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Abstract: The Smart Grid (SG) is conceived as the evolution of the current electrical grid 

representing a big leap in terms of efficiency, reliability and flexibility compared to today’s 

electrical network. To achieve this goal, the Wireless Sensor Networks (WSNs) are 

considered by the scientific/engineering community to be one of the most suitable technologies 

to apply SG technology to due to their low-cost, collaborative and long-standing nature. 

However, the SG has posed significant challenges to utility operators—mainly very harsh 

radio propagation conditions and the lack of appropriate systems to empower WSN 

devices—making most of the commercial widespread solutions inadequate. In this context, 

and as a main contribution, we have designed a comprehensive ad-hoc WSN-based solution 

for the Smart Grid (SENSED-SG) that focuses on specific implementations of the MAC, the 

network and the application layers to attain maximum performance and to successfully deal 

with any arising hurdles. Our approach has been exhaustively evaluated by computer 

simulations and mathematical analysis, as well as validation within real test-beds deployed 

in controlled environments. In particular, these test-beds cover two of the main scenarios 

found in a SG; on one hand, an indoor electrical substation environment, implemented in a 

High Voltage AC/DC laboratory, and, on the other hand, an outdoor case, deployed in the 
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Transmission and Distribution segment of a power grid. The results obtained show that 

SENSED-SG performs better and is more suitable for the Smart Grid than the popular 

ZigBee WSN approach. 

Keywords: smart grid; wireless sensor network; power asset; IEEE 802.15.4; MicaZ 

 

1. Introduction 

The Energy Information Administration (EIA) [1] has recently forecasted that world energy 

consumption will grow by 56% between 2010 and 2040. Although 80% of this energy is derived from 

traditional fossil fuels, renewable energy and nuclear power are the world’s fastest-growing energy 

supplies—each with an increase of 2.5% per year. The increase in the number of different energy sources 

the current power grid has to accommodate and regulate leads to an unavoidable increase in the 

complexity of grid; despite that, this power grid still lacks an effective sensing and control platform that 

could help provide more intelligence to the management process. To alleviate this situation, cutting-edge 

sensing and control technologies are envisioned to be integrated into the current power grid. This 

integration will result in what is called the Smart Grid (SG), a more configurable, dynamic, reliable, 

flexible and effective power network. 

The Smart Grid can be observed as the evolution of the primitive state of the current electrical grids 

which in most cases consist of power transmission lines more than 50–60 years old [2] and whose 

conceptual design has remained unchanged for more than 100 years [3]. This out-of-date design, together 

with the lack of information collecting mechanisms, have been identified as the main triggers for serious 

power failures such as the European blackout on November 4, 2006 that affected more than 15 million 

European household) [4] and the North American black out in 2003, with an estimated cost of four to 

10 billion dollars to the U.S. economy [5]. In light of this situation, it should be one of the priorities of 

every country’s economy to provide their power grids with the required tools to enable intelligent asset 

management and successful health management. In this regard, successfully managing key power assets 

(substations, transformers and transmission towers among others) is considered to be as important as 

being able to predict their remaining useful life (RUL) or the time to the next failure. For such purposes, 

relevant data must flow in both directions: from power assets to central processing centers (sending 

acquired physical data such as temperature, voltage, vibrations, etc.) and from there to power assets 

(making decisions such as for instance, triggering the ventilation system when the temperature increases 

in an indoor substation or balancing the incoming voltage) [6,7]. 

Wireless Sensor Networks (WSNs) are considered to play an important role in this two-way 

communication process, which is in charge of bringing intelligence to the electrical network.  

This enabling technology has proven to have the ability to promote the use of automation, control and 

sensing techniques at a low cost and with very low-power consumption. Although other alternatives like 

wired communication systems could be considered as a more robust solution, they would require much 

more investment (very high deployment costs), an increase in maintenance costs and less network 

scalability, therefore leading to an inflexible communication solution for the new grid [8]—the network 

would not be able to accommodate to new requirements. The inherent decentralized nature of wireless 
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systems, the decreasing evolution of prices, their easy and fast plug-and-play philosophy and a  

long-term durability have made WSN technology a clear winner in the field of power engineering [9]. 

The substantial benefit of a WSN lies in its capacity to deploy small battery-powered sensor nodes 

directly into critical power assets with practically no installation and maintenance work. These devices 

wirelessly send their processed sensed data to central nodes (also known as sink nodes) where data is 

converted into decisions and sent back to nodes. Critical power assets can be found along the three 

distinct segments of the electrical grid: Generation segment (where power plants and energy storage 

systems can be found), Transmission and Distribution (T&D) segment (where transformers, substations 

and power lines are installed) and Consumers segment (where end-users’ premises are). 

However, the concern behind this approach is that designing the required WSN-based monitoring 

systems implies a profound knowledge of telecommunications and electronics involved, especially when 

dealing with an integral ad-hoc solution. Furthermore, because of the particular nature of the power grid 

(mainly very harsh propagation conditions and the lack of appropriate inexhaustible power sources), 

systems intended to manage and control power assets have to fulfill specific requirements and be 

engineered with those requirements in mind. Therefore, the communication protocol stack and 

technologies used in WSNs for the Smart Grid must be revised and improved (when not specifically 

designed from scratch) to achieve the best results. Unfortunately, to the best of our knowledge,  

no integral ad-hoc WSN solution has been proposed in the Smart Grid research field so far and only few 

approaches have intended to adapt well-known WSN technologies originally thought to operate in 

different fields [10–13]. 

To address this shortcoming, and as the main contribution to this work, we propose a fully integral 

ad-hoc control and sensing solution based on wireless sensing technologies (denoted as SENSED-SG) 

satisfying the major requirements of a Smart Grid monitoring application. This control and sensing 

solution is achieved by means of a novel protocol stack designed from scratch to appropriately exploit 

the benefits the SG and circumvent potential challenges. Special attention has been paid to the MAC and 

Network layer where the core of the communication system lies and its main settings tuned to attain 

good performance. In addition, our proposal has been evaluated and validated by means of theoretical 

analysis, computer simulation and extensive experimentation under controlled conditions: (i) a High 

Voltage AC/DC laboratory and (ii) the T&D segment of a power grid. As an additional contribution, our 

solution is compared to ZigBee, one of the most popular standards in WSNs in a Smart Grid environment. 

As far as we know, this is the first test-bed including multi-hop and cluster-tree topologies performed in a 

Smart Grid environment. The results reveal that our ad-hoc solution, specifically designed for the Smart 

Grid area, is better suited than other solutions (like ZigBee) adapted to operate in this research field. 

The rest of this paper is structured as follows. Section 2 presents an up-to-date review of the particular 

requirements of a Smart Grid and the challenges the enabling technologies have to face. Section 3 

introduces the related work found in the literature, summarizing their advantages and limitations. Section 

4 describes our proposal as well as the mathematical analysis supporting the decisions made. The set of 

complex simulations conducted is reported in Section 5. The test-beds accomplished are explained in 

Section 6. Finally, Section 7 concludes and outlines future works. 
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2. Requirements and Challenges of the Smart Grid 

The first step in the design of a sensing and control system based on a WSN solution must be the 

definition of the requirements that the system must satisfy. Generally speaking, the main goal of the 

Smart Grid is to improve the efficiency, reliability and safety of the current power grid while easing the 

process of integrating new sources of energy (e.g., renewables). This is accomplished by the inclusion 

of control, monitoring and processing tools into the current power grid. These three tools can be 

effectively implemented with the deployment of a ubiquitous WSN underpinned by a real-time 

processing support system. WSNs, like any other technology, have to face diverse challenges to achieve 

their full effectiveness, especially when dealing with noisy and unsteady environments. 

It is a common practice in the scientific literature to describe the requirements that an ideal Smart 

Grid must fulfill without taking into account the limitations of the enabling technologies [14,15].  

This leads to a deficient understanding of the underlying mechanisms that make a Smart Grid possible 

and may cause an incorrect vision of the whole picture. To this aim, the following sub-sections 

summarize the primary requirements of the Smart Grid and connect them with the potential challenges 

that WSN need to tackle satisfactorily. 

2.1. Scalability 

The sensing and control system must work in optimal conditions even when the Smart Grid grows 

significantly. A typical utility of 25,000 km of high voltage power lines and thousands of capacitors and 

transformers could require the monitoring of over 100,000 distinct elements and distributed sensors or 

sources of data that may be spread over a 20–80,000 sq. km area [16]. 

From the technologies’ perspective, there are a couple of challenges to be faced in order to provide 

high scalability to a Smart Grid. First of all, the information network must be able to grow inexpensively 

and on demand, to enable this, monitoring systems composed of WSN devices must be of very low cost 

and be available to designers and end users. Secondly, when the network increases in terms of WSN 

devices it does also in size. It is therefore of paramount importance the implementation of multi-hop 

algorithms allowing the network to operate for long distances and providing communication from any 

arbitrary element of the Smart Grid to the central node [17,18]. 

