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Abstract

Importance—Autosomal dominant Alzheimer disease (ADAD) is caused by rare genetic 

mutations in three specific genes, in contrast to late-onset Alzheimer Disease (LOAD), which has 

a more polygenetic risk profile.

Design, Setting, and Participants—We analyzed functional connectivity in multiple brain 

resting state networks (RSNs) in a cross-sectional cohort of ADAD (N=79) and LOAD (N=444) 

human participants using resting state functional connectivity MRI (rs-fcMRI) at multiple 

international academic sites.

Main Outcomes and Measures—For both types of AD, we quantified and compared 

functional connectivity changes in RSNs as a function of dementia severity as measured by 

clinical dementia rating (CDR). In ADAD, we qualitatively investigated functional connectivity 

changes with respect to estimated years from onset of symptoms within five RSNs.

Results—Functional connectivity decreases with increasing CDR were similar for both LOAD 

and ADAD in multiple RSNs. Ordinal logistic regression models constructed in each type of AD 

accurately predicted CDR stage in the other, further demonstrating similarity of functional 

connectivity loss in each disease type. Among ADAD participants, functional connectivity in 

multiple RSNs appeared qualitatively lower in asymptomatic mutation carriers near their 

anticipated age of symptom onset compared to asymptomatic mutation non-carriers.

Conclusions and Relevance—rs-fcMRI changes with progressing AD severity are similar 

between ADAD and LOAD. Rs-fcMRI may be a useful endpoint for LOAD and ADAD therapy 

trials. ADAD disease process may be an effective model for LOAD disease process.

Keywords

Resting-state functional connectivity; autosomal dominant Alzheimer's disease; late-onset 
Alzheimer's disease; default mode network; apolipoprotein E (APOE)
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Introduction

Late-onset Alzheimer disease (LOAD) is the leading cause of dementia worldwide, 

currently affecting more than 18 million people1. AD is defined by pathological 

accumulation of tau neurofibrillary tangles and amyloid beta (Aβ) plaques2. While AD is 

typically late-onset and polygenetic (LOAD), in a small subset of individuals AD is 

inherited as an autosomal dominant trait (autosomal dominant AD or ADAD), which is 

typically early-onset and caused by monogenetic mutations in the genes encoding presenilin 

1, presenilin 2, or amyloid precursor protein. These mutations are ~100% penetrant and 

cause AD by affecting Aβ cleavage and folding3.

Discovery of ADAD mutations has enabled researchers to develop transgenic mouse models 

and cell lines expressing these mutations4. These experimental models have enabled the 

preclinical testing of potential anti-amyloid AD therapies5. By studying ADAD individuals 

who will develop dementia at a predictable age, researchers can identify the temporal 

dynamics of changes in biomarker profiles before the development of clinical symptoms6. 

However, questions remain concerning the extent to which findings in ADAD translate to 

LOAD.

Converging evidence from cerebrospinal fluid (CSF), amyloid imaging, and brain 

volumetric studies7,8 suggests that ADAD and LOAD are similar disease processes. 

However, biomarker differences exist between LOAD and ADAD. Specifically, ADAD 

individuals may have greater amyloid plaque deposition in the basal ganglia compared to 

LOAD individuals9. Additionally, increased levels of CSF Aβ1−42 have been observed very 

early in ADAD but not in LOAD8.

One biomarker of interest in LOAD that is relatively unestablished in ADAD is resting state 

functional connectivity MRI (rs-fcMRI)10,11. Functional connectivity measures the 

correlation structure of blood oxygen-level dependent (BOLD) signals between regions of 

interest (ROI), collections of which form resting state networks (RSNs)12,13. In LOAD, 

reduced functional connectivity has been observed with progressing clinical status 

[measured by clinical dementia rating (CDR)]14 within the default mode network (DMN), a 

RSN comprised of regions known to harbor Aβ15 and tau16 pathology. DMN functional 

connectivity decreases have also been noted in presymptomatic individuals genetically at 

risk for LOAD17. Recently, abnormalities in functional connectivity have been observed in 

the dorsal attention (DAN); executive-control (CON); salience (SAL); and sensorimotor 

(SMN) networks that parallel deteriorating cognitive status18.

