that serves to potentiate IL-6 activity through the process of trans-

signaling is of major concern in the prognosis of inflammatory conditions like IBD and 

colitis associated cancer. IL-6 trans-signaling fuels on-going inflammation allowing 

progression from acute to chronic inflammation. IL-6 trans-signaling therefore emerges as 

an important target for dealing with IBD and curtailing progression to colitis-associated 

cancer. With all that we know and continue to understand about the complex and pleiotropic 

nature of this cytokine, it is clear that global blockade of IL-6 as a chemopreventive strategy 

would not be without unpredictable results [52, 92]. This makes specific targeting of IL-6 

trans-signaling emerge as a promising attractive strategy to combat IL-6 related pathological 
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conditions. Moreover, in light of the recent interest in the effect of IL-6 on the growth and 

differentiation of tumor initiating cells or cancer stem cells, targeting IL-6 trans-signaling 

holds promise since these cells mostly do not express mIL-6R and would therefore only 

respond to IL-6 through the sIL-6R. This implies an exciting possibility of inhibiting 

proliferation of colorectal tumor initiating cells by specifically inhibiting IL-6 trans-

signaling. With the knowledge that a significant number of colorectal cancer deaths are due 

to metastases that are resistant to conventional therapy [104], strategies that would target 

cancer stem cells are greatly needed.

7. Blockade of IL-6 Trans-Signaling

As mentioned above, inhibiting IL-6 trans-signaling has significant therapeutic and 

preventive value for colitis-associated cancers. Previously, Tocilizumab, a humanized 

antibody against the IL-6R was developed and approved by the FDA for use in patients with 

rheumatoid arthritis [105]. Not only has this agent showed good results with treatment of 

rheumatoid arthritis, but has also presented with promising results in colon cancer clinical 

trials [72, 106]. However, the cost of the drug and lack of easy administration makes this a 

somewhat prohibitive drug [107]. More importantly, the drug inhibits not only trans-

signaling but also the classic IL-6 signaling [87]. Various approaches including fusion 

proteins, peptides and down-stream targets have been discussed in literature as promising 

candidates for blockade of IL-6 signaling [107]. These however would be more suited for 

therapeutic rather than preventive purposes. A naturally occurring soluble gp130 (sgp130) is 

a selective inhibitor of IL-6 trans-signaling that does not interfere with IL-6 bound to the 

membrane bound IL-6R [108]. The sgp130 which exists in the circulation at relatively high 

concentrations [109] has been used effectively to block IL-6 trans-signaling in animal 

models [9, 82, 89, 110]. sgp130 binds to the IL-6/sIL-6R complex in the circulation, and 

specifically inhibit IL-6 trans-signaling without affecting classic-signaling via the mIL-6R 

[109]. At present, there is a fusion protein (sgp130Fc) developed by fusing the extracellular 

portion of gp130 to the Fc region of human IgG1 [109]. This protein has more than 10-fold 

higher inhibitory potential compared to the monomeric natural occurring sgp130 and it has 

shown beneficial therapeutic effects in many mouse models of human diseases including 

antigen-induced arthritis, inflammatory bowel disease, and colitis associated colon cancer 

[109]. An optimized variant of the fusion protein sgp130Fc is also being considered for 

clinical evaluation [69]. The success of this molecule holds great promise for anti-IL-6 

therapy in the treatment of colitis and colitis-associated cancer. However, whether the 

sgp130Fc molecule lends its self to long-term use as an anti-inflammatory to deter chronic 

inflammation associated with IBD and delay or hinder onset of colitis-associated cancer 

remains to be determined.

8. Chemoprevention of colitis-associated cancer by targeting sIL-6R

Given that colorectal cancer is the third most frequently diagnosed cancer in both men and 

women, and the second leading cause of cancer deaths in the United States, and that its 

incidence has increased in men and women that are under 50 years of age, we desperately 

need a strategy for preventing this disease. We also know that many individuals live with 

IBD, and are at a high risk for colorectal cancer. In addition, about one third of the people 
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living with IBD in the United States are diagnosed during their childhood years (http://

www.ccfa.org/advocacy/IBDResearchEnhancementAct). As mentioned above, trans-

signaling through the soluble receptor (sIL-6R) acts to amplify the activity of IL-6 thus 

promoting transition from acute to chronic inflammation and eventual carcinogenesis [18]. 

Therefore, IL-6 trans-signaling is emerging as an attractive target that could serve to 

diminish the inflammatory signal in IBD, consequently hampering the progression from 

inflammation to cancer. It is also important to note that over activity of IL-6 signaling is a 

more regular phenomenon, and therefore cannot be addressed by a chemotherapeutic 

approach alone but highlights the importance of including a chemopreventive approach as 

well.

Chemoprevention seeks to cause delay in onset of cancer or progression from precancerous 

lesions as an alternative to treatment of cancer after clinical symptoms have appeared, with a 

goal to live without cancer for as long as possible [111]. This implies exposure to safe 

chemopreventive agents possibly over the lifetime of an individual predisposed to IBD. 

“Prevention of colorectal cancer by administration of chemopreventive agents is one of the 

most promising options for IBD patients who are at increased risks of the disease” [112, 

113]. Chemopreventive agents can be taken as supplements or by modulation of diet [111]. 