2.2. Long-Standing Platform 

Power assets must be designed and engineered to ensure a proper operation during a considerable 

amount of time—most of the current American power grid is about 50–60 years old [16]—therefore, in 

a Smart Grid, any monitoring and actuating system must be ready to work with minimum maintenance 

for extremely long periods of time. 

WSNs are composed of a large number of hardware-constrained sensing nodes whose operation 

periods must be adjusted to mitigate the lack of available, inexhaustible, power supplies and guarantee 

an appropriate lifespan. In this regard, it is worth remarking that there is no segment of the power grid 

where voltages are suitable for supplying energy to sensor nodes (working at 5 V), and, as a solution, 

voluminous and expensive voltage transformers should be deployed for every single node in order to 

connect them directly to the power grid. This concern is especially important in the case of the T&D 
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segment where voltages are usually greater than two hundred thousand volts and the installation  

costs to power WSN nodes via traditional electric wiring would be unaffordable. On the other hand, 

energy-harvesting techniques (solar, vibrations, electromagnetic field, wind, etc.) are a promising 

research topic for empowering small and isolated WSN devices in the Smart Grid. The goodness of this 

approach is heightened by the high electromagnetic fields found in power grid environments and many 

works have already corroborated the efficacy of it in a Smart Grid context [19,20]. However, solar energy 

is not a feasible approach for indoor environments and not reliable in many countries where the solar 

energy harvested may be simply insufficient during certain seasons. On the other hand, and to the best 

of our knowledge, there is no current off-the-shelf sensing device fitted with the other aforementioned 

energy harvesting mechanisms (electromagnetic fields, vibrations, wind, etc.) that has already been 

tested in the Smart Grid. Therefore, the inclusion of these mechanisms is not covered in this work—

although it is considered as a future potential improvement. 

2.3. Reliability, Robustness and Noise Resilience 

Electronic devices may become inoperative or fail because of the presence of very high electromagnetic 

disturbances nearby as explored in [21]. As a result, a malfunctioning power asset can be not identified 

as such, provoking partial (isolated) outage or overall system failures which can affect larger regions 

and a higher number of consumers due to the cascading effect [22]—as it happened in the 

aforementioned European blackout. Therefore, the endurance of the WSN devices and a prompt 

detection of the failing ones is a must to prevent malfunctioning power assets from impoverishing the 

capacity of the power network. In this regard and from a global perspective, the correct operation of the 

whole information network must be guaranteed during the entire lifespan, providing specific 

mechanisms to resist and/or recover from harsh propagation conditions, severe weather conditions, 

strong electromagnetic interferences, equipment degradation, etc. 

From a technological point of view, it is a common denominator of any power network the presence 

of high electromagnetic disturbances which strongly deteriorate the performance of any wireless network 

and, in particular, of a WSN deployment. These high electromagnetic disturbances along with the 

absence of unlimited power sources are two of the most important concerns for a WSN operating  

in a power grid environment [21,23]. Our SENSED-SG is engineered having taken these effects into 

account, thus offering better network performance in comparison with other wireless technologies  

(e.g., Wi-Fi or Wi-MAX). 

The harsh propagation conditions found in power grid environments are mainly caused by: 

• Electromagnetic interferences caused by current lines and power assets in general. 

• Multiple metallic structures that may reflect and distort waves and cause noise-cancellation 

phenomena. 

• Multiple objects blocking line of sight. 

• Other communication systems working in the same frequency such as Wi-Fi, Bluetooth, 

Cordless Phones, etc. (mainly in substations found in industrial areas). 
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Although many current systems have some mechanisms to deal with these phenomena (DSSS 

techniques, MIMO-antennas, etc.), further efforts are needed to improve communication quality in  

such harsh environments. SENSED-SG makes use of many of the well-known techniques  

(noise-tolerant modulation techniques, timed-out retransmissions, use of the least-utilized frequency 

channel, etc.) and implement other novel solutions as explored in the following sections. 

Another aspect to consider is the failure of a particular WSN node. Under these circumstances, the 

network topology may change causing neighboring nodes of the faulty node to seek alternative routes to 

the central station. Consequently, the routing protocol must provide explicit mechanisms to refresh and 

discard any possible corrupted route. 

2.4. Security Issues 

According to the Electric Power Research Institute (EPRI), one of the emergent requirements facing 

the Smart Grid development is related to cyber security of systems [15]. The growing importance of the 

Smart Grid make it a sensitive target for cyber terrorists, which implies a critical concern for system 

designers as remarked in the EPRI report [24]. Therefore, it is mandatory that the information collected 

and the decisions made are sent encrypted to prevent malicious users from eavesdropping or tampering 

with sensitive information as many works have already outlined [25,26]. 

For small embedded devices like WSN nodes, implementing state-of-the-art encryption techniques 

represents an important challenge due to their hardware constraints, both in terms of computing 

capabilities and memory. Besides, the required extra computation leads to a non-trivial increase in the 

power consumption. Therefore, a thorough study of the current available encryption algorithms to select 

the best solution is needed. However, the National Institute for Standards and Technology (NIST) and 

the Federal Information Processing Standard (FIPS) has determined that the preferred solution for new 

deployments should be AES (Advanced Encryption Standard) to guarantee the required level of privacy 

in Smart Grid environments [15]. 

2.5. Real-Time Monitoring 

The network must acquire, process and analyze data from the power assets in a suitable period of 

time to allow decision-making and control algorithms running in the central node to react against these 

changes appropriately. In this regard the differences between the asset management and the power 

system protection should be noted. While the former does not impose hard constraints in terms of  

real-time processing and generates large amount of data, the latter inherently requires a strict real-time 

decision-making system and dispatches fewer packets [21,27]. It is accepted by the research community 

that measured data in wireless asset-managing systems, like the one proposed here, should reach sink 

nodes in less than 15 s [15]. It is important to highlight, that such constraint only applies to wireless 

asset-managing system and other systems (wired or those intended to be used in power system 

protection) may have to meet other requirements (such as those suggested in the IEC61850 standard). 

From a technological point of view, to ensure an appropriate asset managing solution in terms of 

timing constraints, diverse aspects must be taken into account. Firstly, despite the WSN nodes of the 

Smart Grid are able to collect large amounts of data, this information has to be pre-processed in every 

node before being sent to the wireless network. This is carried out to prevent large volumes of data  
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from simultaneously reaching the central node, negatively affecting its ability to furnish a real-time 

decision making system. It has been proven as a non-trivial issue in widespread WSN sensing systems 

such as the London Traffic Management system [28]. Secondly, WSN nodes are extremely hardware  

limited devices incapable of computing complex mathematical operations, therefore there must exist  

a study of the trade-off between pre-processing in the node and the number of packets dispatched to  

the network. 

Moreover, to guarantee adequate data collection times, data latency must rank within a tolerable 

range. To achieve this goal, specific protocols settings must be tweaked as will be explored later in 

Section 5.1. Finally, extensive tests must be carried out to validate the deployed solution in terms of  

end-to-end delay and to ensure the proper functioning of the network. 

2.6. Interoperability 

In the framework of a Smart Grid, interoperability means the ability of diverse systems to work 

together, exchange information or equipment from each other and operate cooperatively to perform 

several tasks [15]. To provide a suitable level of interoperability and a seamless data flow among WSN 

devices, the use of standards is a key issue [29,30]. 

To accomplish this, the hardware platform and software architecture of the implemented solution 

must be well known by the research/engineering community. Furthermore, the communication protocols 

and message exchange patterns must be fully documented to facilitate interoperability with other 

potential systems. 

3. Related Work 

Many papers have looked into the requirements of a Smart Grid as the main way to understand the 

big picture [14,15,27], on the other hand many others have kept the focus on the challenges diverse 

technologies have to face in order to implement a Smart Grid [16,31]. However, as far as we know, there 

is no single work that unifies these two aspects—requirements of a Smart Grid and what challenges the 

enabling technologies have to tackle to achieve them—with the aim of setting the starting point for a 

Smart Grid suitable control and sensing solution. 

Works in [3,32,33] have studied the performance of some technologies/protocols and their behavior in 

“simulated” smart-grid environments obtaining good results. Nevertheless, we believe that individual 

technologies that are interconnected to form a bigger system cannot be analyzed independently since 

doing so will overlook the non-trivial interaction between them. For instance, in [34] a new secure 

routing protocol including quality of service support for Smart Grids is presented and analyzed. 

Although several simulations are shown and their outcomes discussed, the authors omit the effect  

of an underlying MAC (Medium Access Control) layer that may severely deteriorate the results  

(e.g., it is notorious that many MAC protocols do not appropriately deal with certain types of data traffic 

like broadcasts or multicast packets). In this regard, our analyses and test-beds are aimed at providing 

results of different performance metrics considering every possible interaction between protocols—as 

will be reflected in Sections 6 and 7. In short, a complex system cannot be analyzed as the sum of its 

composing elements. 
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In [35], a performance evaluation of a ZigBee-based approach for different Smart Grid environments 

is carried out by means of ns-2 simulations. However, the paper depicts an unrealistic scenario for a 

Smart Grid since every sensor node has a direct connection (no intermediate hops) with its sink; thus, 

leaving out the critical impact on the performance of a routing algorithm. Regarding ZigBee standard, 

many works have studied the suitability of this solution for the Smart Grid field [9,10,36], but ignored 

in which segment of the power distribution grid the standard would be deployed. This is an important 

fact in multi-hop networks, since ZigBee requires the presence of router devices for the network to be 

set up, and these devices entail a higher consumption of energy, as will be explained in the following 

sections. This situation forces devices to be connected to a power source to ensure a long lifespan; thus, 

clearly restricting the applicability of such networks to residential zones where nodes can be more easily 

powered. Therefore, our work pays particular attention to the segment of Transmission and Distribution 

since, in our opinion, this is the segment where current solutions are less effective. 

