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Abstract

Natural proteins can be versatile building blocks for multimeric, self-assembling structures. Yet, 

creating protein-based assemblies with specific geometries and chemical properties remains 

challenging. Highly porous materials represent particularly interesting targets for designed 

assembly. Here we utilize a strategy of fusing two natural protein oligomers using a continuous 

alpha-helical linker to design a novel protein that self assembles into a 750 kDa, 225 Å diameter, 

cube-shaped cage with large openings into a 130 Å diameter inner cavity. A crystal structure of 

the cage showed atomic level agreement with the designed model, while electron microscopy, 

native mass spectrometry, and small angle x-ray scattering revealed alternate assembly forms in 

solution. These studies show that accurate design of large porous assemblies with specific shapes 

is feasible, while further specificity improvements will likely require limiting flexibility to select 
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against alternative forms. These results provide a foundation for the design of advanced materials 

with applications in bionanotechnology, nanomedicine and material sciences.
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Porous protein nanoparticles; protein design; self-assembly; symmetry; synthetic biology and 
bioengineering

Large and diverse supramolecular assemblies can arise from repeated interactions between 

multiple copies of a single molecular building block1. Many natural proteins have acquired 

self-assembling properties during evolution, thereby endowing their hosts with novel 

functionalities and increased fitness2. Such naturally occurring protein assemblies have not 

only been extensively studied for their native functions, but have also been widely exploited 

for synthetic functionalities3, 4, 5. Various natural protein assemblies, such as ferritins, 

bacterial S-layers and virus capsids, have for some time been points of focus for 

developments in nanotechnology6. However, engineering de novo protein assemblies with 

similar forms and pre-determined capabilities has been difficult until very 

recently7, 8, 9, 10, 11, 12.

One method to engineer large self-assembling protein structures, articulated several years 

ago13, is by creating a fusion of two different oligomeric proteins arranged in a particular 

orientation. In the simplest scenario, fusing a dimeric domain to a trimeric domain brings 

together two symmetry elements (e.g. a 2-fold and a 3-fold axis of symmetry) whose 

repeated application leads to large, highly symmetric assemblies. Diverse symmetries and 

architectures are possible, depending on the specific geometric arrangement between the two 

symmetry axes. A solution to the problem of predictably orienting the separate oligomeric 

domains is to use a short alpha-helical linker to join the two protein components, which are 

themselves required to have alpha helical termini so that an unbroken helix spans the two 

parts. Variations on that linking strategy have also been described14. So far, there are two 

literature reports demonstrating the production of fusion-based materials that are sufficiently 

well-ordered to establish design success in atomic or near-atomic detail. These include a 12-

subunit tetrahedral cage15, 16 and extended arrays of molecules14. A distinct approach for 

designing self-assembling protein cages or shells has been developed recently by King et 

al.17, 18, wherein computational amino acid sequence design is used to create novel 

interfaces between naturally oligomeric proteins. In contrast to that method, the oligomer 

fusion approach relies entirely on natural protein interfaces, thereby avoiding the 

challenging problem of designing new protein-protein interfaces. Here we sought to extend 

the oligomer fusion method to the construction of larger protein assemblies than have been 

achieved to date. Specifically, we undertook work to engineer a highly porous, 24-subunit 

protein cage in the shape of a cube, with perfect octahedral symmetry.