In either case, identification of substances capable of affording protection or modulating the 

onset and severity of chronic inflammatory disorders is important. Given that IL-6 trans-

signaling through the sIL-6R is key to the progression to tumorigenesis, identifying safe 

inhibitors that target the IL-6 soluble receptor would be beneficial in modulating 

inflammation and lead to better management of IBD. It is, however, difficult to ensure that a 

compound will not have any toxicity, especially when used for an extended period of time 

[111]. Hence, naturally occurring compounds appear to be excellent candidates for long-

term use. Through epidemiological and experimental studies, various phytochemicals 

present in foods and plants have been reported to have anti-inflammatory activity. However, 

the challenge facing use of natural compounds is that mechanisms underlying the 

chemopreventive potential of these compounds are still elusive and many clinical trials have 

not provided the success seen in experimental models. In spite of this, chemoprevention 

remains an attractive concept in colorectal cancer prevention [114, 115]. It is also possible 

that the synergistic involvement of the various phytochemicals found in the natural products 

is responsible for the efficacy. In addition, genetic polymorphisms may modify the 

responses to specific bioactive phytochemicals. For instance, IL-6 genotypes may influence 

susceptibility to chronic disorders involving IL-6 activity [56–59, 116] and also influence 

individual response to chemopreventive regimens. Chemoprevention still faces many 

challenges, however these should not discourage research dedicated to this important area. 

Further studies are required to discover phytochemicals that target the sIL-6R either 

individually or synergistically with other compounds. Chemoprevention holds the promise 

of preventing, hampering, reversing or at least delaying the onset of cancer (Figure 4).

9. Principles of targeting sIL-6R with natural compounds

The sIL-6 receptor can be targeted at the point of production or by inhibiting signaling 

(Figure 3C). The sIL-6R is produced by two mechanisms, by alternative splicing of mRNA 

transcripts or by proteolytic cleavage (ectodomain shedding) of the membrane bound IL-6R 

Moriasi et al. Page 10

Anticancer Agents Med Chem. Author manuscript; available in PMC 2014 November 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.ccfa.org/advocacy/IBDResearchEnhancementAct
http://www.ccfa.org/advocacy/IBDResearchEnhancementAct


[96]. Alternative splicing generates 10% of the sIL-6R and the remaining is generated by 

proteolytic cleavage [19]. Proteolytic cleavage leading to the release of the ectodomain of 

the IL-6R is catalyzed by zinc metalloproteases of the ADAM (A Disintegrin And 

Metalloproteinase) family, including TNF-α converting enzyme (TACE) also called 

ADAM17 and ADAM10 [19, 74, 96, 117–119]. ADAM17, the main enzyme responsible for 

sIL-6R shedding is elevated in several cancers [19]. ADAM17 is also responsible for 

proteolytic cleavage of the pro-inflammatory cytokine Tumor Necrosis Factor-α (TNF-α) 

leading to the release of the biologically active cytokine. In addition, ADAM17 is involved 

in shedding ligands of the EGFR that are important in mammalian development [120]. 

ADAM17 plays a critical role in development and regeneration of epithelial tissues and 

hypomorphic ADAM17 knockout mice show an increased susceptibility to inflammation in 

the DSS colitis model of inflammatory bowel disease [103, 121]. In colorectal cancer, 

ADAM17 increases resistance to chemotherapy, due to increased shedding of growth factors 

and consequently leading to activation of growth factor receptor-mediated pro-survival 

response [104, 122]. Since in addition to orchestrating inflammatory responses ADAM17 

plays an important role in regulating cell growth [19, 103, 121, 123], global targeting of 

ADAM17 as a therapeutic or chemopreventive strategy is not a viable alternative. Exploiting 

the therapeutic potential of ADAM17 will depend on our understanding of how its activity is 

regulated and how specific organs and cells can be targeted to inactivate or activate the 

enzyme [124]. Therefore it is important to understand the mechanisms that lead to release of 

sIL-6R by ADAM17.

ADAM-mediated shedding is regulated by various regulatory pathways. Phorbol ester 

activates shedding by ADAM17 by affecting the activity of protein disulfide isomerase 

(PDI) [125]. PDI maintains ADAM17 in an inactive closed state until PMA stimulation 

generates reactive oxygen species (ROS) leading to an altered redox environment, which 

leads to inactivation of PDI. Inactivated PDI allows ADAM17 to adopt an open active 

conformation. This finding and further understanding of the mechanisms of ADAMs will be 

critical in helping us identify strategies that would regulate activity of ADAM17 and 

regulate its shedding of sIL-6R in cases of over activity of IL-6 signaling. Other stimuli of 

IL-6R cleavage include bacterial toxins, bacterial metalloproteinases and apoptosis [103].

Due to the important physiological activities of ADAM17 there are the potential pitfalls with 

suppressing the production of the sIL-6R by targeting ADAM17. However, this underscores 

the importance of using natural compounds, which usually have mild mechanisms of action 

especially considering prolonged use. Identification of natural compounds that would 

regulate over activity of ADAM17 would be important in dampening the inflammatory 

response and lead to better management of IBD. Candidate compounds may be the anti-

inflammatory compounds that also possess the ability to inhibit metalloproteinases. But 

probably the most ideal approach would be to discover compounds that specifically inhibit 

sIL-6R shedding activity by ADAM17 without inhibiting the actual enzyme. Tissue 

inhibitors of metalloproteinases-3 (TIMP-3), a factor that inhibits most matrix 

metalloproteinases, is a native inhibitor of ADAM-17 [124, 126]. The development of 

ADAM17 (TACE) inhibitors has faced many challenges including musculoskeletal and 

hepatotoxicity side effects in clinical trials, however there are many promising TACE 

inhibitors in the preclinical studies [127, 128]. Whether these compounds would lend 
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themselves to long-term use remains to be determined. Identification of natural compounds 

that modulate the activity of ADAM17 will be beneficial in advancing this field. TIMP3 is 

upregulated during the quiescent phase of CD [129], implying that natural compounds that 

increase expression of TIMP3 may improve the management of CD.