Other potential technologies like PLC (Power Line Communications) and Wi-MAX have been 

studied in [15,27,31] and their advantages outlined. However, it must be understood that a network based 

on PLC would have two major drawbacks: firstly, if there exists a breakdown in the actual electricity 

line, communications would be impossible. Secondly, the scalability of the solution is quite restricted 

due to the short bandwidth that this technology provides [37]. On the other hand Wi-MAX  

is only suitable for gateways or sink nodes (connected to power sources) because of its very high  

power consumption. 

4. SENSED-SG Design and Protocols 

Our WSN-based solution called SENSED-SG furnishes a comprehensive asset management system 

for the Smart Grid that seeks from its very beginning to meet every imposed requirement and circumvent 

all the technological challenges. For the sake of clarity and due to the limitations of current solutions 

(e.g., ZigBee), our analyses and studies are focused on the T&D segment without any loss of generality. 

Going into detail, we implement specific communication layers to satisfy the main requirements 

mentioned above. 

The WSN here proposed is composed of COTS (Commercial Off-The-Self) devices (i.e., MicaZ [38]) 

as a platform for sensor integration. This choice is motivated by the following reasons. Firstly, the use 

of well-tested open-hardware and low-cost COTS sensing devices improves the reliability of our solution 

and eases future potential hardware replacements. Secondly, MicaZ-compatible devices show a very low 

power consumption, even when compared with other low-power consumption alternatives as 

demonstrated in [39] and [40]. To help further reduce power consumption and boost network 

performance, MicaZ integrates in its platform the CC2420 radio interface that has been demonstrated to 

be reliable and effective enough even under harsh interferences due to the adoption of DSSS and OQPSK 

modulation techniques [41]. And lastly, the TinyOs operating system [42] is fully supported by this 

platform. It is the preferred operating system for many wireless sensor-based systems [43–45], 

Moreover, many studies show its good performance (in terms of processing and memory  

resources) and energetic efficiency in comparison with other similar alternatives [46–48]. Next 

subsections explain and justify our proposal from an architecture protocol perspective and following a 

bottom-up approach. 
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4.1. Physical Layer 

There is no doubt that the release of the IEEE 802.15.4 standard for the physical and medium-access 

layers have paved the way for the expansion of WSN technology in a wide variety of productive  

fields [49]. This standard has become the de-facto starting point for any low-data-rate low-power 

consumption wireless system that strives for interoperability. The IEEE 802.15.4 supports three 

frequency bands, namely: 868 MHz, 915 MHz and 2450 MHz. However, the 2450MHz band is by far 

the most widely used because of (i) its higher data-rate (250 Kbps) compared to the other bands  

(20/40 Kbps respectively) and (ii) its noise-resilient modulation DSSS and O-QPSK [42]. Therefore, it 

is essential to ensure the adoption of this standard without any additional modification that could leave 

room for interoperability concerns. 

4.2. SENSED-SG MAC Layer 

Although the standard IEEE 802.15.4 MAC layer defines two different types of devices,  

full-function devices (FFD) –capable of routing– and reduced-function devices (RFD) –with no routing 

capabilities–, SENSED-SG only employs full-function devices. The use of both, FFD and RFD is based 

on the idea of implementing star or cluster-tree topologies (depicted in Figure 1) where reduced-function 

devices will always have full-function devices within their coverage to route their packets. The problem 

that arises with this solution is illustrated in Figure 2; when the area to cover grows in just one axis, 

which is quite usual in power grids and especially in the T&D segment, the number of FFDs increases 

sharply in relation to the RFDs. The result is a WSN basically composed of full-function devices, which 

(according to the IEEE 802.15.4 standard) either cannot enter into sleep mode (non-beacon-based 

networks) or must carry out laborious coordination tasks to enable a global synchronization of the 

network (beacon-enabled networks). Both strands lead to a significant reduction in network lifetime 

occurring, for instance, in ZigBee-based solutions. To mitigate this problem, we have designed and 

implemented a novel duty-cycling-based MAC layer focused on Smart Grid environments where  

full-function devices are capable of entering into sleep mode while still providing synchronization 

between peers (and, therefore, FFDs are not compelled to perform global synchronization tasks)—as 

explained hereafter in this section. 

Figure 1. Cluster-Tree and Star topologies. 
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Figure 2. Growing pattern of a power grid. 

 

As above mentioned, the IEEE 802.15.4 standard proposes two different operational modes namely, 

beacon-enabled and non-beacon-enabled. In the latter, devices simply transmit using un-slotted CSMA-CA 

channel access mechanism—the medium is sensed and if detected free, the message is sent; otherwise 

(the medium is busy) devices delay the transmission a random period of time. In contrast, the  

beacon-enabled mode requires FFD coordinator (PAN -Personal Area Network- coordinator) nodes to 

periodically send beacons (control frames that inform other devices in their coverage range about the 

beginning of a period for sending their messages). This mechanism is commonly used in star topologies 

where there is always a coordinator device in coverage range. Nonetheless, although the standard is 

rather ambiguous in this aspect, beacon-enabled mode could also be implemented in cluster-tree 

topologies by means of tight global synchronization techniques. These techniques force every FFD to 

arrange its own beacon frames and unavoidably lead to an increase in code complexity and a sharp 

reduction in network scalability [50]—beacons must be coordinated in order not to collide with one 

another, which in turn, leads to a limit on the number of FFDs in a coverage area. Finally, note that 

beacon-enabled mode implies faster battery depletion in FFDs since every node involved in coordination 

tasks is required to continuously send beacon messages to let other nodes synchronize with it. 

Therefore, in the interest of extending nodes’ battery lifetime and increasing flexibility of the network 

topology, the non-beacon operational mode constitutes a cornerstone of our solution. Besides, the limit 

imposed in beacon-enabled networks on the number of FFDs coexisting in the same coverage area  

is especially important in Smart Grid environments and has been another reason for choosing  

non-beacon approaches—some segments of the power grid (like substations) are characterized for 

having a big number of power assets deployed in very small areas that can be potentially monitored; this 

greatly increases node density and thus potential beacon collisions. In addition, non-beacon mode 

simplifies the use of duty-cycle techniques that highly enhance power savings. The concept of duty cycle 

is based on the differences in power consumption of the radio module during the awake period (ON) and 

sleep period (OFF). The ON period consumption (in which the radio is either passively or actively trying 

to receive messages) can be up to three orders of magnitude bigger than the OFF period (when the 

transceiver is off) [51]. Because of that, nodes will try to remain as much as possible in the former to 

extend their lifetime without neglecting their functionalities such as routing tasks, or data processing. 

Concerning duty-cycling techniques for WSNs, WiseMac [52] and B-MAC [53] were the first protocols 

implementing such techniques denoted as Low-Power listening (LPL) in the MAC layer [54]. LPL proved 

its efficiency for WSNs by significantly reducing the power consumption of receiving nodes from nearly 
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50 mW to just 3.5 mW [53]. In particular, in B-MAC, a node willing to send a message would initiate 

its dispatching phase by broadcasting a void preamble signal which is long enough to guarantee all 

receiver nodes wake up (enter in their ON phase), sense the preamble, get ready (leave the radio ON) 

and wait for the reception of the message. The preamble acts as a “stay awake” signal; therefore, if a 

node wakes up, and after sensing the physical channel does not detect any preamble, it would 

immediately go back to sleep mode, thus saving battery. This solution, while simple, presents many 

drawbacks that were coped with with later protocols. In this sense, X-MAC [55] replaces the void 

preambles with a “packetized preamble” that identifies the recipient node of a specific message. This 

way, if a node wakes up and detects a preamble addressed to another node, it would directly go back to 

sleep mode. Furthermore, X-MAC includes the possibility for the receiver node to acknowledge the 

reception of a preamble by means of an ACK packet. In particular, when a sender node receives an ACK, 

it stops dispatching packetized preambles and directly sends its message. The objective is to reduce the 

number of preambles sent and, therefore, to extend the entire network lifetime. BoX-MAC-2 [56] takes 

as its starting point the X-MAC and B-MAC protocols but incorporates a significant feature: instead of 

sending preambles, BoX-MAC-2 dispatches the message several times as a preamble. This improvement 

greatly contributes to further reduce the power consumption in nodes by eliminating extra messages like 

the preambles and acknowledgements (in comparison with X-MAC). It is worth remarking that, by 

default, TinyOS makes use of the BoX-MAC-2 algorithm for its transmissions, and although having 

been proved as an acceptable solution, it leaves room for improvement. 