Porosity is an attractive feature of self-assembled supramolecules19. The design and 

engineering of molecular materials with high porosity has been actively pursued by organic 

and inorganic chemists. Porous materials, such as those exemplified by metal-organic 

frameworks (MOFs) have been widely studied20; they have been explored for applications 

in gas storage, molecular separations, and drug delivery21. The largest diameter openings 
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reported so far in MOF's are on the order of 100 Å20. Biological macromolecules provide 

alternate strategies. A DNA-based cage in the shape of a cube, with a diameter somewhat 

smaller than 100 Å, was reported more than two decades ago22 and became an iconic figure 

for the structural DNA nanotechnology field23. An octahedrally shaped DNA cage with an 

internal cavity of 140 Å was reported nearly ten years ago24. Very large DNA cubes and 

polyhedra, with opening in the range of several hundred nanometers, have been realized 

recently25, after some thirty years of development in the field. Small RNA cubes were 

designed very recently and shown to form particles of the intended size26. Open cages based 

on polypeptides or proteins have recently been demonstrated by the oligomer-fusion 

method15, 16, by the design of novel subunit interfaces17, by the design of two-component 

mixtures18, and using coiled-coil peptide sequences10 or peptide-inspired foldamers27. In the 

case of molecular cages designed from protein subunits, the largest internal openings 

reported so far are around 45 Å15, 17, which is comparable in size to a single protein 

molecule of intermediate size. Protein assemblies with larger openings could be useful as 

frameworks for assisted protein crystallization, as reaction vessels28, or as vehicles for 

delivering large cargos29, as well as agents for nanomedicine30.

Here we present the design, engineering and structural characterization of a protein cage, in 

the shape of a cube, with openings of about 100 Å to a central cavity of 130 Å in diameter. 

Its outside diameter (225 Å) makes it the largest protein assembly to date that has been 

designed and validated in atomic detail.

Results and Discussion

Design and construction of protein cage ATC-HL3

To design a porous cube-shaped protein assembly, we employed the helix-based oligomer 

fusion strategy13 to computationally model a series of possible protein cages, each intended 

to assemble from 24 identical subunits arranged in cubic (octahedral) symmetry, and having 

central cavities of various diameters. These computational constructions were all fusions 

between various known dimeric and trimeric protein domains, selected according to the 

criterion that, when joined end-wise by a continuous alpha helical linker, their symmetry 

axes would obey a particular geometric requirement; in order to form a 24-subunit cube, 

their 2-fold and 3-fold symmetry axes were required to intersect at an angle nearly equal to 

35.3° (the angle between a face diagonal and a body diagonal of a cube). One of these 

computationally constructed models was taken forward for experimental testing and is 

described here. The designed protein molecule is a genetic fusion of the trimeric E. coli 2-

keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolase31 (PDB ID: 2V82) and the dimeric 

N-terminal domain of E. coli FkpA protein32 (PDB ID: 1Q6U). The KDPGal aldolase 

constitutes the N-terminal domain of the designed fusion protein, while the N-terminal 

domain of the native FkpA protein constitutes the C-terminal domain of the designed fusion 

protein (Fig. 1). To achieve the geometry required for a cubic cage with octahedral 

symmetry (i.e. 2-fold and 3-fold symmetry axes intersecting at an angle of 35.3°), the design 

protocol determined that the requirement would be closely matched by linking these two 

domains with a four-residue alpha-helical linker. In the computed model, the angle between 

the trimeric and dimeric axes (of the N-terminal and the C-terminal domains of the fusion 
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protein, respectively) was 36.5° (within about 1° of the ideal angle), and the axes were 

within 0.3 Å of intersecting. For the sake of simplicity, this fusion system will be referred to 

as the ATC cage (Aldolase-Three-helix Cubic protein cage).

Five minor variations on the ATC cage were constructed with different helix linker 

sequences. The best linker sequence for the fusion protein, as judged by size exclusion 

chromatography and native polyacrylamide gel electrophoresis (PAGE), was used for 

further characterization (see Supplementary Information). The best construct, referred to 

here as ATC-HL3 (ATC cage with Helix-Linker version 3), was judged more promising 

than other variants, yet it nonetheless showed properties deemed potentially problematic for 

crystallization. The size-exclusion profile showed a somewhat asymmetric peak, and the 

main band on a native PAGE gel was diffuse (see Supplementary Fig. S3). Indeed, initial 

crystallization trials gave only small crystals in several conditions (see Supplementary Table 

S2). However, large single crystals suitable for X-ray diffraction studies were eventually 

obtained.