To date, however, the most promising compounds in targeting IL-6 trans-signaling will be 

those that specifically target the sIL-6R, for instance anti-inflammatory compounds that 

have the ability to increase the levels of soluble gp130 receptor. The IL-6/sIL-6R complex 

has equal affinity for membrane bound and soluble gp130 and IL-6 trans-signaling can be 

inhibited by a molar excess of sgp130 [89]. Administration of sgp130 to patients would 

serve to supplement the existing circulating levels of sgp130 and lead to specific blockade of 

IL-6 trans-signaling, leaving classic signaling intact [89]. Identification of natural 

compounds that can increase the circulating levels of sgp130 will greatly benefit the 

management of IBD over the long term.

Currently, only one study has shown a natural compound that holds promise in inhibiting 

IL-6 trans-signaling by enhancing production of soluble gp130 [130]. (−)-Epigallocatechin 

gallate (EGCG), an anti-inflammatory compound found in green tea, inhibits IL-1β–induced 

IL-6 production and trans-signaling in rheumatoid athritis synovial fibroblasts by inducing 

alternative splicing of gp130 mRNA, resulting in enhanced sgp130 production [130]. EGCG 

also inhibits IL-6/sIL-6R–induced matrix metalloproteinase-2 activity in RA synovial 

fibroblasts and in joint homogenates, possibly via up-regulation of sgp130 synthesis. In 

addition, there is a marked decrease in membrane-bound gp130 protein expression in the 

joint homogenates of the EGCG-treated group. In contrast, EGCG increases gp130/IL-6R 

mRNA ratio by 2-fold, possibly suggesting a possible mechanism of sgp130 activation by 

EGCG 130. These results open up hope for a new research focus that searches for natural 

compounds that target IL-6 trans-signaling. Based on the above results, a high possibility 

exists that already known natural anti-inflammatory compounds may also target the sIL-6R 

as one of their mechanisms. Therefore, effective screening of these compounds has 

important implications for the development of optimal strategies against chronic 

inflammation and cancer development triggered by inflammation.

10. Promising Natural anti- inflammatory compounds

The search for natural anti-inflammatory compounds that hold promise for targeting IL-6 

trans-signaling can start with screening those compounds with molecular targets 

downstream of IL-6. One such target could be STAT3. Due to the consititutive activation of 

STAT3 in most cancers including colon cancer, identification of pharmacologically safe 

agents that can block STAT3 activation may be important in suppressing of tumorigenesis 

[131]. Natural compounds that suppress STAT3 activation include epigallocatechin-3-

gallate, curcumin, resveratrol, curcurbitacin, indirubin, piceatannol, parthenolide, 

flavopiridol, and magnolol [131]. However, studies have not been conclusive on how these 

agents suppress STAT3 activation, and additional studies are required to fully understand 

the mode of action of these compounds [131]. Here, we propose that these compounds could 

have an effect on IL-6 trans-signaling, a key pathway in activating STAT3 in cells that do 
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not express mIL-6R. Some of the promising compounds are briefly described in the 

following sections and their structures shown in Figure 5.

10.1 Epigallo-catechin-3-gallate (EGCG)

Green tea contains four main catechins including (−)-epicatechin, (−)-epigallocatechin, (−)-

epicatechin-3-gallate, and the major component (−)-epigallocatechin-3-gallate (EGCG) 

accounting for about 59% [132]. EGCG possess antioxidant and anti-inflammatory 

properties. Its anti-inflammatory properties demonstrated in cell culture and animal models 

include, regulating the expression of cytokines, chemokines, MMPs, aggrecanase, reactive 

oxygen species (ROS), nitric oxide (NO), COX-2, and PGE2 [132]. However, studies on the 

effects of EGCG on colitis-associated tumorigenesis, have not been consistent, with some 

reporting EGCG as beneficial in colitis associated animal models and others finding no 

beneficial effects. In a TNBS (2,4,6-trinitrobenzene sulfonic acid) model of colitis EGCG 

improved acute experimental colitis by the suppression of mast cells and macrophage 

activities [133]. Other beneficial effects of EGCG in the TNBS mouse model of colitis, are 

attributed to a significant reduction of NF-κB and AP-1 activation [134]. EGCG also 

ameliorates rats colitis induced by acetic acid by inhibiting the production of TNF-α, IFN-

gamma and nuclear factor-κB (NF-κB) p65 [135]. In an AOM/DDS experimental model, 

EGCG and polyphenol E suppressed the multiplicity and volume of colonic neoplasms 

thereby attenuating inflammation-related mouse colon carcinogenesis. This was also 

accompanied by reduced levels of inflammatory cytokines including IL-6 in the colonic 

mucosa [136]. However, in another AOM/DSS model, dietary EGCG (0.1% and 0.3%) did 

not inhibit colon carcinogenesis [137]. Instead, 0.3% of EGCG enhanced rectal bleeding and 

carcinogenesis while 0.5% EGCG caused rectal bleeding, enhanced inflammation, and loss 

of body weight. Furthermore, there are inconsistencies for EGCG’s effect on STAT3 

activation [132]. In various cell lines, including mammary carcinoma cell lines, cervical 

carcinoma cell line and hepatocarcinoma cell line EGCG inhibited activation of STAT1 

without affecting STAT3 [138]. EGCG inhibits STAT3 activation in human gingival 

fibroblasts [139], in keloid fibroblasts [140] and in gastric cancer [141]. These 

inconsistencies probably imply that the effects of EGCG may depend on cell type and the 

concentration of EGCG. Hence, more research is needed to establish the effects of EGCG on 

STAT3 activation, whose overactivity in pathological conditions is mediated by IL-6 trans-

signaling through the sIL-6R. In rheumatoid athritis synovial fibroblasts and in a rat 

adjuvant-induced arthritis model EGCG suppresses IL-6 trans-signaling by enhancing 

soluble gp130 production [130]. More studies are needed to clarify the role of EGCG in 

suppression of STAT3 activity mediated by IL-6 trans-signaling.