We measured functional connectivity in a cross-sectional cohort of asymptomatic and 

symptomatic ADAD participants [mutation positive (M+; n=54) and mutation negative (M–; 

n=25)] and a cross-sectional cohort of LOAD individuals (n=74 very mild AD dementia, 

n=27 mild AD dementia, and n=343 cognitively normal older adults). We show that 

functional connectivity changes with respect to CDR are similar for both types of AD (i.e., 

ADAD and LOAD)18.
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Materials and Methods

Patient characteristics

The ADAD cohort was drawn from the international Dominantly Inherited Alzheimer 

Network (DIAN) and consisted of participants from ADAD families, both individuals with 

mutations (M+) and individuals lacking mutations (M–) (Table 1). We excluded from the 

analysis 26 M+ individuals and 7 M–individuals who were scanned with inconsistent 

sequence parameters. We removed one additional M– participant with questionable clinical 

status. Cross-sectional data available as of February 2012 were included in this analysis19. 

Only subjects that passed quality control (described below) were included in the final 

analysis.

A separate cohort of participants was enrolled in a longitudinal study at the Knight 

Alzheimer's Disease Research Center (ADRC) at Washington University in St. Louis 

(WUSTL) designed to track individuals at risk for LOAD through the stages of cognitive 

decline18. All participants from both cohorts provided informed consent according to 

institutional review board procedures at their respective institutions. Each participant 

completed a general physical (including neurologic) examination, health and medication 

history, and clinical assessment for dementia20. We used independent general linear mixed 

models to assess group differences in demographics.

Clinical Dementia Rating (CDR)

Experienced clinicians conducted semi-structured interviews of each participant and a 

knowledgeable collateral source. The clinical dementia rating scale (CDR) was used to 

determine and stage dementia severity14. CDR0 indicates cognitive normality, CDR0.5 

corresponds to very mild dementia, and CDR≥1 specifies mild and moderate dementia. In 

other studies, certain CDR0.5 participants may be classified as having mild cognitive 

impairment (MCI) due to AD, depending on the staging criteria21. Five participants from the 

ADAD CDR≥1 cohort had more advanced disease [CDR2 (n=4); CDR3 (n=1)]. All CDR > 

0 participants had a clinical diagnosis of AD dementia in accordance with standard 

criteria.22 Disease biomarkers such as PiB PET imaging23 and CSF measures24 were not 

explicitly taken into account for the diagnosis of LOAD, but when available were used to 

exclude participants with profiles inconsistent with AD.

Estimated years from onset (EYO)

Within the DIAN cohort, parent age at symptomatic onset was determined from semi-

structured interviews with the participant, a knowledgeable collateral source, and/or other 

informants familiar with the parental history of disease. The age at onset of the affected 

parent was determined by estimating the time of onset of symptoms (e.g., memory/

cognition, motor or behavior). The anticipated age at symptomatic onset (AAO) for each 

individual was indexed to the AAO for that individual's affected parent. The estimated years 

from symptom onset (EYO) for each DIAN individual was defined as [(age at testing) – 

AAO]5.
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Apolipoprotein Eε4 (APOE4) allele determination

DNA was extracted from peripheral blood and apolipoprotein E (APOE) genotyping was 

conducted according to previously-published methods25. Individuals were defined to be 

APOE4 positive if they had at least one ε4 allele.

MRI data acquisition

For both cohorts, neuroimaging was performed using 3T Siemens Tim Trio scanners 

(Erlangen, Germany) equipped with the standard 12-channel head coil using previously-

described methods (see supplemental; also see Table 2). Structural images were acquired to 

allow alignment of rs-fcMRI images to atlas space18.

Pre-processing of all rs-fcMRI

Initial preprocessing of all rs-fcMRI data (both ADAD and LOAD) followed conventional 

methods as previously described18,26 which were modified to correct for non-optimal order 

of operations27 (see supplemental). Spurious variance was reduced by regression of nuisance 

time-series derived from head motion correction and extraction of BOLD activity from 

white matter, CSF regions, as well as the BOLD time-series averaged over the whole brain 

(or global signal)28.

