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Abstract
Pancreatitis is an increasingly common and sometimes 
severe disease that lacks a specific therapy. The patho-
genesis of pancreatitis is still not well understood. Cal-
cium (Ca2+) is a versatile carrier of signals regulating 
many aspects of cellular activity and plays a central 
role in controlling digestive enzyme secretion in pan-
creatic acinar cells. Ca2+ overload is a key early event 
and is crucial in the pathogenesis of many diseases. 
In pancreatic acinar cells, pathological Ca2+ signal-
ing (stimulated by bile, alcohol metabolites and other 

causes) is a key contributor to the initiation of cell 
injury due to prolonged and global Ca2+ elevation that 
results in trypsin activation, vacuolization and necrosis, 
all of which are crucial in the development of pan-
creatitis. Increased release of Ca2+ from stores in the 
intracellular endoplasmic reticulum and/or increased 
Ca2+ entry through the plasma membrane are causes 
of such cell damage. Failed mitochondrial adenosine 
triphosphate (ATP) production reduces re-uptake and 
extrusion of Ca2+ by the sarco/endoplasmic reticulum 
Ca2+-activated ATPase and plasma membrane Ca2+-
ATPase pumps, which contribute to Ca2+ overload. 
Current findings have provided further insight into the 
roles and mechanisms of abnormal pancreatic acinar 
Ca2+ signals in pancreatitis. The lack of available spe-
cific treatments is therefore an objective of ongoing 
research. Research is currently underway to establish 
the mechanisms and interactions of Ca2+ signals in the 
pathogenesis of pancreatitis.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Pancreatitis; Calcium signaling; Pancreatic 
acinar cells; Overload; Cell injury

Core tip: Calcium (Ca2+) overload is crucial in the patho-
genesis of pancreatitis, which results in trypsin activa-
tion, vacuolization and necrosis. Such cell injury results 
from increased Ca2+ released from intracellular endo-
plasmic reticulum Ca2+ stores, increased Ca2+ entry 
through the plasma membrane and Ca2+ pump defects. 
Current findings have provided further insight into the 
roles and mechanisms of Ca2+ overload in pancreatitis. 
The lack of specific treatments is a stimulus for ongo-
ing research. This review summarizes recent advances 
in our understanding of Ca2+ signaling in the pathogen-
esis of pancreatitis, and discusses how research has 
guided our search for potential therapeutic targets.
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INTRODUCTION
Pancreatitis remains a disease with significant morbidity 
and lethality, and is typically caused by alcohol abuse or 
complications arising from biliary disease[1]. The pathogen-
esis of  pancreatitis is multi-factorial and has not yet been 
clarified[2-5]. In recent years, several pancreatic mechanisms 
have been proposed, such as trypsinogen activation[6], 
pancreatic microcirculation malfunction[7], calcium (Ca2+) 
overload[8-10] and inflammatory pathways[11-13]. Among 
these various theories, Ca2+ overload is receiving increas-
ing attention and is being extensively investigated in the 
pathogenesis of  pancreatitis[14]. Recent advances in our 
understanding of  Ca2+ signaling of  pancreatic acinar cells 
in the pathogenesis of  pancreatitis are reviewed in this 
article, including a discussion on how research has guided 
our search for potential therapeutic targets.

PHYSIOLOGICAL AND PATHOLOGICAL 
CA2+ SIGNALS IN PANCREATIC ACINAR 
CELLS
As the most universal carrier of  biological signals, intra-
cellular Ca2+ is involved in the modulation of  virtually 
all cellular functions, from its origin at fertilization to its 
end in the apoptotic process[15]. Intracellular Ca2+ acts 
both as a first and a second messenger to control cellular 
functions via regulating free-Ca2+ concentrations in the 
cytoplasm, for example, controlling the contraction and 
relaxation of  muscles, and regulating secretion from exo-
crine glands[16]. Ca2+ signals elicited by physiological stim-
ulation are transient and mostly localized in the granule-
containing apical pole, whereas sustained global elevation 
of  cytosolic Ca2+ concentrations can be fatal[17-19]. The 
digestive enzymes produced by pancreatic acinar cells 
are packaged in zymogen granules in the apical pole[20]. 
Physiological stimulation elicits proenzyme exocytosis 
exclusively through the apical membrane[21]. Ca2+ over-
load causes inappropriate intracellular trypsin activation, 
vacuolization and necrosis[20,22-26], which contribute to 
subsequent cell injury and are often fatal in human acute 
pancreatitis[27]. Pretreatment with pharmacological Ca2+ 
chelators or blockers was found to prevent premature di-
gestive enzyme activation, vacuolization, skeletal disrup-
tion and acinar cell necrosis induced by Ca2+ overload[28].