10.2 Curcumin

Curcumin, the principal component of turmeric has anti-inflammatory properties and 

beneficial effects in IBD [142]. In two clinical trials, curcumin improved patient symptoms 

when used in conjunction with conventional medications for UC [142]. Curcumin inhibits 

the activation of various transcription factors that play a key role in inflammation, including 

NF-κB, activated protein-1 (AP-1) and signal transducer and activator of transcription 

(STAT) proteins. [143, 144]. In cancer cells, curcumin downregulates the expression of key 

pro-inflammatory proteins and cytokines including, cyclooxygenase-2 (COX-2), 
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interleukin-1β (IL-1β), IL-6 and TNF-α. [142]. In a recent case study, a patient with 

ulcerative colitis (UC) refractory to mesalamine and multiple courses of steroids achieved 

clinical and endoscopic remission with oral curcumin [145]. The colonoscopy results of the 

patient at the end of the study showed ulceration and biopsies consistent with chronic 

inactive UC, showing that curcumin indeed holds promise for management of IBD [145]. 

However, the mechanism of action for curcumin in treating colitis is not fully understood 

[145] and unraveling these mechanisms is important in developing optimal strategies using 

chemopreventive phytochemicals. Here we propose that curcumin might play a role in 

suppressing IL-6 trans-signaling in IBD. Since there are no studies that have addressed this 

yet, we discuss some preliminary evidence from other studies that might implicate a role for 

curcumin in IL-6 trans-signaling- mediated inflammatory disorders including IBD that 

might include cross-talk between various pathways.

IL-6 trans-signaling via the sIL-6R is the primary mode of signaling that elicits the potent 

pro-inflammatory actions of IL-6 during LPS/TLR4-driven endotoxic shock [146]. IL-6 

trans-signaling via STAT3, activates downstream of TLR4 in response to LPS, feeds back 

into the Mal/NF-κB pathway to specifically modulate TLR4/LPS-driven IL-6 production 

and therefore the inflammatory response. IL-6 trans-signaling via STAT3 is a critical 

modulator of LPS-driven pro-inflammatory responses through cross-talk regulation of the 

TLR4/Mal signaling pathway, and implicates cross-talk between JAK/STAT and TLR 

pathways as a mechanism that regulates the severity of the host inflammatory response 

[146]. Whereas the anti-inflammatory compound, curcumin, has the ability to inhibit 

activation of pathogen recognition receptors (PRRs), including TLR4, and subsequent PRR-

mediated inflammation [147]. Curcumin and other compounds e.g helenalin, and 

cinnamaldehyde with a, β-unsaturated carbonyl groups and sulforaphane with an 

isothiocyanate group inhibit TLR4 activation by interfering with cysteine residue-mediated 

receptor dimerization [147]. Combining the model whereby IL-6 trans-signaling via STAT3 

modulates LPS/TLR4 driven pro-inflammatory response [146] with the finding that 

curcumin inhibits TLR4 activation shows a possible mechanism that could result in 

decreased inflammation in IBD by curcumin. Indeed curcumin suppresses inflammation in a 

TNBS experimental colitis model through inhibition of TLR-4 receptor [148]. In addition, 

curcumin inhibits activation of STAT3 [149, 150]. In the axis that IL-6 trans-signaling 

leading to activation of STAT3, is the key pathway implicated in the maintenance of chronic 

inflammatory conditions, we propose that curcumin might inhibit STAT3 activation by 

inhibiting IL-6 trans-signaling. In addition, we believe that cross-talk between IL-6/sIL-6R 

mediated JAK/STAT3 pathway and other pathways for example those involving TLR4 

might play a role in curcumin’s ability to repress inflammation in colitis models. Studies in 

this area have potential to improve our knowledge of how a promising and widely research 

anti-inflammatory compound curcumin might be used in management of IBD and 

prevention of colitis associated cancer.

10.3 Resveratrol

Resveratrol (3,5,4′-trihydroxystilbene), found in grapes and grapes products, berries and 

other fruits, vegetables, legumes, and weeds has shown anti-inflammatory properties [151–

154] in mice and rat colitis models. In a TNBS rat model, resveratrol reduces COX-2 and 
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the NF-κB p65 protein expression, attenuates the damage score and corrects the disturbances 

in morphology associated with injury and stimulates apoptosis in colonic cells [155]. In a rat 

model of DSS-induced colitis, resveratrol protects the colonic mucosa architecture, reduces 

body weight loss, diminishes the induced anemia and reduces systemic inflammation 

markers, colonic mucosa prostaglandin E2, cycloxygenase-2, prostaglandin E synthase and 

nitric oxide levels [156]. Resveratrol also suppresses DSS-induced colitis in mice by 

inducing silent mating type information regulation-1 and down-regulating NF-κB [157]. In 

addition, resveratrol reduces tumor incidence and tumor multiplicity in an AOM/DSS mouse 

model [158, 159]. Resveratrol also reduces prostaglandin E synthase-1 (PGES-1), 

cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) proteins expression, 

via downregulation of p38, a mitogen-activated protein kinases (MAPK) signal pathway in a 

mouse DSS induced colitis model [160]. Resveratrol’s effects on colitis include anti-oxidant 

effects [161]. The beneficial effects of resveratrol in colitis and colitis-associated 

tumorigenesis are mediated through several mechanisms. These mechanisms might include 

cross talk between different pathways including anti-oxidant pathways, MAPK pathways 

and IL-6/sIL-6R mediated JAK/STAT3 pathways.