Quality Assurance (QA) of rs-fcMRI

rs-fcMRI analyses and quality control procedures for ADAD and LOAD participants 

followed previously-described methods (see supplemental)29. Subjects with either outlier 

rms movement or excessive frame removal (>40%) were excluded from further analysis.

Resting-state network (RSN) composite correlation

For all participants, we extracted time-series data from thirty-five 6-mm radius spherical 

brain regions of interest (ROIs) distributed throughout 5 functionally-defined RSNs 

including the DMN†, DAN, CON, SAL, and SMN (Figure 1). Briefly, intra-network 

composite scores were obtained by averaging BOLD correlation values computed between 

ROIs belonging to a particular RSN and inter-network composite scores were obtained by 

averaging correlations from ROIs belonging to separate RSNs. Using a composite score for 

intra and inter-network comparisons serves to reduce the amount of data while reducing the 

potential impact of sampling error. We analyzed composite scores for 5 intra-network 

(DMN, DAN, CON, SAL, SMN) and 3 inter-network (DMN:DAN, DMN:SMN, 

CON:SMN) composites which we have previously shown to be affected by LOAD18.

Statistical analysis

Generalized linear mixed models were used for each RSN composite to assess the fixed 

effects of CDR and AD type as well as their interaction. For ADAD, this model did not 

include CDR0 M– group in order to preserve the balance of the model between LOAD and 

ADAD. Differences between CDR0 M+ and CDR0 M– were assessed using the model that 

†The DMN has previously included a thalamic ROI. However, this ROI was not included in this analysis because it has at best weak 
correlations with the DMN.
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incorporates EYO described below. However, we include the CDR 0 M– group in each 

figure for comparison purposes. We also included ADAD family as a random effect because 

it is likely that functional connectivity measures are correlated for members of a common 

family. The AD type factor is a single fixed factor accounting for differences in average age 

and scanner acquisition parameters between the LOAD and ADAD groups. We assessed 

significant pair-wise effects (e.g., between CDR0 M+ and CDR0.5 M+) by extracting 

individual contrasts from the omnibus model. We compared the pair-wise effect size for 

different CDR stages between groups (e.g., CDR0.5 – CDR1 ADAD vs. CDR0.5 – CDR1 

LOAD) using the Q test for effect size heterogeneity. We subsequently re-fit the preceding 

models adding factors in a stepwise fashion to account for the random effect of scanner and 

fixed effects of age and APOE ε4 status.

To analyze the effect of EYO on functional connectivity in the ADAD cohort, generalized 

linear mixed models were constructed for each RSN with EYO, quadratic effect of EYO 

(EYO2) and mutation status, as well as interactions among these factors. ADAD family 

membership was included as a random effect. Changes in RSN strength with respect to EYO 

were displayed using a locally weighted scatterplot smoothing (LOESS)7. To protect the 

confidentiality of participants’ mutation status, individual data points were not displayed.

To qualitatively assess whole-brain changes in DMN-associated functional connectivity with 

respect to EYO in the M+ ADAD group, we computed voxel-wise correlations between a 6 

mm ROI in the posterior cingulate cortex (PCC; an important node of the DMN) and each 

voxel in the brain for each subject. We then used a LOESS model to predict PCC functional 

connectivity at each value of EYO in the range [-25,10] at 0.1 year increments for M+ 

individuals and displayed these predicted values using a movie. Each frame of the movie 

shows the predicted whole-brain average PCC-seed functional connectivity for a specific 

EYO value. Warm regions represent positive average within-DMN functional connectivity; 

cool regions represent negative between-network functional connectivity.

Cross-regression Analysis

We used ordinal logistic regression to perform a cross-regression analysis that further 

elucidated similarities between ADAD and LOAD. We fit a regression to predict CDR using 

the 5 intra-network and 3 inter-network composite values. We fit a separate model in each 

AD type and used this to predict CDR values for participants in the other AD type. We used 

Spearman rank correlations to assess the similarity between actual and predicted CDR 

values.