Crystal structure analysis of the ATC-HL3 cage

After a prolonged incubation time (six months to a year), we observed single crystals large 

enough to enable structure determination by X-ray crystallography (see Supplementary Fig. 

S5). Similar crystals were observed in different batches of crystallization trials, indicating 

that the crystallization of ATC-HL3 could be reproduced given sufficient time. The crystals 

yielded X-ray diffraction data only to 7 Å resolution – this was not unexpected in view of 

the necessarily high solvent content of the designed structure33 –yet the diffraction dataset 

was sufficient for an unequivocal molecular replacement solution and analysis. The limited 

resolution did not permit a detailed atomic refinement, but this was unnecessary in 

establishing the success of the design. The crystals grew in cubic space group F23, with four 

cube-shaped cages packed in the unit cell (Fig. 2a). Two copies of the protein subunit are 

contained in the asymmetric unit of the crystal, and a molecular replacement computer 

program automatically placed these two subunits within the unit cell in such a way that the 

crystal symmetry generated a complete 24-subunit cube as designed. The automatic 

placement of multiple subunits in a configuration that matched the design was a strong 

indication that the structure determination was correct, but owing to the relatively low 

resolution of the observed diffraction data, care was taken to validate the determined 

structure (see Supplementary Results and Figs. S6-S8). Calculations were performed to 

assess the precision with which the position of the protein molecules could be defined, and 

the estimated uncertainty was determined to be about 1 Å (Supplementary Fig. S7).

The cubic cage observed in the crystal structure matches the computer design with 

exceptionally high accuracy. The root-mean-square deviation is only 1.2 Å for all 6,480 

alpha carbon atoms of the twenty-four chains in a complete assembly (Fig. 2b). The cage has 

nearly perfect 24-fold octahedral symmetry, and it sits on a point of tetrahedral (23) point 

symmetry in the crystal. In accordance with the design, the outer diameter of the cage is 225 

Å and the interior cavity is 132 Å in diameter (see Supplementary Fig. S9); these parameters 

are comparable to the first DNA-based octahedron24. This interior diameter is considerably 
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larger than has been achieved to date for any other designed protein cage structures (see 

Supplementary Fig. S10).

The structure of an individual cage is highly porous, with openings of around 100 Å as 

dictated by the design, and this porosity is extended further in the crystal owing to the way 

the cages are packed together. Adjacent cages contact each other along their edges (Fig. 2a). 

This gives rise to large voids in the crystal that are nearly as large as one entire cage. The 

orientation of the cages along principle directions of the crystal gives rise to large open 

windows that are aligned throughout the length of the specimen (Fig. 2c). The solvent 

content of this crystal form is ∼82%. Only 0.16% of all structures in the Protein Data 

Bank34 have such a high solvent content. Porous organic molecules have value for multiple 

applications21. Porous protein molecules have potential for similar yet distinct applications, 

such as encapsulating other protein molecules, which are too big to be encapsulated by 

small-molecule cages. Such highly-porous protein frameworks could also be used for 

assisted crystallization and X-ray analysis35. However, if this were to be done by directly 

attaching a guest molecule to the protein subunit, then symmetry dictates that multiple 

copies of the guest molecule would have to fit within an individual void space of the crystal.

Biophysical studies on the designed cage

Although the crystal structure of the ATC-HL3 cage closely matches the design, we sought 

to use biophysical approaches to understand the potential causes for the long time required 

for crystallization. First, to determine whether discrete heterogeneous assemblies were 

present in solution, native mass-spectrometry analysis36 was carried out. The spectra 

showed that, in addition to a small trimeric species, three major assembly species 

corresponding to 12-mer, 18-mer and 24-mer, were present in solution (Fig. 3a). It is notable 

that the alternate species differ from the full 24-mer cube by multiples of six subunits. Only 

those cases are capable of simultaneously satisfying all the natural interfaces of the dimer 

and trimer components. Because six is the lowest common multiple of two and three, partial 

structures not composed of multiples of six subunits would have to contain unsatisfied 

interfaces, and no such structures (larger than an individual trimer) are observed. The 

dominance of assembly forms that are ‘closed’, in the sense of having all their binding 

interfaces satisfied, signals the importance of cooperativity in the assembly studied here.