Resveratrol suppresses activation of STAT3 in various models, including a mouse model of 

DSS-induced colitis [162]. In multiple myeloma cells, resveratrol inhibits both the 

constitutive and the IL-6-induced activation of STAT3 [163]. In addition, resveratrol 

suppresses STAT3 activation in human leukemia cells [153]. Activation of STAT3 plays an 

important role in regulating the self-renewal of glioblastoma multiforme (GBM) tumor 

initiating cells (TIC) and in enhancing their resistance to radiation therapies [164]. On the 

other hand, treatment with resveratrol suppresses activation of STAT3, inhibits anti-

apoptotic activity, suppresses self-renewal and enhances the sensitivity of GBM-TIC to 

radiotherapies. IL-6 induced STAT3 activity is gaining attention in the role it plays in 

tumor-initiating cells, cells that don’t express the membrane bound IL-6 receptor and would 

therefore depend on IL-6 trans-signaling through the sIL-6R. For these reasons, resveratrol 

could be a candidate compound worthy of further investigation, especially related IL-6 

trans-signaling. This is especially true because IL-6 trans-signaling in colorectal cancer is 

partly dependent on TGF-β signaling, which is commonly altered in colorectal cancers [6, 

165]. Indeed, resveratrol treatment of SW480 colon cancer cells decreases the levels of 

several oncogenic microRNAs targeting genes that are effectors of the TGF-β signaling 

pathway, while increasing the levels of miR-663, a tumor-suppressor microRNA that targets 

TGFβ1 transcripts [165]. Also, while up-regulating several components of the TGF-β 

signaling pathway such as TGF-β receptors type I (TGFβR1) and type II (TGFβR2), 

resveratrol decreases the transcriptional activity of SMADs, the main effectors of the 

canonical TGFβ pathway [165]. The ability of resveratrol to regulate the behavior of the 

TGF-β signaling pathway opens the possibility of using resveratrol in colon cancers where 

this pathway is impaired or works to favor metastasis. This implies that cross talk between 

the IL-6/sIL-6R dependent JAK/STAT3 pathway and TGF-β/SMAD signaling pathway may 

play a role in resveratrol’s ability to control inflammation in IBD. Resveratrol is recognized 

as one of the more promising natural molecules in the prevention and treatment of chronic 

inflammatory disease and autoimmune disorders [157, 159]. However more research is 
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needed to understand the mechanism of resveratrol-modulated suppression of STAT3 

activation.

10.4 Piceatannol

The plant polyphenol piceatannol (3,4,3′, 5′-tetrahydroxy-trans-stilbene) found in grapes, 

Rheum undulatum, rhubarb, and sugar cane is structurally related to resveratrol (3,5,4′-

trihydroxy-trans-stilbene) and it also possesses antioxidant, anti-inflammatory, and 

chemopreventive properties [162, 166]. Piceatannol is a protein kinase inhibitor that 

modifies multiple cellular targets, exerting immunosuppressive and antitumorigenic 

activities in several cell lines [166]. It inhibits TNF-induced NF-κB activation in myeloid 

cells, lymphocyte and epithelial cells [167], and suppresses the expression of COX-2 in 

human breast epithelial cells, [168] and in human mammary epithelial cells [169]. 

Piceatannol also suppresses LPS-induced inflammation in murine and in vitro models [170–

172]. In addition, piceatannol selectively inhibits the tyrosine phosphorylation in STAT3 in 

human T and B cells 173. In a DSS-induced colitis model, piceatannol treatment suppresses 

the expression of phophorylated colonic STAT-3, thereby protecting the mucosa [166]. A 

significant reduction in colonic myeloperoxidase (MPO) activity, a decrease in production 

of inflammatory mediators such as nitric oxide (NO), prostaglandin (PG) E2, and pro-

inflammatory cytokines are also associated with the beneficial effects of piceatannoI on 

DSS-induced colitis [166]. In addition to suppression of iNOS expression, piceatannoI 

suppresses DSS-induced inflammatory injury by suppressing activation of NF-κB, ERK and 

STAT3 [162]. STAT3 is the most strongly tyrosine phosphorylated STAT member in 

dextran sulfate sodium (DSS)-induced colitis in mice as well as in human ulcerative colitis 

and Crohn’s disease [174]. STAT3, whose phosphorylation correlates well to the severity of 

colitis, is mainly activated by IL-6–related cytokines [174]. Given these results, further 

evaluation the potential for piceatannol as an agent for the prevention and/or treatment of 

inflammatory bowel diseases is needed and understanding the mechanisms behind its ability 

to modulate STAT3 activity will be very beneficial. Again, we hypothesize that inhibition of 

IL-6 trans-signaling may play a role in the ability of piceatannol to attenuate inflammation 

in IBD.