Our solution here presented relies on the principles of the Contikimac [57] radio duty-cycling 

mechanism. It assumes the BoX-MAC-2 basis and, as an additional aspect, it includes a thin  

sender-receiver synchronization mechanism. This synchronization was firstly explored by  

A. El-Hoiydi and J.-D. Decotignie in their proposal for the Wise-MAC [52] algorithm, obtaining a 

notable savings of energy and an appreciable increase in the bandwidth utilization for WSNs. Instead of 

involving complex and tight clock-synchronization procedures (as in beacon-enabled ZigBee networks), 

this technique relies on a simple phase-lock mechanism: senders must learn when the receivers’ radio is 

active (the ON phase of their duty cycle) so as to dispatch their packets at that precise moment. The 

phase-lock mechanism prevents senders from transmitting messages when receivers are not listening 

(their radios are OFF) which negatively affects their power consumption. Furthermore, since sender 

nodes will only use the wireless channel during short periods of time, other nodes will usually find it 

free, thus increasing the bandwidth utilization. 

The way senders learn receivers’ duty-cycling phases is by means of link layer acknowledgements. 

The first time a sender wants to transmit to a specific receiver, it will continuously transmit its message 

(as if it were a preamble) until the receiver node receives such packet and acknowledges it by an ACK. 

When this occurs, the sender assumes the receiver is in the ON phase of its duty cycle—otherwise the 

receiver would not have heard and acknowledged the message. From that moment on, the sender will be 

able to predict when the receiver is going to enter in its ON phase before dispatching any message to it. 

It is worth noting that the duty-cycling mechanism only affects the radio receiving patterns, i.e.,  

a node can issue a transmission during its OFF phase if required by turning the radio ON previously and 

without affecting its duty cycle. The reason for this is that decoupling the transmission and receiving 

phases helps avoid messages collisions and unnecessary delays (only during its ON phase a node is 
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expected to receive messages; therefore, that moment should be reserved for listening to other nodes). 

The complete phase-lock mechanism is depicted in Figure 3. 

Figure 3. Contikimac. 

 

Despite its suitability, Contikimac imposes three major constraints: 

1. Firstly, senders have to be able to predict the receiver’s future ON periods. To this aim, senders 

must know two aspects: (i) the precise time when the receiver entered in a previous ON period, 

which must be obtained at run-time by means of ACKs and (ii), the periodicity of receiver’s duty 

cycle, i.e., how long its phases are. The problem with this second aspect is that the sender does 

not have any knowledge of this information at run-time and therefore, it must be hardcoded in 

nodes’ program memory. This is an important disadvantage because Contikimac leaves no room 

for adaptive duty-cycling algorithms in which changing the duty cycle parameters is the key element. 

2. The second constraint comes from the assumption that nodes can only receive messages when 

they are in their ON duty cycle period. This may sound obvious; however, the following example 

proves the existence of a gap in this reasoning: if a node (identified as A) in its sleep phase turned 

its radio ON to send some data (to node B), while waiting for the acknowledgement from that 

node (B); node A could receive a data message from another node (from node C). The 

acknowledgement that A would send to node C as a response could lead to a miss-synchronization 

between these two nodes (C would think A is in its ON phase but it just overheard the message 

while trying to send its own). This constraint results in discarding messages received during an 

OFF/sleeping period of the duty-cycle that otherwise would have been taken into account. 

3. The phase-lock mechanism only works in one way. After sending the ACK, the sender knows 

when the receiver will enter in future ON periods, but the opposite case is not true. When roles 

are inverted, and the receiver becomes the sender (and similarly the sender becomes the receiver), 

this new sender will have to flood the receiver with preambles until it receives an ACK to 

synchronize with it. Therefore, we can say that this mechanism is susceptible to improvement. 

To overcome these three limitations and attain maximum network performance, substantial 

modifications to the current Contikimac are introduced. Basically, the idea is to include in the original 
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message a small piece of additional information referred to the duty-cycle configuration when an ACK 

or a data message is transmitted. This extra information can be of two different types: 

1. Information regarding the remaining time until the next ON period. This allows receivers to 

accept and acknowledge messages received out of their ON period by simply letting the sender 

learn about the duty cycle configuration of the receiver. Furthermore, adding duty-cycle information 

in data messages provides the receivers the ability to synchronize with the senders – and not only 

the senders with the receivers as occurs in WiseMac or the current Contikimac implementation. 

This is especially important in a Smart Grid context, where information flows in both ways. 

Furthermore, with a minimum cost of one message exchange (and an ACK), a pair of nodes, 

regardless of their role (sender/receiver), can get synchronized. 

2. Information about the duration of the ON/OFF periods. This information is added in order to 

enable adaptive duty-cycle functionalities, which have been already proved in previous  

studies [54] to be of great value for improving the performance of duty-cycling mechanisms.  

It is worth noting that if no modification of the duty-cycle settings (ON/OFF periods) has been 

issued, there is no need to include this second type of extra information in a message. 

It is important to understand that communications in Smart Grid environments are of a very  

“bursty” nature. 

Nodes can remain in normal operation for long period of times only sending their sensed physical 

data. However, when a malfunction/non-ideal condition is detected in a power asset, the activity in the 

WSN greatly increases in both ways—nodes would send as much information about the incident as 

possible, while the central node would take decisions and return orders to nodes. Under such 

circumstances, to achieve maximum network performance, the MAC layer must allow nodes to transmit 

data messages in a bursty way. To this end, when a sender has more than one message to be dispatched 

in a very short period of time (as it occurs, for instance, if an incident arises), the sender will transmit 

one after another as they are being acknowledged by the receiver (this node remains in awake period 

until it does not receive any more data messages). As a contribution, it is not necessary for the sender to 

wait for the receiver to enter in as many ON phases as messages the sender has to dispatch, thus finding 

a solution to the incident more quickly. 

Furthermore, a scheduling algorithm has been designed and implemented to aid nodes to find the 

most suitable instant to transmit their messages and thus exploiting as much as possible the physical 

medium. Under this premise, messages from a sender are not dispatched to different nodes following a 

FIFO (First in, First out) approach; but instead, messages are sent in such a way as to minimize the  

end-to-end delay. This mechanism seeks reducing the senders’ waiting times and leads to smaller power 

consumption and a boost in the global network performance. In order to implement these two 

contributions (packet bursts and non-FIFO approach), exhaustive work has been accomplished to modify 

diverse TinyOS components and primitives as required. 

The Figure 4 shows (i) the phase-lock mechanism in which both nodes get mutually synchronized; 

(ii) the process of adjustment/adaptation of the duty-cycle of A to, for instance, route a higher amount 

of messages; and a (iii) burst of data from node B. 
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Figure 4. Figure of our proposed MAC layer. 

 

For further interested readers, the following flowchart (Figure 5) presents a representation of the 

MAC logic implemented in nodes. Two procedures are shown: the left one is in charge of handling the 

dispatching of messages and the right one deals with the reception of messages. 

Figure 5. Flowchart of our proposed MAC layer. Left diagram presents the procedure for 

dispatching messages and right diagram the procedure for reception messages. 
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When designing an algorithm that strongly relies on a temporal accuracy—like the phase-lock 

synchronization mechanism—it is of great importance to take into account the hardware limitations of 

WSN nodes and, in particular, their clock drift. To this end, in our implementation of the phase-lock 

mechanism, sender nodes compensate the potential effects of clock drift in synchronized nodes by 

anticipating the transmission of their preamble. This “compensation time” increases as more time a 

sender/receiver pair spends without exchanging any message. However, in our solution, because of the 

acceptable clock-drift of the WSN nodes—about 30–50 ppm [58]—and the not-too-long periods without 

communication (maximum of 15 min as described in following sections), the clock deviation to be 

adjusted is, in the worst case, in the order of 50 milliseconds. 

4.3. SENSED-SG Network Layer 

In our integral WSN-based system, the SENSED-SG network layer is in charge of providing message 

forwarding, and in particular, accomplishing the routing tasks. Basically, this layer enables nodes out of 

the sink node’s range to deliver their messages to this node by means of a routing protocol. 

The design of a routing protocol must be based on the features of its target networks [59]; in line with 

this, engineering a routing protocol for a Smart Grid involves not only overcoming the challenges imposed 

by this environment (high electromagnetic interferences, lack of inexhaustible energy sources, etc.) but 

also exploiting some beneficial features of it, such as the absence of nodes’ mobility (power assets are 

installed in fixed emplacements) and the robustness of the wireless network topology (although WSN 

nodes may fail, the probability of such event is relatively low [21]). 