Results

Intra-network functional connectivity in LOAD and ADAD

Initially, we combined both cohorts to test for the main effect of CDR stage on intra-

network functional connectivity (Figure 2). A mixed model (corrected for mean age and 

acquisition differences between cohorts as well as a random effect of ADAD family 

membership) showed a significant main effect of CDR for multiple RSNs including the 

DMN, DAN, and CON (col. 1 Table 3). Only the SAL and SMN networks did not show a 
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significant effect of CDR. In general, pairwise comparison between CDR stages showed that 

functional connectivity was lower in a step-wise fashion for the LOAD cohort (col. 2-4 

Table 4). A similar pattern was observed for ADAD, although individual pair-wise 

differences (e.g., from CDR0 to CDR0.5) were generally not significant (cols. 2-4 Table 4). 

Stepwise inclusion of additional factors that assessed fixed effects of age as a continuous 

covariate and APOE ε4 status as well as a random effect of ADAD acquisition site reduced 

the observed effect sizes, but did not remove them (cols. 1-3 Table 3).

Although the general patterns of intra-network functional connectivity changes seen for 

ADAD and LOAD were similar, subtle differences were observed. When pair-wise effect 

sizes (Cohen's d) differed between ADAD and LOAD, the CDR effect was in general 

greater in ADAD compared to LOAD.

Inter-network functional connectivity in LOAD and ADAD

Inter-network functional connectivity was also decreased in magnitude with respect to CDR 

in both LOAD and ADAD (cols. 2-7 Figure 3). Inter-network (e.g., DMN:DAN) BOLD 

correlations typically are negative in sign (i.e., anti-correlations) in data preprocessed using 

global signal regression28. As previously reported, LOAD cross-network anti-correlations 

were diminished (i.e., closer to zero) with advancing CDR18. A similar finding was 

observed in ADAD (cols. 2-4 Figure 2), where decreased anti-correlation magnitude was 

observed for DMN:DAN but not DMN:SMN or CON:SMN (col. 1 Table 3). Stepwise 

inclusion of additional factors testing for fixed effects of age as a continuous covariate, 

APOE ε4 status, and the random effect of ADAD acquisition site reduced the effects, but did 

not remove them (Table 3b).

Cross-regression analysis

In order to further characterize the similarity between AD types, we fit ordinal logistic 

regression models (see Methods) in ADAD and used these to predict CDR levels in LOAD 

(and vice versa). The model fit in ADAD was able to predict LOAD CDR levels much better 

than chance (t(d.f.=442)=5.11; p<0.0001). The inverse process also allowed us to predict 

ADAD CDR levels based on LOAD data better than chance (t(d.f.=52)=4.51,p<0.0001). 

Cross-AD type classification was unsuccessful for predicting genetic risk in the absence of 

clinical symptoms.

Functional connectivity in ADAD is lower in individuals closer to AAO

For ADAD, we show how functional connectivity changes occur relative to expected years 

from onset of symptoms (EYO) in all M+ individuals including individuals destined to 

develop cognitive impairment and those already symptomatic. Figure 4 presents LOESS 

plots of RSN composites scores against EYO and demonstrates a qualitative decrease in the 

DMN several years prior to expected symptom onset. Figure 5 presents the same analysis for 

the between RSN data. The limited size of this cohort spread over many decades of EYO 

precludes statistical demonstration of this effect but suggests that functional connectivity 

may slightly precede cognitive symptoms.
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We constructed a movie that demonstrates progressive loss of intra- and inter-network 

functional connectivity in the M+ group using the PCC as a seed. The fitted model predicted 

qualitative changes in functional connectivity in M+ participants prior to anticipated age of 

onset (AAO) (Movie 1).

Discussion

ADAD and LOAD manifest similar functional connectivity changes with respect to CDR. 

Moreover, regression models constructed in one cohort distinguished CDR stages in the 

other. This result demonstrates that functional connectivity changes manifest similarly in 

both types of AD. However, some differences exist between AD types in functional 

connectivity. A modestly greater effect of disease severity was seen for ADAD compared to 

LOAD. The available data suggest that ADAD may serve as an effective model to study 

LOAD pathophysiology, albeit with some reservations.

The first studies to investigate LOAD using rs-fcMRI detected changes in the DMN30. More 

recent work from our group has reported decreased functional connectivity in a wider set of 

intra and inter-network relationships18. These results are recapitulated in our current study, 

where we show similar effects of CDR on RSN connectivity in LOAD and ADAD. 