10.5 Parthenolide

Parthenolide is a naturally occurring sesqueterpene lactone of the plant feverfew (Tanacetum 

parthenium), a member of the sunflower family [175, 176]. Feverfew, also called Bachelor’s 

Buttons, is a perennial European herb used for centuries in folk remedies for migraine 

headaches, arthritis, and fever [177], and its leaves are rich in parthenolide. Its anti-

inflammatory activities are partly explained by ability to inhibit NF-κB activation and IL-1/

TNF-α-induced signaling, blocking expression of pro-inflammatory cytokines including 

IL-6 and inhibiting IL-6-type cytokine signaling [176]. Parthenolide has been shown to 

block STAT3 phosphorylation on Tyr705 thereby preventing STAT3 dimerization necessary 

for its nuclear translocation [176]. In addition, parthenolide has shown promise in treatment 

of various cancers via inhibition STAT3 [175]. Moreover, parthenolide inhibits IL-6/sIL-6R 

induced phosphorylation of ERK1/2 and STAT3 in fibroblast-like synoviocytes from RA 

patients (RA-FLS), [178] and articular chondrocytes [179]. In these models, parthenolide 

inhibits IL-6 trans-signaling, through yet unknown mechanisms that might include cross talk 
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between ERK1/2 and STAT3 pathways. In cardiotrophin-1-treated rat cardiomyocytes, 

ERK1/2 inhibits the phosphorylation of STAT3 [180], implying a crosstalk between these 

mechanisms. There are some inconsistencies regarding the effect of parthenolide on colitis. 

In a zebrafish larvae model of TNBS-induced colitis, parthenolide downregulates TNF-a 

expression without rescuing the disease changes observed in vivo or on histological analysis 

[181]. Together, these data suggest that more studies are needed to evaluate the role of 

parthenolide in IL-6/sIL-6 induced STAT3 activation in colitis models and the mechanisms 

involved in inhibition of IL-6 trans-signaling.

10.6 Chrysin

Chrysin (5,7-dihydroxyflavone) is a natural flavonoid found in many plant extracts, honey, 

and propolis [182]. Its anti-inflammatory properties are attributed in part to inhibition of NF-

κB activation and suppression of pro-inflammatory cytokines and COX-2 expression [182–

185]. In vivo, chrysin alleviates the symptoms of DSS-induced colitis, improves colitis DAI 

scores and reduces the production of various inflammatory mediators, such as NO, PGE2, 

inflammatory cytokines, and chemokines [182]. Not much more research has been done to 

determine the effect of chrysin on inflammatory diseases including IBD. However studies in 

other models imply a possible role for chrysin in regulating the IL-6 trans-signaling 

pathway. Chrysin suppresses IL-6-induced angiogenesis through modulation of the sIL-6R/

gp130/JAK1/STAT3/VEGF signaling pathway [186]. In this model, chrysin suppresses 

IL-6-induced angiogenesis in vitro (HUVECs) and in vivo, down-regulates gp130 

expression, sIL-6R, and phosphorylated JAK1 and STAT3 [186]. Human umbilical vein 

endothelial cells (HUVECs) do not express the mIL-6R and would therefore respond to IL-6 

via IL-6 trans-signaling through the sIL-6R. These results suggest that chrysin may hold 

promise in alleviating IL-6/IL-6R dependent pathological conditions including IBD. More 

research needs to be done to determine its mechanism of inhibiting of STAT3 activation 

induced by IL-6 trans-signaling.

10.7 Proanthocyanidins

Proanthocyanidins from grape seed extracts (GSPE) are phenolic compounds that have 

strong anti-inflammatory properties [187, 188]. Grape seed proanthocyanidin extract 

(GSPE) consist of a combination of ingredients with 15% (+)-catechin, (−)-epicatechin; 80% 

(−)-epicatechin 3-O-gallate, dimmers, trimers, tetramers and their gallates; 5% pentamers, 

hexamers, heptamers and their gallates [189]. Proanthocyanidins from grape seeds are 

believed to affect the colonic mucosa directly since they are not absorbed in the stomach or 

small intestine but reach the colon where possibly beneficial metabolites are formed by the 

colonic microflora [187, 190]. GSPE exert protective effects in the recurrent phase of TNBS 

twice-induced colitis of rats [187]. The ability to suppress mucosal inflammation in the 

colon is attributed to the inhibition of NF-κB signal transduction pathways as evidenced by 

reduced the levels of pIKKα/β, pIκBα and NF-κB in GSPE treated rats [187]. In addition, 

GSPE treatment suppresses production of oxygen free radicals and infiltration of 

inflammatory cells. Moreover, GSPE exerts a beneficial anti-inflammatory effect in the 

acute phase of TNBS-induced colitis in rats by inhibiting inflammatory cell infiltration and 

oxidation damage, promoting damaged tissue repair to improve colonic oxidative stress, 

decreasing production of proinflammatory cytokines IL-1β, and increasing production of 
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anti-inflammatory cytokines IL-2 and IL-4 [191]. GSPE treatment also facilitates recovery 

of pathologic changes in the colon after induction of recurrent colitis and reduces 

malonyldialdehyde and nitric oxide levels in serum and colon tissues of colitis rats [192]. 

GSPE exerts a protective effect on recurrent colitis in rats by modifying the inflammatory 

response, inhibiting inflammatory cell infiltration and oxidation damage, promoting 

damaged tissue repair to improve colonic oxidative stress, and inhibiting colonic iNOS 

activity to reduce the production of nitric oxide. [192]. GSPE seem to hold some promise in 

treating human ulcerative colitis [187] even though the mechanism by which GSPE 

regulates the immune response is still unclear. Most work on the ant-inflammatory effects of 

GSPE has not looked at the role of STAT3 activation. In an IL-17-dependent arthritis model, 

GSPE suppresses activation of STAT3 in Th17 cells thereby regulating the differentiation of 

human Th17 cells [189]. Studies evaluating the effect of GSPE on IL-6 trans-signaling and 

STAT3 will therefore be beneficial.