The 24-mer observed by native mass spectrometry must correspond to the designed cube, 

whose structure was validated by crystallography. We propose hypothetical models of the 

18-mer and the 12-mer in which all of the dimeric and trimeric interfaces are satisfied. 

While the designed 24-mer is composed of 8 trimers at the vertices of a cube, our model of 

the 18-mer places six trimers at the vertices of a triangular prism, while the 12-mer is a 

tetrahedron with 4 trimers at the vertices (Fig. 3b). Under this scenario, different assemblies 

arise due to the intrinsic flexibility of the helix linkers between the trimeric and dimeric 

components. Flexibility of helix linkers, resulting in heterogeneity, has been observed before 

in another smaller helix-based oligomeric-fusion system15, 16. According to the mass 

spectrometry results here, if we account for detector efficiency and assume that the 

ionization probabilities of the different species are similar, the population ratios of the 12-
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mer, 18-mer and 24-mer (in 200 mM ammonium acetate and pH 7.3) are approximately 

10%, 50% and 40% by weight.

To further test the assembly of the ATC-HL3 fusion protein, we carried out electron 

microscopy analysis. Negative-stain electron micrographs showed particle sizes in the range 

of 10-20 nm (Fig. 4a), consistent with the mass spectrometry results, and with an upper size 

limit in agreement with the designed structure. Heterogeneous forms were evident. 2D class 

averages resulted in both square and triangular projections consistent with the presence of a 

few geometrically different assemblies (Fig. 4b and Supplementary Fig. S11). The square 

projections are consistent with the intended cube-shaped design, or possibly with side views 

of the 18-mer. The triangular images likely reflect views of the 12-mer as well as top views 

of the 18-mer. Although definitive shape assignments were not pursued, the class averaging 

from negatively stained protein particles accords with the data from native mass 

spectrometry regarding the presence of a small number of geometrically distinct species in 

solution.

Lastly, to probe the multimeric solution structure of ATC-HL3 further, we carried out small-

angle X-ray scattering (SAXS)37 in various solution conditions. We focused on conditions 

similar to those in which crystals formed (see Methods). In conditions with well-defined 

Guinier regions, SAXS profiles corresponded to average radii of gyration (Rg) ranging from 

70 Å to 81 Å relative to 92 Å calculated from the crystal structure of the cube (Fig. 5a and 

supplementary Table S4). The SAXS data showed oscillations about a q4 decay (indicative 

of globular particles with limited heterogeneity), but the oscillations were not nearly as 

dramatic as those calculated38 from the crystal structure (Supplementary Material). The 

SAXS profiles calculated from the idealized models of the 12-mer and 18-mer likewise 

showed sharp features not reflected in the observed data. Indeed it was not possible to obtain 

a good fit to the experimental data with those models. We determined that the sharp features 

in the calculated SAXS profiles were characteristic of highly symmetric assemblies. We 

therefore created slightly flexed (and less perfectly symmetric) versions of our assembly 

models using normal mode analysis of an elastic network model (Supplementary Material). 

By using a collection of flexed models for the 24-mer, 18-mer, and 12-mer, we were able to 

obtain an excellent fit to the observed scattering curve (Fig. 5 & Supplementary Fig. S14). 