Bearing in mind these features, challenges and benefits, our proposed routing protocol is designed 

according to the following directions: 

• To minimize the number of messages sent and, therefore, to reduce power consumption, instead 

of making use of a proactive approach, nodes will explore a route to a given destination only 

when required, following, to this aim, a reactive approach. Unlike proactive routing protocols, 

reactive solutions are mainly used in larger networks (as those used in Smart Grids) where it is 

not necessary to maintain an up-to-date routing table in each node with all the possible 

destinations (as required in proactive protocols). The construction of this routing table implies a 

higher routing overhead (a great amount of messages are needed to be sent) and a notable increase 

in memory resources. Under these premises and as starting point, we have employed the J. Kim’s 

reactive implementation of the AODV (Ad hoc On-Demand Distance Vector) algorithm for the 

TinyOS operating system [60]. 

• In agreement with the effort made in reducing the number of network messages, we take 

advantage of the aforementioned robustness of the wireless topology: we assume that once the 

network topology is generated, few changes will take place in the near future. Therefore, when a 

node receives a route request from a neighbor, instead of re-broadcasting it (as it happens in most 

cases in the traditional AODV), if that node knows how to answer that request, it will directly 

send the reply message to its neighbor, sharply reducing the number of route request messages. 

This is even more significant when the routing protocol is built on top of a MAC layer specifically 

designed for unicast delivering. Note that route requests are messages broadcast to all possible 
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nodes in coverage range, and therefore, these messages cannot benefit the phase-lock 

mechanism; resulting in a higher power consumption and a reduction in the network throughput. 

• Unlike traditional routing protocols that only consider the hop count to select the best route for 

a message, our proposal goes beyond, including the link quality indication (LQI) as a reliable 

method for assessing the quality of the link and the interference level. The use of the LQI has 

been selected as the preferred metric to estimate the goodness of a specific link over the 

traditional Received Signal Strength Indicator (RSSI) in a WSN [61]. This is all the more true 

when a WSN operates in a hostile environment as it occurs in a Smart Grid. The SG is full of 

electromagnetic interferences that can produce higher values of RSSI in certain links, which in 

turn would trick nodes into choosing non-optimal paths. Therefore, the hop count together with 

the LQI will be used to estimate the best route for a message to follow. 

Like most routing protocols, our approach depends on broadcasting packets to nodes in the coverage 

area to obtain important routing information. However, when combined with duty-cycling techniques 

(in which nodes are sleeping most of the time), broadcast messages are not usually heard by neighbors. 

To overcome this situation, messages intended to be received by all neighboring nodes, are not 

dispatched via the phase-lock mechanism, but instead they are continuously transmitted during a full 

duty cycle period, ensuring all neighbors have received the message. Since broadcasting techniques lead 

to higher power consumption, our routing protocol makes use of broadcast messages only when strictly 

necessary. Besides, it is worth mentioning that in order to not neglect relaying tasks, a specific buffering 

system has been implemented: if a node receives a message from a neighbor to relay it and the node 

under consideration is trying to dispatch its own message, this node will store the other neighbor’s 

message until it can be sent at the appropriate moment, determined by the phase-lock mechanism. This 

mechanism greatly reduces the number of messages lost in more active networks. 

4.4. SENSED-SG Upper Layers 

In a traditional protocol stack, the transport layer is on top of the network level. The transport layer 

is responsible for providing end-to-end flow control or connection-oriented data streams among other 

features. However, since our system is intended to achieve maximum performance in very specific tasks 

(basically those required to furnish a control and monitoring system), most of the attributes designed for 

a general-purpose transport layer are not required and would introduce greater complexity to our 

solution; hence we discard popular solutions such as the User Datagram Protocol (UDP) or Transmission 

Control Protocol (TCP) protocols. Therefore, services to be facilitated by the transport and upper layers 

are comprised in a single layer on top of the network level. In there, a specific mechanism is implemented 

to provide each particular service (which is completely in line with an ad-hoc system). 

End-to-end retransmissions and multiplexing mechanisms that are usually found in the transport layer 

are implemented as follows: the former is based on ACKs and timeouts to ensure the proper dispatching 

of data messages. When a message is sent, a timer is set. If the ACK is not received before the timeout, 

a retransmission is issued. This mechanism will be validated in the next section as a good and simple 

solution for dealing with unstable environments with high likelihood of message loss. On the other hand, 

the multiplexing service of the transport level is provided by incorporating an application identifier in 

each message, that way there can exist multiple endpoints in a single node. Different commands or report 
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types are identified with different application IDs. The TinyOS operating system is in charge of assigning 

and managing these IDs. 

Concerning data protection and in line with the security requirement, an encryption mechanism is 

implemented. The National Institute for Standards and Technology (NIST) has outlined that the 

preferred encryption algorithm for new deployments must be AES since other available solutions like, 

Triple Data Encryption Algorithm (3DES), will become insecure by the year 2030 (note that the expected 

lifetime of power assets is more than 50 years). The AES implementation to be used (128 bits) is fulfilled 

at hardware level by the radio interface CC2420 and managed via the TinyOS operating system. 

Encrypting messages at hardware level brings two main advantages compared to software encryption: 

higher speed and lower power consumption [62]. 

Finally, the last set of services to be implemented in the upper layer of the network level is the 

following one: (i) the generation of orders for sensing physical parameters; (ii) the processing of this 

information and (iii) the communication management. In this regard, it is worth mentioning that WSN 

devices are programmed to periodically acquire physical data, process it and determine the current state 

of the power assets they are monitoring. If a malfunction or a non-ideal condition/trend is detected  

(a specific threshold is surpassed or a certain condition is met) those readings must be considered as 

alarms and get them delivered to the central node to register the situation and, if possible, correct the 

deviation/problem. Furthermore, less frequently, sensor readings are collected and all the acquired 

information is sent to the sink node once it has been processed (this happens regardless of the obtained 

values). This two-way dispatching process allows the central node to keep records of power assets’ states 

but not at the expense of drastically increasing the power consumption of nodes—caused by frequent 

and non-relevant data sending. The frequency of data sensing or information reporting (sending 

messages to the sink node) can be adjusted at run time to allow (i) critical power assets to report data 

more often (increasing the frequency) and (ii) less important assets to help extend the lifespan of their 

WSN devices (reducing the frequency). This process of data sensing/reporting frequency adjustment is 

achieved by central-node commands. The central node may instruct deployed nodes to change their 

sensing/reporting frequencies or even order them to send fresher sensors’ readings in case a clearer 

picture of the overall system is needed. Note that defining the default frequencies for both processes 

(sensing and reporting) is a complex task. Shortening any of these periods will result in a reduction of 

nodes’ lifespan whereas increasing it will jeopardize the ability of the system to react to unexpected 

situations (longer sensing/reporting periods implies a smaller number of reports about the state of the SG). 

In view of the proposed solution and the difficulty of adjusting certain parameters (reporting or 

sensing frequency and duty-cycling parameters among others) the next section provides a set of 

simulations and analyses that help choose the most suitable values. However, it should be noted that 

there is no silver bullet for every possible scenario and there always exists a trade-off when choosing 

specific values; therefore the final decision will depend on many factors that will be extensively 

commented in the next section. 
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5. Analysis of the Solution and Simulation 

5.1. Analytical and Validation Study 

A theoretical study using analytical expressions and simulation tools allow us to conduct experiments 

using a system model before deploying the real devices on the field. This study results in a better 

understanding of the design parameters, determining their appropriate ranges and enhancing the use of 

available resources. The goal is to achieve a suitable performance of SENSED-SG for its subsequent 

real-operation in a Smart Grid. Consequently, in order to assess diverse figures of merit, we have, on the 

one hand, derived their most appropriate mathematical equations that can be applied to a Smart Grid 

and, on the other hand, implemented our proposal in two simulation scenarios. Furthermore, using these 

figures of merit as the metrics of interest, we have compared our proposal with a ZigBee approach to 

demonstrate its feasibility. The chosen metrics are the following ones: 

• Packet Reception Rate (PRR): The ratio between the number of received messages and the total 

amount of messages sent (for an arbitrary pair of sender/receiver nodes). It gives an idea of how 

well the network performs in term of losses. 

• End-to-end delay: The time elapsed between when a message is generated and it reaches the  

receiver and gets processed. This metric is especially relevant for scenarios characterized by hard 

real-time constraints where the “freshness” of the information is crucial. 

• Energy Consumption: The total energy consumed by nodes after a given period of time. Since 

nodes are not equipped with inexhaustible power supplies, this metric is of tremendous importance 

to extend nodes’ lifetimes, and therefore, the network lifetime of the WSN deployed. 

Although there is a notable amount of design parameters capable of affecting these three metrics in 

some way, this work is focused on the effects of varying (i) the awake and sleep periods of the duty 

cycle and (ii) the sensing and reporting frequencies. The duty cycle configuration has a direct impact on 

all three metrics whereas the reporting and sensing frequencies basically influences the total energy 

consumed per node. The reason for choosing these parameters instead of any others is twofold: firstly, 

their higher impact on the metrics compared to others (e.g., the CSMA backoff or the periodicity of route 

discarding in AODV). And secondly and more important, all of the chosen ones can be adjusted and 

tweaked at real-time to adapt the network to the dynamics of the Smart Grid. 