RELEASE OF CA2+ FROM THE 
ENDOPLASMIC RETICULUM
There are two types of  G protein-coupled receptors local-

ized on the plasma membrane, namely, acetylcholine (ACh) 
and cholecystokinin (CCK) receptors[8]. ACh is a secreta-
gogue that activates phospholipase C (PLC) through ACh 
receptor ligand binding, which in turn cleaves phosphati-
dylinositol 4,5-bisphosphate into the classic Ca2+-releasing 
messengers inositol 1,4,5-trisphosphate (IP3) and diac-
ylglycerol to mobilize Ca2+ and activate protein kinase C 
respectively[29]. The other principal secretagogue in acinar 
cells is the hormone CCK, which exists in multiple mo-
lecular forms, such as CCK8 and CCK58. CCK interacts 
with its receptor and activates adenosine diphosphate-
ribosyl cyclase to produce the novel Ca2+-releasing agent 
nicotinic acid adenine dinucleotide phosphate (NAADP) 
and cyclic adenosine diphosphate-ribose (cADPR).

There are two types of  regulated Ca2+-release channels 
localized on the endoplasmic reticulum (ER) membrane, 
namely, the IP3 receptors (IP3R) and ryanodine recep-
tors (RyR). IP3R are concentrated in the apical part of  
the acinar cell and binding of  IP3 activates gated Ca2+ 
channels to release intracellular stored Ca2+ from the ER, 
which participates in the apical cytosolic Ca2+-spiking re-
sponse to stimulation with physiological concentrations 
of  ACh[10,19,30,31]. RyR in the basal region of  acinar cells are 
activated by NAADP and cADPR, and oligomers form 
gated Ca2+ channels to release intracellular Ca2+ from ER 
stores[32] in response to stimulation with physiological 
concentrations of  CCK[33-35]. Intriguingly, the Ca2+ re-
sponse mediated by RyR was observed in the apical pole 
in mouse acinar cells and required functional IP3R, which 
could be interpreted as co-localization and coordination 
of  RyR and IP3R[36].

Hyperstimulation with agents (in contrast to physio-
logical stimulation) can induce acinar cell injury by IP3R-
induced release of  Ca2+ from the ER. The Ca2+ increase 
spreads from the apical pole to the basolateral part of  the 
acinar cell, and a sustained global Ca2+ elevation causes 
pancreatitis-like cellular changes, such as abnormal intra-
cellular enzyme activation, vacuolization and necrosis[20]. 
Treatment with IP3R inhibitors, such as caffeine and 
2-aminoethoxydiphenyl borate, can reduce abnormal 
Ca2+ signals and the probability of  ethanol-induced pan-
creatitis, but the low affinity and multiple actions restrict 
its therapeutic potential[37,38]. Hyperstimulation by CCK8 
is specifically dependent on functional RyR, and induces 
toxic pancreatitis-like changes as a result of  sustained 
global elevation of  Ca2+ released from the ER. These ab-
errant Ca2+ signals and acinar cell injuries can be blocked 
in vitro and in vivo by pretreating with RyR inhibitors[8,39]. 
Hyperstimulation by CCK also activates PLC, which 
generates IP3 and elicits Ca2+ overload[20].

Although the ER is a large Ca2+ store in the basolat-
eral part of  pancreatic acinar cells, there are also exten-
sive acidic Ca2+ stores present in the apical part, which 
similarly release Ca2+ into the cytoplasm through IP3, 
cADPR and NAADP signaling. Hyperstimulation from 
bile acids and alcohol metabolites can elicit pathological 
Ca2+ release from both the ER and acidic stores[40,41].
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STORE-OPERATED CA2+ (SOC) INFLUX
Another abnormal Ca2+ signal in the pathogenesis of  
pancreatitis is extracellular Ca2+ entry, which is regulated 
at the plasma membrane of  acinar cells by SOC chan-
nels[42]. Under physiological conditions, CCK and ACh 
induce the release of  Ca2+ from the ER, followed by 
Ca2+ extrusion from the cell, suggesting that SOC entry 
is required to elevate intracellular Ca2+. The molecular 
mechanism underlying these pancreatic Ca2+-entry chan-
nels is ill-defined. Current research suggests that Ca2+-
entry channels belong to the transient receptor potential 
family, including Ca2+ release-activated Ca2+ channel 
protein 1 (Orai1), transient receptor potential channel 1, 
and stromal interaction molecule (STIM) 1[43,44]. Recent 
studies indicate that STIM proteins serve as sensors, 
are concentrated in the ER membrane, and monitor the 
Ca2+ concentration in the ER lumen. When the luminal 
concentration is reduced in response to secretagogue 
stimulation, STIM proteins sense the changes, accumu-
late and translocate to the plasma membrane where they 
co-localize with and activate Orai1 channels[45-48].