10.8 Omega-3 fatty acids

Omega-3 (n-3) fatty acids have anti-inflammatory and immune-modulating effects that have 

been demonstrated in various disorders including inflammatory bowel disorders [193]. 

These essential fatty acids, which are abundant in fish oil, are also present in various plant 

sources including flaxseed. Docosahexaenoic acid (DHA), an n-3 PUFA, alleviates DSS-

induced colitis in mice, partly by suppressing the expression of inflammatory cytokines 

(IL-1β), CD14 antigen and TNF receptor superfamily member 1b, membrane remodeling 

genes (matrix metalloproteinase-3, -10 and -13) and acute phase proteins (S100 calcium-

binding protein A8) [194]. In TNBS-induced colitis rat model, an n-3 fatty-acid-enriched 

diet improves the expression of inflammatory mediators in the colon and colitis compared 

with the control group [195]. The effect of the n-3 fatty acids is attributed to suppression of 

the production of pro-inflammatory cytokines in the colon. A diet rich in α-linolenic acid, an 

n-3 fatty acid, reduces oxidative stress and inflammation in a TNBS-induced colitis rat 

model by suppressing NF-κB activation [196]. The anti-inflammatory mechanisms are also 

attributed to inhibition of nitric oxide [197]. Even though the effect of n-3 fatty acids on 

STAT3 activation has not been evaluated in IBD, the possibility exists that the effects are 

modulated at least in part by preventing STAT3 activation [198]. In fact n-3 fatty acids have 

been shown to inhibit STAT3 phosphorylation thereby suppressing proliferation of 

chemoresistant pancreatic cancer cells [199]. Hence the possibility exists that n-3 fatty acids 

may also target IL-6 trans-signaling. In animal studies, n-3 fatty acids have shown great 

promise in alleviating symptoms of IBD, however, inconsistencies have also been reported. 

For instance, meta-analyses of randomized controlled trials of n-3 revealed a lack of clinical 

benefit of n-3 in maintaining remission in IBD [200]. These results imply that additional 

studies are needed to better understand the mechanisms of n-3 fatty acids in alleviating 

inflammatory conditions. It is also possible that n-3 compounds could have a better effect 

when used in combination with other natural compounds. In a DSS/AOM mouse model 

dietary fish oil and curcumin combined to modulate colonic cytokinetics, and gene 

expression thereby regulating mucosal homeostasis and the resolution of chronic 

inflammation in the colon [201]. Further understanding of the mechanisms of n-3 fatty acids 

whether individually or in combination, for example a possible effect on IL-6 trans-
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signaling, will be important in determining how these compounds may be beneficial in 

alleviating symptoms of patients leading to better management of IBD.

11. Conclusion and Future Directions

The risk of developing colorectal cancer increases in patients with inflammatory bowel 

disease (IBD), a collective term for Crohn’s disease and ulcerative colitis. Various factors 

including pro-inflammatory cytokines have been demonstrated to play a crucial role in the 

pathogenesis of IBD. Among the cytokines, there is strong evidence for the role played by 

IL-6, whose effects are mediated through activation of STAT3. Unlike other pro-

inflammatory cytokines, the IL-6 soluble receptor (sIL-6R) promotes IL-6 signaling instead 

of quenching it. This trans-signaling acts to amplify the inflammatory response consequently 

allowing a significant role for IL-6 in the maintenance of chronic inflammation and 

pathogenesis of colitis-associated cancer. The protective role of IL-6 is through classic IL-6 

signaling via the membrane-bound IL-6R. Recent evidence points to IL-6 trans-signaling via 

the sIL-6R, as the main driving force of chronic inflammation and associated 

pathophysiological inflammatory conditions. This opens up a new possibility of alleviating 

excessive inflammation in IBD by specifically targeting IL-6 trans-signaling while leaving 

the beneficial classic signaling intact. With the knowledge that there is a high number of 

people living with IBD and that about one third are diagnosed during their childhood years 

we need a chemopreventive approach possibly over the life time of predisposed individuals. 

This requires administration of safe agents for the purpose of delaying the onset or 

progression from precancerous lesions. Chemopreventive compounds that target IL-6 trans-

signaling have the ability to reduce excessive IL-6 signaling in IBD and hamper progression 

to colitis associated colon cancer.

Currently, a fusion protein sgp130Fc, based on soluble gp130, a naturally occurring 

selective inhibitor of IL-6 trans-signaling is being considered for clinical evaluation. This 

holds great promise for therapeutic purposes but it is not clear whether it can be used as a 

preventive agent. Long-term effects of using such a molecule have not been pursued. Given 

the need to focus on managing IBD over an extended time course, identification of natural 

compounds that safely target IL-6 trans-signaling could offer great promise. In this review, 

we have presented some such compounds that affect IL-6 activity. Although these 

compounds are known to be anti-inflammatory, their mechanism of action remains 

unidentified. We propose that including the IL-6 trans-signaling axis in the on-going 

research with anti-inflammatory natural compounds has the potential to unravel mechanisms 

that may lead to the closer understanding of how they can be optimally used for the 

management of IBD and prevention of colitis associated cancer. Compounds that suppress 