To this end, two approaches will be considered: (i) a mathematical characterization that quantifies the 

effects of the design parameters on the figures of merit selected. This is done to obtain the analytical 

expressions that help to calculate the network behavior in future deployments. And (ii) a set of 

simulations of the network for representative environments is also carried out to verify and validate those 

numerical expressions. In this respect, one of the inherent problems that arises in computer-oriented 

network simulators is the lack of fine-grained simulation of the nodes behavior at hardware level  

(in particular, the radio interface and microcontroller specific behaviors). These limitations are not 

generally taken into account by widespread simulators and play an important role in the global behavior 

of the system. The problem is aggravated when these simulators ignore a specific node’s hardware 

constraints like memory or computational processing limitations. To relieve this problem, instead of 
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traditional computer-oriented simulators (like ns-2 or Omnet++), embedded-systems-oriented 

simulators (such as Avrora and TOSSIM) will be employed. 

Regarding the simulation frameworks, Avrora [63] is a cycle-accurate instruction-level sensor 

network simulator capable of measuring detailed time-critical phenomena like the power consumption 

of each node operating in the WSN. This is the main reason why it is specifically used for providing an 

in-depth knowledge of WSN devices’ consumption profiles. Along with Avrora, the TOSSIM simulator 

is employed in our work to emulate different propagation environments and noise patterns. The choice 

of TOSSIM is twofold, firstly it simulates the same code that is uploaded into WSN devices, easing and 

empowering the debugging process; and lastly it enables the definition of propagation and noise 

parameters, allowing us to accurately study very specific environments. 

As explained in the previous section, every node switches from the sleep state to the awake state and 

then returns to sleep periodically. The duration of both states is denoted as AP for the awake period, and 

SP for the sleep period. A sender will strive to send its messages in the forthcoming receiver’s AP. One 

of the consequences of the duty cycle is that the shorter the receiver’s AP, the fewer attempts the sender 

will have to get its messages delivered. This situation is depicted in Figure 6 where the red crosses 

represent message losses due to interferences or collisions. The first relation between design parameters 

and metrics can therefore be identified: reducing the Active Period will also decrease the number of 

potential attempts that the sender does for delivering its messages. Consequently, the likelihood of 

message loss will increase. 

Figure 6. Figure of our proposed MAC layer. 

 

Defining P(L) as the probability of message loss and N as the number of attempts, the PRR can be 

expressed by Equation (1): ܴܴܲ = 1 − ே (1)(ܮ)ܲ

The Figure 7a illustrates the value of PRR for different scenarios. As expected, in this figure, we can 

observe how the PRR increases as the AP grows. This phenomenon is also confirmed by means of 

TOSSIM simulations (Figure 7b). To this aim the following simulation configuration is set: 

• Topology: Two nodes in coverage range. 

• Propagation environment: These two nodes are deployed in three different scenarios. The first 

one is characterized by very harsh radio propagation conditions (Harsh environment—average 

probability of packet loss: 0.25). The second environment is defined by its moderately hard 

propagation conditions (Mild Environment—average likelihood of packet loss: 0.13). And 

finally the last scenario represents a favorable environment where the average likelihood of 
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packet loss is around 0.05 (Good Environment). These probabilities of packet lost have been 

selected as a result of a previous study conducted to characterize different SG propagation 

environments and are implemented in the simulator by tuning different design parameters of the 

log-distance path model (path loss exponent, shadowing standard deviation, power decay, etc.). This 

model has been widely substantiated and validated in multiple WSN-based approaches applied 

to SG [64,65] and therefore, it has been selected as the propagation model for every simulation 

carried out in this work. 

• Message size: The length of the message is 15 bytes. 

Due to the CSMA/CA mechanism (total transmission time, ACK waiting time and backoff among 

others) and hardware limitations (clock frequency of the transceiver and processing unit) nodes can carry 

out one attempt of transmission each 11 milliseconds; therefore, the Active Period grows in increments 

of 11 ms to minimize the time the radio is ON—in both figures AP varies from 11 ms to 110 ms 

(maximum value computed that corresponds to 10 attempts of retransmission). 

Figure 7. (a) Analytical results of PRR vs. AP for different values of P(L); (b) TOSSIM 

Simulation results of PRR vs. AP for different environments. 

(a) (b) 

It can be observed that extending the AP from 11 ms to 33 ms (from 1 attempt to 6), the PRR increases 

up to a 49% in very harsh scenarios. Therefore, more attempts mean a higher probability that messages 

reach the destination. This is especially important in the Smart Grid, where nodes are expected to be 

deployed in very noisy and unsteady environments. Then, in the interest of enhancing the network’s 

reliability, the AP should be extended until guaranteeing a significant value of PRR. 

The node power consumption during the duty cycle mechanism (energy employed by the radio 

interface during sleep and periodic listening) is easily calculated if power-consuming profiles of both, 

the AP and SP are identified. Defining TAP as the time the node spends in awake mode, TSP as the time 

the node spends in sleep mode, IAP and ISP as the currents drawn in awake and sleep mode respectively 

and V as the voltage supplied by the batteries, the energy consumed is expressed by Equation (2): (ܬ)ܧ = ( ܶ ∗ ܫ + ௌܶ ∗ (ௌܫ ∗ ܸ (2)
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Unlike the PRR, the power consumption is sharply affected by the duration of AP and SP.  

As depicted in Figure 8a, the greater the AP, the more energy is consumed; and hence, the first tradeoff 

is found: to increase the PRR, the AP must be enlarged; however, doing so would increase the power 

consumption and reduce nodes’ lifetime. Figure 8b illustrates the correctness of the Equation (2) 

comparing the calculated values with the simulation results obtained by means of Avrora. As already 

commented, in these simulations the precise consumption profiles of the microcontroller and the radio 

transceiver are taken into consideration. 

Figure 8. (a) Consumption vs. AP for different values of SP—Mathematically obtained.  

(b) Consumption vs. AP for a fixed value of SP = 3s—Comparison of analytical and 

simulation results. 

(a) (b) 

As regards to the delay, the analytical expression is derived in Equation (3) obtaining the expected 

delay (E[D]). When node A wants to transmit a packet to node B (next hop in the route to root node), 

the transmitter (A) must wait a certain amount of time D until the receiver (B) enters in its Active Period 

(AP) (this is due to the phase-lock mechanism). Therefore, D ranges from 0 s (A wants to transmit at the 

very moment B is in its AP) to SP seconds (A wants to transmit at the very moment B enters in its 

sleeping period—SP). The following figure (Figure 9a) models the waiting time D and its dependence 

on SP and AP. The abscissa axis represents the precise moment A wants to transmit its packet and the 

ordinate axis represents the corresponding waiting time D. To obtain the expected delay (equation 

denoted as 3) it is necessary to average the values of D over the entire AP+SP period, i.e., find the 

average value of such geometrical figure: ܧሾܦሿ = 	 1ܶ න ݔ݀(ݔ)݂ = ܲܣ1 + ܵܲ	(න 0
ିஶ +න ݔ−) + ܲܣ + (ݔ݀(ܲܵ = ܲܣ) + ܵܲ)2 + ܲܣ)ଶ2ܲܣ + ܵܲ) − ାௌܲܣ


ஶ
ିஶ  (3)

  



Sensors 2014, 14 18769 

 

 

Figure 9. (a) Representation of the expected delay and its dependence on AP and SP;  

(b) Mathematical and simulated delay values for a given pair of nodes. 

(a) 

 
(b) 

The analytical values in Figure 9b ignore the effects on the delay of different phenomena such as 

processing time or radio propagation effect. However, as can be observed in the comparison of 

mathematical and simulated values plotted in Figure 9b, these omitted extra delays do not have a 

meaningful impact on the overall delay. 

Finally, if the AP is small (as it usually occurs), the expected delay can be approximated to a half of 

the SP—as observed in Figure 9b. As already mentioned, in the Smart Grid the end-to-end delay should 

not exceed fifteen seconds, therefore for a typical communication network of up to 10 hops, the SP 

should always be lower than 3 s (a SP of duration 3 s generates a delay of about 1.5 s between a pair of 

nodes which, multiplied by the 10 hops, results in 15 s). 
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It is worth mentioning that the analytical model here proposed is based on a series of assumptions 

that simplifies the associated formulae. Such assumptions allowed us to propose a model that reflects 

the interaction between only two nodes—a transmitter and a receiver—and therefore, unlike many other 

works ([66,67]) it can only be applied to SENSED-SG. Such assumptions can be described as follows: 

(i) nodes send messages at a relatively slow rate (unsaturated traffic regime); (ii) message collisions are 

very unlikely to occur (the backoff of the CSMA algorithm is not taken into consideration) and (iii) the 

transmission and acknowledgement of packets take place in a very short period of time (therefore the 

transmitting and waiting states are not modeled). 

5.2. Simulation Scenario 

To validate the effectiveness of the proposed network and to compare it with other well-accepted 

WSN solutions (e.g., ZigBee), a set of demonstrative simulations is conducted. For this purpose, it is 

mandatory to determine the AP and SP durations of the duty cycle. In order to reduce the number of 

packet losses in the SG environment, and following the same reasoning of the previous section, the AP 

is set to 33 ms (up to three sending attempts can be carried out by the sender). Besides, the SP is set to 

1 s to reduce the delay and enable the deployment of bigger networks (up to 30 hops). This configuration 

will not jeopardize the long-standing feature of the network as shown in the following paragraphs. 