According to the SAXS fitting, the weight percentages of the trimer, 12-mer, 18-mer, and 

24-mer were about 17%, 35%, 17%, 31%, with estimated uncertainties of about 10%. Those 

estimates differ from those from native mass spectrometry, but both methods are 

approximations, and the solution conditions for the two experiments were dissimilar; the 

SAXS data that could be best fit by the model structures was from a sample in 600 mM 

ammonium sulfate and 1% PEG 400. Notably, the consistent conclusion from all the 

solution methods was that a few geometrically distinct species are present in solution.

In further SAXS experiments, we probed the effects of solution conditions and thermal 

annealing on assembly. Samples were heated to 45°C and slowly cooled to 4°C over an 8-

hour period. Interestingly, powder rings appeared under solution conditions similar to those 

that produced single crystals (50 mM MES pH 6.0 and 50 mM ammonium sulfate), 

indicating the formation of microcrystals. The positions of these peaks in the scattering 

profile were consistent with strong, low resolution reflections expected for diffraction from 
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the crystal form used for structure determination (Fig. 5b and Supplementary Fig. S16). 

However, the Rg of the SAXS profile decreased and the overall profile lost sharpness in 

oscillations, indicating an overall loss of large ordered structures from the solution. 

Therefore, while nucleation of crystals was promoted by thermal annealing, the overall 

assembly mixture was not evidently shifted towards the cube-shaped form in solution. In an 

attempt to drive the protein assembly more fully to the intended cube-shaped structure, we 

also attempted to partially unfold and then refold and reassemble the protein. We performed 

denaturation/renaturation experiments using various concentrations of urea, including in the 

presence of reagents that promote alpha helix formation (e.g. trifluoroethanol and 

trimethylamine N-oxide), with the view that the helix linker might be the primary source of 

instability. However, those experiments all produced lesser amounts of large regular 

assemblies as judged by SAXS and native mass spectrometry; large assemblies could not be 

recovered in high yield after disassembly.

Discussion

The crystal structure of the 24-subunit cage validated our computational design in atomic 

detail, thereby supporting the utility of the oligomeric fusion approach for creating large 

assemblies. The close agreement with the design suggests that the energy landscape for the 

assembly has a sharp minimum for the intended configuration. However, all of the solution 

studies provide evidence for a complex energy landscape with minima for other states, while 

also shedding light on elements of dynamic behavior and routes of assembly.

The native mass spectrometry data show that trimers are present in the sample at a small but 

detectable concentration. This points to a likely hierarchical assembly process in which 

monomeric ATC-HL3 subunits, once produced in E. coli, assemble first into trimers, which 

then serve as building blocks for forming the higher-order assemblies: the 12-mer, 18-mer 

and 24-mer. By virtue of our design, the 24-mer should have a lower energy than the 18-mer 

or 12-mer. Yet the 12-mer and 18-mer are well-populated in solution. If the system 

represents an equilibrium situation, then the formation of alternate species reflects a balance 

between the cost of slightly higher helix bending energies and the favorable entropy 

associated with partitioning into different assembly forms. This would of course be affected 

by overall concentration. The samples showed a tendency to form – presumably by 

rearrangement – much larger aggregates when concentrated (data not shown), suggesting the 

ability to re-equilibrate between assembly states. On the other hand, SAXS studies did not 

show a strong dependence on concentration, though different solution conditions did 

indicate changes in average radius of gyration and mass (Supplementary Table S4). Our 

inability to identify conditions that might give the intended 24-mer cube as a single 

dominant species suggests the possibility that the assembly outcome might be limited by 

kinetic effects. By necessity the route to the 24-mer must proceed through smaller species, 

some of which we show here are capable (owing to flexibility) to form structures in which 

all the natural protein interfaces are satisfied. Further studies will be required to analyze 

whether different assembly forms are able to equilibrate or whether the alternate 

(geometrically non-ideal) assembly forms represent kinetically trapped states.