Orai1 channels are localized not only in the apical 
part of  acinar cells, but also in the basal and lateral mem-
branes, which cover about 95% of  the pancreatic acinar 
cell surface[43]. Following ER Ca2+ store depletion, Orail1 
interacts with STIM and activates SOC channels. The 
wide distribution of  Orai1 channels enables sustained 
Ca2+ entry under physiological conditions, without the 
need for local Ca2+ concentrations, and refilling of  the 
ER Ca2+ stores after agonist-elicited depletion[8]. How-
ever, Orai1 activity can result in an abnormal sustained 
global Ca2+ elevation following pathological stimulation, 
such as by high, toxic concentrations of  CCK8, alcohol 
and bile acid, which all elicit intracellular Ca2+ overload 
that is mostly dependent on external Ca2+ influx[20,23,25]. 
Therefore, SOC entry may be crucial for the develop-
ment of  acute pancreatitis. Without external sustained 
global Ca2+ entry, cellular injury does not occur[20,22-25,49]. 
Removal of  external Ca2+ or abrogation of  elevated Ca2+ 

with a Ca2+ chelator can protect acinar cells against ab-
normal changes, such as trypsinogen activation and vac-
uolization[20,25,49]. SOC channel blockers might therefore 
be a possible therapeutic approach for the treatment of  
acute pancreatitis[7].

CA2+ PUMP DEFECTS
Sarco/endoplasmic reticulum Ca2+-activated adenosine 
triphosphate (ATP)ase (SERCA) is an ER Ca2+ pump 
which actively re-uptakes Ca2+ into the ER lumen to 
compensate for resting leakage into the cytosol[8,50]. Un-
der normal physiological conditions, the elevation of  in-
tracellular Ca2+ can activate the SERCA pump[19,27,51], and 
Ca2+ release elicited by stimulation is followed by Ca2+ 
re-uptake. The rate of  uptake decreases as luminal Ca2+ 
concentration increases until the uptake rate equals the 
resting leak rate[8]. Pathological stimulation by bile acids 

or fatty acids can elicit Ca2+ overload by inhibiting the 
SERCA pump and depolarizing the inner mitochondrial 
membrane, resulting in reduced ATP production, which 
in turn lessens the ability of  the SERCA pump to restore 
ER Ca2+ stores[25]. Prolonged and uncompensated Ca2+ 
overload released from ER stores can cause thapsigargin 
activation and vacuolization in pancreatic acinar cells, 
which can be visualized directly[20].

All eukaryotic cells export Ca2+ through two path-
ways, the plasma membrane Ca2+-ATPase (PMCA; com-
monly called the Ca2+ pump) and the Na+-Ca2+ exchanger 
(NCE), to prevent Ca2+ overload and for the maintenance 
of  intracellular Ca2+ at the appropriately low level[52,53]. 
The PMCA has high Ca2+ affinity but low transport ca-
pacity and is ATP-dependent. Any elevation of  cytosolic 
Ca2+ can activate the PMCA to rapidly extrude Ca2+ in 
physiological conditions. Whereas ER-released Ca2+ is 
localized in the apical part and Ca2+ entry occurs across 
the basolateral surface, PMCA Ca2+ extrusion is confined 
to a small apical region only, which restricts the PMCA 
function as a fine-tuner of  cell cytosolic Ca2+. Pathologi-
cal stimulation can depolarize mitochondria and cause a 
deficiency in ATP production, which inhibits Ca2+ extru-
sion and aggravates the cytosolic Ca2+ overload[24,54].

The NCE has a low Ca2+ affinity and is a high-ca-
pacity transmembrane protein of  the plasma membrane 
involved in Ca2+ homeostasis, and is especially impor-
tant in excitable cells. Because of  its high capacity, the 
NCE can extrude Ca2+ at a much higher rate than the 
PMCA, serving as the fast Ca2+ transporting system. For 
example, activation of  the NCE prevents Ca2+ overload 
induced by pathological stimulation and cell death in 
neurons. Inactivation of  the NCE can cause neuronal 
death, which can be visualized directly[55]. In pancreatic 
acinar cells, the NCE is of  little quantitative importance, 
which explains why Ca2+ overloading is particularly dan-
gerous in pancreatic acinar cells[19,27].