Various simulations are carried out to evaluate the response of the proposed network to each of the 

propagation environments introduced in the PRR analysis (Section 5.1). Asides from using the 

aforementioned log-distance path loss model, the TOSSIM simulator exploits the benefits of a very 

robust environment-aware noise model named Closest-fit Pattern Matching (CPM) [64]. CPM has 

proven to increase the packet simulation fidelity by up to a factor of 5 [68] in comparison with other 

simulation approaches (such as those used in ns-2 [69] or EmStar [70]). Furthermore, CPM noise model 

clearly achieves its best performance when fed with noise traces taken from the real environment to be 

simulated (this helps to characterize the different interfering phenomena of specific surroundings). 

Therefore, to enhance the accuracy of the simulation, a noise trace obtained in a power environment is 

included in our simulations. This way, unlike many other works ([8,33,71]), both propagation 

environments and noise patterns are considered in our simulations—this is especially important in the 

Smart Grid arena where the electromagnetic noise has as much impact on the final performance as the 

radio propagation environment itself. The TOSSIM simulator has been fed with the values of Table 1 so 

as to simulate the three desired scenarios. 

Table 1. Network expected lifetime. 

 Good Scenario Mild Scenario Harsh Scenario 

Path loss exponent 2.15 2.31 2.93 
Shadowing std. Deviation 2.45 3.15 3.33 
Power decay 33.0 54.0 54.0 
Noise floor −97.0 −93.0 −85.0 

The Path loss exponent models the rate at which signal decays when it propagates in a specific 

environment. The Shadowing standard deviation represents the randomness of the received signal due 

to diverse phenomena (objects in the line of sight, multipath, etc.). Power decay, models the power  
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(in dBs) presence at 1 m distance from the transmitter. Finally Noise floor represents the received power 

of other noise sources and other unwanted signals (expressed in dBs). Such values have been obtained 

by carefully reviewing academic literature ([9,65,68,72]) together with a deep analysis of the simulator 

reference tutorial found in [73]. 

To the best of our knowledge, there is no WSN simulation for the Smart Grid that simultaneously 

integrates specific network-layer protocols, MAC and low-power listening mechanisms (authors tend to 

analyze separately each of the aspects of the WSN, neglecting the effects that one layer may cause to the 

other). Since SENSED-SG implements a protocol stack composed of the application, the network, the 

MAC and the physical layers; our simulations jointly evaluate all these elements. Furthermore, constant 

data-generating patterns are usually assumed in specialized literature [33,35]. This fact causes that the 

very bursty nature of a WSN operating in a Smart Grid is neglected, obtaining results that greatly differ 

from those found in real deployments. To address this concern, in our simulations, bursts of data are 

randomly generated to emulate the presence of non-desirable conditions in power assets (which usually 

leads to an increase in data sending). 

The topology under simulation is shown in Figure 10. In the interest of providing a general picture of 

the network performance, two potential node distributions are taken into account in the same topology: 

nodes deployed in the framework of an outdoor substation (cluster-tree topology and smaller separation 

distances between nodes) and nodes placed in electric towers along the distribution segment of the power 

grid (following a line topology). Nodes 1–5 are equipped with vibration sensors (which can be used to 

monitor for excess vibration in the electric towers and aid in determining their structural integrity) and 

temperature sensors to check the temperature variations in the conductors (identified as the major cause 

of sagging). On the contrary, nodes 6–9, deployed within the substation, (and placed in transformers, 

circuit breakers, feeder bays, etc.) include temperature and acoustic sensors to detect potential partial 

discharges and monitor the operating temperature. To this aim, the MTS310 environmental sensor board [74] 

(fitted with a temperature sensor, an acoustic sensor and a dual-axis accelerometer) is simulated. Physical 

data (sensors readings) are acquired every 5 min (sensing frequency), processed, and sent if the asset is 

failing in simulated data bursts. Besides, every 15 min sensor readings are obligatorily sent to the central 

node regardless their value to have an updated record of the status of assets (reporting frequency). The 

central node processes all of this information and, if a faulty functioning is detected in any power asset, 

simulated commands are sent back to nodes to correct these eventualities. 

The results achieved with our approach are compared to a non-beacon ZigBee network where  

nodes 5, 8 and 9 (RFD) use duty-cycling techniques whereas the rest of them (FFD) must remain awake 

to route RFDs’ messages. The reason why a non-beacon network has been selected instead of a  

beacon-enabled network is twofold: firstly, a beacon-enabled network is not a flexible and scalable 

solution that could be deployed in a Smart Grid environment, and therefore, a priori, it cannot be used 

in real scenarios. Lastly, although there exist two approaches for implementing a beacon-enabled 

network in a cluster-tree topology, namely time division approach (TD) and beacon-only period 

approach (BOP), both of them exhibit many drawbacks. The TD implementation prevents the use of 

broadcast messages between FFDs, which negatively affects the operation principle of the AODV 

protocol and excludes the creation of multi-hop routing paths. On the contrary, in the BOP approach, 

beacon broadcasters (FFDs) are forced to be deployed at precise locations to ensure global network 

synchronization [75]. These locations might have no power asset to control. 
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Figure 10. Simulated topology. 

 

Concerning the power consumption calculations, the following two considerations are taken into 

account. Firstly, vibration and acoustic readings take 3 s to be completed (because of sensor stabilization 

times) whereas the temperature can be read in just 25 ms. Secondly, the current draw (according to their 

corresponding datasheets and [76]) is as follows: 9.5 mA for the accelerometer and the acoustic sensor, 

and 7.5mA for the temperature sensor. 

5.3. Simulation Results and Comparison with ZigBee 

Figure 11 illustrates the average node power consumption (PC) of our proposed solution vs. a  

non-beacon ZigBee-based network for three different cases: good, moderately harsh and harsh scenarios 

respectively. The higher power consumption of the non-beacon ZigBee solution is mainly caused by the 

absence of duty-cycling mechanisms in full function devices, which, in turn, leads to faster FFDs’ 

batteries depletion. When routing nodes (FFDs) exhaust their batteries, some WSN devices in the 

network may become partially isolated, being impossible for these nodes to dispatch their messages 

successfully to their destination. This is why the network lifetime (as a concept) is defined as the time 

elapsed between the beginning of the network operation and when the first node depletes its battery. 

Under this consideration, the expected network lifetime is shown in Table 2. 

As written in Table 2, our solution lasts from 16 to 20 times longer than a non-beacon ZigBee-based 

network. Even in the harshest scenario, our proposed network is expected to be operating for more  

than 16 months. Thereby, SENSED-SG is more appropriate for deployments in remote locations or  

hard-to-reach areas. This long-lasting feature can be further enhanced by reducing the sensing or 

reporting period; for instance, if physical data is acquired every 15 min (instead of every 5 min), the 

network will operate for more than 24 months under good propagation conditions. On the contrary, the 

experiments reveal that a non-beacon ZigBee network is not suitable for deployments where 

inexhaustible power sources are not available, discarding it as a potential solution for almost every 

segment of the Smart Grid (such as the Generation and the T&D segments). 
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Figure 11. Power Consumption of SENSED-SG vs. a non-beacon ZigBee-based network 

for three different scenarios. 

Table 2. Network expected lifetime. 

Network Lifetime SENSED-SG Non-Beacon ZigBee Network 

Good Propagation Conditions 20.75 months 30.28 days 
Moderately Harsh Propagation Conditions 18.71 months 30.13 days 
Harsh Propagation Conditions 16.54 months 29.91 days 

As regards to the packet delivery ratio, Figure 12 shows the average PRR and its standard deviation 

with a 95% confidence interval, obtained from 15 simulations carried out with different seeds. Results 

evidence that SENSED-SG performs adequately even under harsh environments. This is achieved by 

combining retransmission algorithms with appropriate modulation techniques and by carefully selecting 

the best MAC settings (e.g., the active/sleep period, retransmission times, etc.). It is worth highlighting 

the obtained robustness of our solution to harsh propagation conditions, decreasing in just 3.08% the 

PRR if the probability of packet loss increases from 5% to 25%—as opposed to a decrease of 26.16% in 

the PRR in non-beacon ZigBee networks. 

Since routing nodes (FFDs) remain in awake mode all the time in non-beacon ZigBee-based networks 

(and, therefore, these nodes do not have to wait an AP for sending messages), the delay obtained is lower 

with this approach than with the SENSED-SG. However, in our proposal, the attained average network 

delay is kept below 1.2 s in every scenario, with a maximum peak of 2.3 s reached in the node No. 5 (the 

farthest WSN device from the sink-node). These results satisfy the delay requirement imposed to WSN 

operating in Smart Grids, which must be lower than 15 s. 
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Figure 12. Packet reception ratio of SENSED-SG vs. non-beacon ZigBee for three different scenarios. 