Similarities were also evident between ADAD and LOAD when a regression model was fit 

in each group using all analyzed RSNs as features and used these models to predict CDR 

levels in the other. Our success fitting CDR models in the ADAD cohort and predicting 

CDR status for the LOAD cohort (and vice versa) further suggests similar widespread RSN 

changes in both AD types.

However, analysis of the certain RSN composites suggested a slightly more pronounced 

decline for ADAD compared to LOAD. The greater loss in functional connectivity seen in 

ADAD in certain networks may suggest that ADAD is a more aggressive process than 

LOAD31,32. We previously hypothesized that inter-network correlations may reflect a 

mechanism by which pathology spreads from one functional network to the next in a 

cascading disease process33. There may be a more rapid and dramatic accumulation of Aβ 

and tau neurofibrillary tangle (NFT) pathology in ADAD compared to LOAD34. Hence, the 

observed rapid decline both within and between certain RSNs possibly reflects a faster 

spread of pathology from the DMN across diseased connections in ADAD.

Biomarker profiles accrue with age along distinct intra-individual trajectories in LOAD and 

ADAD6,35. In ADAD, we show evidence suggesting that functional connectivity decreases 

with EYO only in the M+ group. In M+ individuals, intra-individual changes in BOLD 

correlations within and between networks may serve as an effective biomarker of disease 

progression. Functional connectivity is a potentially useful biomarker in ADAD. However, 

we have only demonstrated qualitative differences between M+ and M– groups temporally 

proximate to the anticipated age of onset, suggesting that gross changes in intra-network 

functional connectivity likely occur later than changes in metabolism, hippocampal volume, 

and CSF Aβ and tau. Observed changes in BOLD correlations may reflect downstream 

pathophysiological processes7. Ongoing longitudinal studies will assess the usefulness of 

functional connectivity in tracking pre-clinical AD.
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Our results differ from previous results on three points. First, individual RSN composite 

scores were not significantly different for asymptomatic participants with genetic risk 

factors in either cohort. This conflicts with previous studies of LOAD that showed DMN 

functional connectivity changes within network in asymptomatic individuals with Aβ plaque 

deposits36 or a family history of LOAD37. Second, we did not observe a transient increase in 

functional connectivity in the SAL for ADAD participants as was previously observed for 

LOAD18,38. This suggests another possible difference between LOAD and ADAD. Finally, 

in contrast to a recent study from Chhatwal et al.,11 we were unable to demonstrate at a 

statistically significant divergence between the M+ and M– individuals prior to symptom 

onset, though qualitatively our data are consistent with that finding. This difference possibly 

reflects the fact that Chhatwal et al analyzed ROI-level changes whereas here we analyzed 

network-level changes. We were able to demonstrate voxel-level DMN functional 

connectivity changes using a LOESS movie. This qualitatively confirmed the Chhatwal et 

al. results using a ROI. Indeed, the ADAD cohort reported by Chhatwal et al., is the same 

cohort reported here although we excluded several additional participants due to scan 

parameter issues.

This study made use of network composite scores as a measure of functional connectivity 

strength18 which have several strengths but also make two assumptions. First, composite 

scores are a data reduction strategy, reducing the burden of multiple comparisons. Second, 

they reduce sampling error of observing any single functional connectivity pair within an 

RSN. However, they assume that each functional connectivity pair in an RSN behaves 

similarly. This has been previously been shown to be valid in LOAD but may obscure focal 

changes such as those previously seen in ADAD11. In addition, composite scores assume 

that an ROI's RSN membership does not change with disease, which could bias the 

measurement.

Several limitations arose from the design of this study. First, there were scanning differences 

between cohorts. This complicates demonstration of average differences between cohorts, 

but this does not impact our ability to demonstrate similarities between AD types. Second, 

our LOAD cohort was significantly older than our ADAD cohort. This is an unavoidable 

confound in any study comparing LOAD to early-onset ADAD. We addressed this issue by 

correcting for age differences between the two cohorts. Finally, it has been argued that EYO 

might not be the best estimate of disease progression in CDR0.5 ADAD participants. 