STAT3 activation may potentially affect IL-6 trans-signaling, which allows cells that don’t 

express the mIL-6R to respond to IL-6 through sIL-6R. We therefore suggest an increased 

research focus on screening promising compounds for their ability to target IL-6 trans-

signaling.
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ABBREVIATIONS

IL-6 Interleukin 6

IBD Inflammatory bowel disease

STAT3 Signal transducer and activator of transcription 3

CD Crohn’s disease

UC Ulcerative colitis

NOD2(CARD15) Nucleotide-binding oligomerisation domain 2 (Caspase recruitment 

domain 15)

DLG5 Discs large homolog 5

OCTN1 Organic cation transporter 1

TLR4 Toll-like receptor 4

CARD4(NOD1) Caspase recruitment domain 4 (Nucleotide-binding oligomerisation 

domain 1)

IL23R Interleukin 23 Receptor

IRGM Immunity-related GTPase family M

PTGER4 Prostaglandin receptor EP4

ATG16L1 Autophagy related protein 16-like 1

HLA Human leukocyte antigen

IBD5 Inflammatory bowel disease 5

CD4+ Cluster of differentiation 4

TH1 T helper type 1

TH2 T helper type 2

TH-17 T helper type 17

LPS Lipopolysaccharide

cAMP Cyclic adenosine monophosphate

IL-1 Interleukin 1

PDGF Platelet-derived growth factor

TNFα Tumor necrosis factor α

NSAIDs Nonsteroidal anti-inflammatory drugs

sIL-6R Soluble IL-6 receptor

TGFβ Transforming growth factor β

IECs Intestinal epithelial cells

STAT1 Signal transducer and activator of transcription 1
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CSCs Cancer stem cells

MSCs Mesencymal stem cells

DSS Dextran sulphate sodium

mIL-6R Membrane bound IL-6R

JAKs Janus kinases

IL-11 Interleukin 11

LIF leukemia inhibitory factor

CNTF Ciliary neurotrophic factor

OSM Oncostatin M

sCRs Cytokine receptors

IL-11R IL-11 receptor

mIL-11R membrane bound IL-11 receptor

AOM/DSS Azoxymethane/dextran sodium sulphate

CApC Colitis-associated premalignant cancer

CC Chronic colitis

sgp130 Soluble gp130

TNBS 2,4,6-trinitrobenzenesulfonic acid

sgp130Fc Soluble gp130 fusion protein

ADAM A Disintegrin And Metalloproteinase

TACE TNF-α converting enzyme

ADAM 17 A Disintegrin And Metalloproteinase 17

ADAM 10 A Disintegrin And Metalloproteinase 10

EGFR Epidermal growth factor receptor

PDI Protein disulfide isomerase

PMA Phorbol myristic acid

ROS Reactive oxygen species

TIMP-3 Tissue inhibitors of metalloproteinases-3

EGCG (−)-Epigallocatechin gallate

NO Nitric oxide

COX-2 Cyclooxygenase 2

PGE2 Prostaglandin E2

NF-κB Nuclear factor-κB
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AP-1 Activator protein 1

IFN Interferons

Mai/NF-kB MyD88-adapter-like/ NF-kB

PRRs Pathogen recognition receptors

PGES-1 Prostaglandin E synthase-1

iNOS Inducible nitric oxide synthase

MAPK Mitogen-activated protein kinases

GBM Glioblastoma multiforme

TIC Tumor initiating cells

MPO Myeloperoxidase

ERK Extracellular-signal-regulated kinases

RA-FLS Rheumatoid arthritis fibroblast-like synoviocytes

HUVECs Human umbilical vein endothelial cells

GSPE Grape seed proanthocyanidin extract

n-3 Omega-3

DHA Docosahexaenoic acid

PUFA Polyunsaturated fatty acids
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Figure 1. 
IL-6 magnifies the inflammatory response through its soluble receptor. Release of the 

sIL-6R acts to amplify the inflammatory response by making cells lacking mIL-6R 

responsive to IL-6. The resulting sustained inflammatory response paves way for the 

progression from acute to chronic inflammation and could ultimately lead to colitis-

associated cancer.
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Figure 2. 
Increase in IL-6 is associated with increase in biomarkers of inflammation severity and 

cancer progression. An increase in IL-6 signaling is associated with poor prognosis.
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Figure 3. 
Selective inhibition of IL-6 trans-signaling. (A) Classic IL-6 signaling. IL-6 binds to its 

mIL-6R causing dimeralization of gp130 and subsequent signal transduction leading to 

activation of STAT3. (B) IL-6 trans-signaling. IL-6 binds it sIL-6R generated from mIL-6R. 

The IL-6/sIL-6R associates with gp130 on cells that lack mIL-6R and lead to signal 

transduction. (C) Inhibition of IL-6 trans-signaling. Anti-sIL-6R natural compounds can 

target the sIL-6 receptor at the point of production, by inhibiting proteolytic cleavage of the 

mIL-6Ror by inhibiting signaling. sgp130 binds IL6/sIL-6R, preventing association of the 

same complex with membrane bound sgp130, thus inhibiting IL-6 trans-signaling in a more 

or less competitive inhibition mechanism. The natural compound EGCG increases sgp130, a 

mechanism that would down-regulate IL-6 signaling.
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Figure 4. 
Chemoprevention colitis-associated cancer. Exposing predisposed individuals to safe natural 

compounds that target IL-6 trans-signaling over their lifetime has the potential to hamper 

progression from acute to chronic inflammation and to delay onset of colitis and associated 

cancer.
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Figure 5. 
Chemical structures of some natural compounds that may have activity against IL-6 trans-

signaling. Most of these compounds suppress activation of STAT3.
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