Lai et al. Page 7

Nat Chem. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Regardless of the thermodynamic or kinetic basis, the formation of alternate structures raises 

an important challenge in the design strategy advanced here. As noted earlier, the oligomer 

fusion approach makes it possible to realize sophisticated assembly architectures without 

having to redesign new interfaces into proteins, but this comes at the cost of structural 

flexibility, which permits alternate assembly states. In the present case our modeling shows 

that only 15° or 19° bending motions are needed to allow the designed subunit to form the 

18-mer or 12-mer structures instead of the intended cube (Supplementary Material). The 

occurrence here of polymorphic assemblies due to small angular differences recalls among 

natural proteins the case of clathrin coats. In vitro, clathrin can assemble into several regular 

shapes, including mini-coats (78-mer), hexagonal barrels (108-mer) and icosahedrally 

symmetric soccer balls (180-mer). There it was found that a bending of only 8° can lead to 

different assemblies39. Thus synthetic protein assemblies of the type described here could 

serve as surrogate systems to further our understanding of natural heterogeneous assemblies.

Looking forward, various strategic variations might allow for greater rigidity and control 

over assembly states. Linkers that are shorter or stiffer – like an alpha helical coiled-coil for 

example – might offer an advantage. In addition, it may be possible to combine the oligomer 

fusion strategy with a more limited application of protein interface design to gain the 

benefits of both approaches. Finally, some other combinations of symmetries (other than 

dimer and trimer) allow for fewer alternative outcomes. Less geometrically permissive 

symmetry combinations would likely make it easier to realize a single intended outcome in 

future design studies.

Conclusions

A crystal structure of our designed 24-subunit protein cube, the largest and most open 

assembly created to date from protein subunits, confirmed the symmetry and atomic level 

accuracy of this novel design. This successful result shows that protein assemblies that are 

highly porous, yet geometrically regular, can be created using the oligomer fusion strategy. 

The designed cube has an extremely open structure, and the resulting crystal form generates 

an extraordinarily porous protein lattice, which could open up new biomaterials applications. 

Not with standing the successful characterization of this designed protein cube, various 

solution experiments emphasize that flexibility is intrinsic to assemblies created using the 

oligomer fusion strategy. In the present study this gives rise to alternate structures in 

addition to the 24 subunit cube – a 12-subunit tetrahedron and an 18-subunit triangular 

prism. The flexibility also gives rise to dynamic distortions in solution. These results 

underscore the importance of monitoring and controlling flexibility to address the challenges 

of robustly creating highly porous, protein-based assemblies with predetermined structures 

such as the cube presented here.

Data Deposition

Atomic coordinates of the crystal structure of the protein cage have been deposited in the 

PDB (ID 4QCC).
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Methods

X-ray Crystallography

Purified ATC-HL3 protein in buffer containing 20 mM Tris (pH 8.0) and 100 mM NaCl was 

concentrated by dialysis in the same buffer condition supplemented with 5% PEG 20,000 

(only added to the outside of the dialysis bag) until the concentration reached ∼10 mg/mL. 

Large cubic crystals grew in 0.1 M MES (pH 6.0), 0.6 M ammonium sulfate and 1% PEG 

3350. The hanging-drop technique was used to grow the crystals and the ratio between the 

protein and reservoir was 2 uL to 1 uL, with a reservoir volume of 500 uL. 5 M lithium 

acetate was found to be the only suitable cryo-protectant, giving diffraction up to 7 Å on a 

home x-ray source (Rigaku FRE+/Quantum4 CCD); severe radiation damage was observed 

in an experiment using a synchrotron x-ray source. The diffraction data set obtained was 

processed using the XDS package40. A theoretical fusion protein monomer was used as the 

search model in the molecular replacement program Phaser41, where the space group was 

determined to be either F23 or F432. Rigid body refinement by Refmac42 led to significantly 

lower R-factors in the F23 space group. Five cycles of highly constrained jelly-body 

refinement (sigma=0.01) was carried out and resulted in Rwork and Rfree values of 0.283 and 

0.317 respectively. Additional validation of the X-ray structure is described in the 

Supplementary Materials.