To summarize, we would like to highlight and further comment the simulation results: 

• The network lifetime obtained with SENSED-SG in each scenario (good, mild and harsh) is: 

20.85, 18.9 and 16.8 times higher respectively than the one obtained with a ZigBee-based network. 

• The PRRs achieved with SENSED-SG in each scenario (good, mild and harsh) are 13.4%, 

19.6% and 56.2% higher than the ones obtained in a ZigBee-based network. 

• The delay, as a result of the extension of the network lifetime, is in SENSED-SG, on average 

1.1 s higher. 

In light of the above simulation results, the feasibility of our proposal for furnishing a reliable  

and cost-effective asset-managing system for the Smart Grid has been widely demonstrated.  

These simulations, despite having taken into account a large amount of potential aspects (such as 

different propagation environments, various interfering phenomena, node’s hardware constraints, 

diverse topologies, etc.), inevitably still represent a simplification of the real world. To address this 

weakness, we complete our work with a series of test-beds experimentation presented in the next section. 

They are carried out to prove the suitability of the solution here proposed from a higher perspective and, 

to further validate the results obtained by the analysis and the simulation frameworks (Sections 5.1 and 5.3). 

6. Test-Beds 

From a communication point of view, the Smart Grid is characterized by a very complex and unsteady 

nature. Simulators deal with this concern by using realistic-enough propagation models and (in the case 

of TOSSIM along with its CPM) by incorporating some key features of the real environment, such as 

noise pattern. However, some phenomena are difficult to reproduce and are usually simplified or even 

neglected. For instance, shadowing deviation is simplified by a model based on a log-normal expression 

whereas the adjacent-channel interference effect is simply omitted. Therefore, the only way to ensure 

that those phenomena do not have a major impact on the network performance is by running a set of 

well-controlled test-beds which will be used, in addition, to validate the results obtained by both, analysis 

and computer simulation. 
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As in the simulation study, two representative scenarios are considered in the test-beds: an electrical 

substation (indoor) and the SG distribution segment (outdoor). Since in an electrical substation too many 

elements can interfere and thus affect the results, nodes are deployed in a controlled environment: the 

High Voltage AC/DC laboratory of the Heriot-Watt University (Edinburgh Campus)—depicted in 

Figure 13. There, the topology in Figure 10 is built inside a Faraday cage where the equipment 

(transformers and circuit breakers among others) is energized to simulate the normal functioning of 

power assets and the resulting electromagnetic noise. In particular, nodes 0, 6, 7, 8 and 9 are deployed 

in the laboratory, placing WSN nodes close to power assets and dispatching the same amount of 

information as in the simulation phase as a proof of concept. As in simulations, the sensing and reporting 

periods are left untouched, being 5 and 15 min respectively. The packet size is fixed to 15 bytes and the 

transmission power of the devices is set to its default value as well. Regarding the second test-bed, the 

same settings as in the previous experiment are employed (same values for the sensing and reporting 

frequencies, packet size and transmission power) and nodes 1, 2, 3, 4 and 5 of the topology illustrated 

in Figure 10 are deployed in a T&D segment as a demonstration of the proper operation of our proposal 

in an outdoor environment. The distance between two consecutive nodes is approximately 100 m 

(distance between transmission poles) and the only interfering phenomenon is the electromagnetic noise 

generated by the distribution segment itself. Nodes are deployed on the electrical towers and, as in the 

former test-bed, their readings periodically requested. 

Figure 13. Experiment setting in Heriot-Watt High-Voltage Lab. 

 

The PRR and the delay are continuously monitored all along the experiments to detect any deviation 

from the simulation results. On the other hand, power consumption depends on the protocol stack and 

the use of hardware resources (mainly the microcontroller and the radio interface), which are thoroughly 

evaluated by the Avrora simulator. Avrora simulations have been proved to be of remarkable accuracy 

by many works [63,77]; however, being one of the key points of the proposed system is its long-lasting 

feature, we have considered that a validation of the power consumption simulation results is of 
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paramount importance. To this aim, the power consumption of the seventh node has been examined for 

an entire week. This measurement has been carried out by periodically sampling the current drawn by 

the WSN node from a power source. After a week we obtained a value that is 99% equal to the one 

predicted by the simulations—being the actual power consumption slightly lower than expected. 

Therefore, we consider that, in general, simulated power consumption matches the reality and therefore, 

the solution here proposed is, as aforementioned, of long-lasting nature. 

Regarding the PRR and Delay values, the results show the average obtained after 10 repetitions of a 

one-hour run (for each indoor/outdoor scenario) together with their corresponding standard deviation 

(95% confidence interval, Batch Mean Method). They are represented in Figures 14 and 15. 

Figure 14. PRR—Test-bed vs. simulation results. 

Figure 15. Average Delay—Test-bed vs. simulation results. 

Figures 14 and 15 show how the test-bed results are quite similar to those obtained in the simulations 

(presented in the Section 5). The outdoor environment, although covering longer distances between 

nodes, is ultimately characterized by a less hostile environment (in terms of electromagnetic noise),  

line-of-sight communications and bigger first Fresnel zone clearance (which has a positive effect on 
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radio propagation and reduces the signal cancelation). Thus, it is easy to understand that this experiment 

shows greater similarities to the Good Scenario simulation results. On the other hand, the substation 

indoor environment is affected by hard electromagnetic interferences, the absence of line-of-sight (in 

almost every pair of nodes) and the presence of many obstacles in the first Fresnel zone; finding the 

results obtained matching-enough to those obtained in the simulations under the Harsh Environment label. 

It is worth mentioning that in order to also validate the results obtained in the simulation of the 

ZigBee-based network, we decided to carry out the outdoor and power-consumption experiments again, 

but this time, programming devices to form a ZigBee network. For the case of the power consumption 

analysis, we let them run another week, while testing the consumption of the seventh node: the results 

were 98.15% equal to the value obtained with the simulations—slightly higher in the test-bed than 

expected. The PRR obtained in such outdoor experiment was 89.15% (eighty-nine percent of the 

messages sent by nodes were received by the sink node); differing in just 1.13% from the simulation. 

These experiments clearly validate the results obtained in both, the simulation and the mathematical 

expressions and therefore, demonstrate the suitability of our SENSED-SG approach from a global 

perspective to provide a reliable control and monitoring means for the Smart Grid. 

7. Conclusions and Future Work 

The Smart Grid is a challenging field full of opportunities and benefits that only very recently has 

started to be completely exploited. However, it still lacks ad-hoc control and sensing wireless systems 

capable of facing the very specific challenges and requirements that the SGs impose. In this line we have 

conceived, carefully justified its design, and implemented a comprehensive ad-hoc WSN solution, 

denoted as SENSED-SG. It benefits from the collaborative, low-cost and extremely low power 

consumption nature of WSNs to control and manage power assets. To this end, our solution makes use 

of specific implementation of the MAC, network and upper layers. Mathematical expressions have been 

proposed to characterize the main metrics of interest of the SENSED-SG network, and they have been 

further used to tweak and improve the performance of such network. The analysis has been validated by 

means of an exhaustive set of representative simulations. The mathematical model was also useful to 

predict how different figures of merit vary as different design parameters are changed, which yields 

trade-off values for the main system parameters. 

As a way to compare our solution to other widely deployed commercial alternatives, we have also 

simulated a ZigBee-based network. Results reveal the good performance achieved by our proposal, 

especially in terms of lifetime and PRR: almost 21 months of lifespan vs. the 30 days of the ZigBee 

solution, and a PRR of nearly 100% in the worst case scenario in comparison with the 62% of the 

ZigBee-based network. Finally a test-bed has been also carried out. The indoor scenario has been 

replicated in a well-controlled environment: the High Voltage AC/DC laboratory of the Heriot-Watt 

University. There, different propagation phenomena have been considered (electromagnetic noise, 

scattering, shadowing, etc.) and results confirmed the suitability of SENSED-SG for controlling and 

managing different types of power assets. Conversely, an outdoor-environment test-bed has been also 

set in an open field where nodes were placed on electric towers to evaluate the performance of our 

proposal in the T&D segment of the SG. Again, the results demonstrated the reliable and robust nature 

of the proposed system, satisfying all the imposed requirements. 
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WSNs are expected to play an even more important role in the future Smart Grid, being a ubiquitous 

sensing solution and running unattended for longer time spans. In this sense, finer energy-harvesting 

techniques (especially those related to electromagnetic fields) are envisioned to empower WSN devices, 

providing them with the required energy to perform more complex tasks and allowing them to 

individually and progressively take low-impact decisions releasing the load of central nodes. Thus, the 

burden of the decision-making process is expected to be distributed among nodes, reducing the network 

overload and increasing the efficiency of the WSN. In view of the foregoing, it is our intention to work 

on these new energy-harvesting techniques and to incorporate new type of sensors to provide more 

meaningful information to the decision-making process and enable a real decentralized monitoring 

system. The application of cloud computing and virtualization techniques to the monitoring networks 

must be also explored as a means of reducing energy consumption and improving the intelligent 

management of large-scale WSN for the Smart Grid. 
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