As another Ca2+ store, mitochondria also participate 
in maintaining cytosolic Ca2+ homeostasis in pancreatic 
acinar cells. Mitochondria surround the apical pole in a 
perigranular belt, separating zymogen granules from the 
basolateral part of  the acinar cell, and are also positioned 
just beneath the plasma membrane and surrounding the 
nucleus[19,27,55-58]. The membrane potential across the in-
ner mitochondrial membrane is the driving force behind 
mitochondrial uptake of  Ca2+ into the matrix through 
the Ca2+ uniporter, a Ca2+-selective ion channel[59,60]. 
Mitochondria in pancreatic acinar cells play an impor-
tant role in maintaining cytosolic Ca2+ homeostasis[56-58]. 
When cytosolic Ca2+ is elevated by physiological stimula-
tion, mitochondria sense the Ca2+ in the environment 
and take up Ca2+ via the Ca2+ uniporter[60]. Ca2+ spikes 
released from the ER occurring in the apical region can 
cause immediate Ca2+ uptake into the mitochondrial ma-
trix, preventing further spread of  the Ca2+ signal into the 
basolateral part of  the acinar cell, which contains the nu-
cleus. Perigranular mitochondria function as a Ca2+ buf-
fer barrier[8], causing Ca2+ uptake termination and Ca2+ 
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Table 1  Potential therapeutic targets

removal via the mitochondrial NCE[61,62]. Mitochondrial 
Ca2+ uptake activates Krebs cycle enzymes and drives 
ATP production, supplying ATP for SERCA-mediated 
Ca2+ re-uptake into the ER and PMCA-mediated Ca2+ 
extrusion[27,63]. Pathological stimulation that can induce 
experimental pancreatitis, such as with bile salts, fatty ac-
ids and CCK or its analog, can depolarize the inner mi-
tochondrial membrane, inducing further collapse of  the 
mitochondrial membrane potential and impairment of  
ATP production[64]. This situation prevents perigranular 
mitochondrial Ca2+ re-uptake and mitochondria cannot 
buffer the apical Ca2+ elevation, causing the local Ca2+ 
signal to spread to the whole of  the acinar cell[30]. Failure 
of  ATP production reduces the ability of  the SERCA 
and PMCA pumps to take Ca2+ back into the ER and 
for extrusion, which contributes to Ca2+ overload. This 

is the most likely explanation for why pretreatment with 
Ca2+ chelators can limit the global and sustained eleva-
tion of  Ca2+.

TARGETS FOR POTENTIAL THERAPY
To date, there is no specific treatment for either acute 
or chronic pancreatitis[39,65-67]. The current therapy for 
pancreatitis is limited to the inhibition of  proteolytic 
enzymes. Protease inhibitors have a modest preventa-
tive role in experimental animal models, however, they 
fail to show therapeutic value in clinical treatment[68,69]. 
An aberrant increase in cytosolic Ca2+ is a key molecular 
event in the pathogenesis of  pancreatitis. Intracellular 
Ca2+ overload is a major reason for pancreatic acinar 
cell injury from toxin stimulation that induces pancre-
atitis[7,20,22-25,49]. Abnormal, prolonged, global Ca2+ signals 
lead to premature enzyme activation, vacuole formation 
and acinar cell damage. Thus, it is clinically relevant to 
identify the targets of  the aberrant Ca2+ signals[70]. New 
avenues are required based on current findings in our 
understanding of  Ca2+ signaling in the pathogenesis of  
pancreatitis (Figure 1). Possible interventions include: 
(1) inhibition of  Ca2+ entry pathways; (2) enhancement 
of  Ca2+ extrusion; and (3) inhibition of  the primary Ca2+ 
release from the ER; and iv) protection of  mitochondrial 
function, which can serve as potential therapeutic targets 
(Table 1). Recent progress in our understanding of  Ca2+ 
signals of  pancreatic acinar cells in the pathogenesis of  
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Figure 1  Diagram showing possible interventions for therapeutic targets of pancreatitis. Blockage of Ca2+ entry will probably depend on inhibition of the store-
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function to ensure adequate ATP production extrusion by Ca2+ pumps and for pancreatic acinar cells to survive intact.
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IP3: 1,4,5-trisphosphate; PMCA: Plasma membrane Ca2+-adenosine tri-
phosphate (ATP)ase; SERCA: Sarco/endoplasmic reticulum Ca2+-activated 
ATPase.
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pancreatitis now provides opportunities for the develop-
ments of  better therapeutic approaches.
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