Native mass spectrometry

A purified ATC-HL3 protein solution was buffered exchanged into 200 mM ammonium 

acetate, pH 7.3 using a centrifugal buffer exchange device (Micro Bio-Spin 6, Bio-Rad) 

prior to native mass spectrometry analysis. Experiments were conducted using a Q-ToF 2 

instrument (Micromass UK Ltd) with a Z-spray source and modifications for high-mass 

operation as previously described43. Typically, 2 μL of protein solution was electrosprayed 

from gold-plated borosilicate capillaries prepared in-house. Spectra were externally 

calibrated by Cesium Iodide solution (200 mg/mL) and processed using MassLynx software 

(Waters MassLynx V4.1). Stoichiometric analysis of the native macromolecular assemblies 

in solution was performed by using both mass spectrometry (MS) and tandem mass 

spectrometry (MS/MS). Tandem mass spectrometry employs collision-induced dissociation 

on specific macromolecular species, selected via their mass to charge (m/z) ratios. 

Instrument parameters for MS were 1.50 kV capillary voltage, 150 V sample cone, 20 V 

extractor cone, 5 V accelerating collision voltage, 1.01 e-2 mbar pirani pressure, 5.05 e-4 

mbar penning pressure, 2.57 e-6 To F penning pressure and argon for collisional gas at 

pressure of 0.2-0.3 MPa. For MS/MS experiments 8959, 12592 and 13278 m/z were selected 

for the 12, 18 and 24-mer respectively, where the quadrupole resolution was adjusted to 

encompass the entire charge state of interest. MS/MS instruments settings were identical to 

those used for MS analysis with the exception of an 150, 200 and 200 accelerating collision 

voltage for the 12, 18 and 24-mer respectively. Population ratios were estimated using an in-

house program, and were corrected for detector efficiency44, 45.

Electron microscopy and image processing

The ATC-HL3 fusion protein was diluted to ∼30 μg/mL in buffer containing 20 mM Tris 

pH8.0 and 100 mM NaCl. A carbon-coated Maxtaform, 400-mesh Cu/Rh EM specimen grid 
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(Ted Pella, Inc.) was glow-discharged for 30 s. About 3 μl of protein solution was applied to 

a grid and preserved with 0.75% (w/v) uranyl formate. Images were recorded at a 

magnification of 52,000× on a 4K × 4K Teitz F416 detector, and ∼ 2 μm under focus, with a 

Tecnai Spirit electron microscope (FEI), equipped with an LaB6 filament and operating at 

an acceleration voltage of 120 kV. A total of 157 detector images were automatically 

acquired using Leginon46. Particle images (∼15,000) were picked using DoG picker47. 

Two-fold pixel binning of the original particle images resulted in a final pixel size of 4.1 Å. 

Image alignment and classification were carried out using the Iterative Stable Alignment and 

Clustering (ISAC) program in the SPARX software package48.

SAXS experiments

ATC-HL3 protein samples were analyzed by small-angle x-ray scattering in eight different 

buffer conditions (see Supplementary Methods) at the 12.3.1 beamline of the Advanced 

Light Source at the Berkeley National Laboratory49. The beamline provides 1012 photons/

second of 12 keV X-rays focused to a 100 μm spot at the MAR165 detector placed 1.5 m 

away from the sample. Samples of 20 μL volumes were collected as previously described37. 

Each protein sample was collected in association with two blank buffers collected before 

and after the protein sample. Buffers were subtracted from the sample and checked for 

agreement. Detector images were integrated to display X-ray intensity vs q in Å-1 where q = 

4π(sinθ/2)/λ, q is the scattering angle and λ is the X-ray wavelength. The acquired data were 

analyzed by the program Scatter (available at sibyls.als.lbl.gov), which was used to merge 

data from each sample, calculate the Rg and mass. Three concentrations were collected at 

low salt showing no concentration dependence. One concentration was collected for the 

remaining samples. Each sample was exposed for 0.5, 1, 2 and 5 seconds; the 5 second 

exposure routinely showed radiation damage and was thus not used for merging profiles. 

The FoXS program was used to calculate SAXS profiles from atomic models38. Fitting of 

calculated model SAXS profiles to observed SAXS data is described in Supplementary 

Material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Models of the engineered fusion protein and its assembled cage structure
a, The designed fusion protein, with trimeric KDPGal aldolase (green), the 4-residue helical 

linker (blue), and the dimeric domain of FkpA protein (orange) shown with lines for the 3-

fold (cyan) and 2-fold (magenta) symmetry axes. b, A model of the intended 24 subunit cage 

with octahedral symmetry in a bounding box (left). The three-fold symmetry axes (cyan) 

and two-fold symmetry axes (magenta) of a cube are shown on the right.
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Figure 2. Crystal structure of the designed cubic cage ATC-HL3
a, Four complete ATC-HL3 cages, colored differently, are packed within a unit cell (shown 

in blue lines). b, The cube-shaped cage observed in the crystal matches the design with high 

accuracy. The crystal structure is shown in green ribbon and the intended design is shown in 

cyan ribbon; the two are nearly perfectly overlapping. c, The packing alignment of cages in 

the crystal produces a highly porous protein lattice; a 3×3 block of unit cells is shown. The 

two independent protein chains in the asymmetric unit are colored differently (purple or 

green).
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Figure 3. Native mass spectrometry of the ATC-HL3 protein cage
a, The native mass spectrum (top) indicated three major assembly forms composed from 12, 

18, and 24 subunits. The sizes of these three major assembly species were confirmed by a 

tandem mass spectrometry analysis (below) in which the masses were examined after 

stripping one subunit from each assembly form to give (n-1) subunits. A trimeric species 

was also evident in the native mass spectrum (top). b, Hypothetical models are shown of the 

three major assembly forms observed: atetrahedron (top), a triangular prism (middle), and 

the cube (bottom). The cube form shown is the intended computation design, while the two 

smaller forms were constructed by rigid body positioning of dimers and trimers allowed by 

minor bending at the linkers between protein domains. Trimers occupying different vertices 

are color-coded differently.
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Figure 4. Negatively stained transmission electron microscopy of the ATC-HL3 cage
a, A wide field view showing assembled protein particles preserved in stain. b, Examples of 

2D class averages (left) obtained after aligning, clustering, and averaging similar particle 

images. For comparison to what would be expected for EM images of the designed protein 

assembly, calculated projections (middle) are shown of models of the 24-subunit cube 

assembly (the intended design) and an alternate 12-subunit tetrahedral assembly (both 

calculated using a 4 nm low-pass image filter). Three dimensional atomic models are also 

shown (right).
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Figure 5. SAXS profile of ATC-HL3
a, The observed small angle X-ray scattering (SAXS) profile is shown (black) for the 

designed protein (in 600 mM ammonium sulfate), along with a weighted sum of SAXS 

profiles calculated from atomic models of the designed (24-mer) cube-shaped assembly and 

the 18-mer and 12-mer assemblies, all in their flexed forms. The Guinier region is shown in 

the inset; its near-linearity indicating the absence of other aggregated forms of the protein. A 

residual error plot (bottom), expressed as a ratio of the observed:calculated scattering 

intensity (with ideal value of 1) is shown at the bottom. The close agreement between the 

calculated and observed profiles supports the modeling of the assembly in solution as a 

mixture of the 12-mer, 18-mer, and 24-mer assembly forms. b, Microcrystal peaks observed 

on the SAXS profile after temperature annealing of a low salt (50 mM ammonium sulfate) 

condition. The scattering angle of the dominant peak (q=0.044 Å-1) corresponds to the first 

diffraction peak in the crystal form obtained for the 24-subunit cube (Supplementary 

Material).
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