However, because CDR0.5 individuals are difficult to stage precisely, EYO is the most 

practical measure in a cross-sectional study. Larger longitudinal studies will be able to more 

fully characterize ADAD and LOAD functional connectivity changes and place them in 

temporal relation to other biomarkers (especially CSF tau, Aβ, positron emission 

tomography (PET), volumetrics, and amyloid imaging). Volumetric comparisons are 

particularly important to this study since atrophy may influence the measured BOLD signal. 

Future studies directly comparing these two measures will be important.

Finally, this study made use of the global signal regression (GSR) preprocessing step. This 

procedure is controversial28,39. It is algebraically true that GSR forces the mean of 

correlations across the brain to be zero and can make negative correlations more apparent. 

However, correlations following GSR are essentially first-order partial correlations 
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accounting for widely shared variance while correlations without GSR are canonical 

correlations. This makes correlations with and without GSR two fundamentally different 

statistical quantities reflecting different types of relationships. It is likely that some of the 

removed signal is of neural origin40 however a large fraction of the global signal is related to 

residual effects of head motion29 and fluctuations in pCO241. Thus, we viewed GSR as a 

necessary step for noise reduction in this cross-scanner, multi-site study. Beyond its noise 

reduction properties42, GSR has been shown to increase the concordance between BOLD 

correlation mapping and electrocorticography, particularly for negative correlations43, 

indicating an important relationship to neurobiology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Regions of Interest. Individual regions of interest are displayed on brain surfaces along with 

intra-network connections within each of the five networks analyzed in the current study: 

DMN=default mode, DAN=dorsal attention, CON= executive-control, SAL=salience, 

SMN=sensorimotor networks.
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Figure 2. 
Similar within RSN changes in LOAD and ADAD. Changes in intra-network resting state 

functional connectivity magnetic resonance imaging (rs-fcMRI) composite scores for 

participants for autosomal dominant Alzheimer disease (ADAD) and late-onset Alzheimer's 

disease (LOAD) participants as a function of clinical dementia rating (CDR). For both 

ADAD and LOAD, a stepwise loss of functional connectivity was seen for most resting state 

networks (RSNs) with increasing CDR. '*' denotes p<0.05, ‘**’ denotes p<0.005. Whiskers 
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extend to 1.5 x interquartile range. DMN= default mode network, DAN= dorsal attention, 

CON= executive-control, SAL=salience, and SMN= sensorimotor.
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Figure 3. 
Similar between RSN changes in LOAD and ADAD. Changes in inter-network composite 

scores for ADAD and LOAD participants as a function of CDR status. A loss of between-

network functional connectivity was seen for the DMN:DAN and DMN:SMN with 

increasing CDR, though for CON:SMN, this pattern was only present in LOAD. ‘*’ denotes 

p<0.05, ‘**’ denotes p<0.005. Whiskers extend to 1.5 x interquartile range.
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Figure 4. 
EYO modulates within RSN FC in ADAD. Intra-network functional connectivity (and 

standard error bands) as function of estimated years from symptom onset (EYO) for all M+ 

(red) and M– (blue) ADAD individuals.
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Figure 5. 
EYO modulates between RSN FC in ADAD. Inter-network functional connectivity (and 

standard error bands) as function of estimated years from symptom onset (EYO) for all M+ 

(red) and M– (blue) ADAD participants.

Thomas et al. Page 21

JAMA Neurol. Author manuscript; available in PMC 2014 November 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Thomas et al. Page 22

Table 1

Demographics for autosomal dominant Alzheimer's disease (ADAD) and late-onset AD (LOAD) participants. 

Five participants from the ADAD CDR ≥ 1 cohort had more advanced disease (n=4 CDR 2; n=1 CDR 3). In 

both cohorts, the CDR ≥ 1 groups tended to be older and less educated. CDR= clinical dementia rating scale, 

MMSE= mini-mental status exam [range: 0 to 30 with higher score reflecting healthier cognition], APOE= 

apolipoprotein E. For some participants LOAD APOE4 status was not obtained.

Autosomal Dominant AD (ADAD) Late-onset AD (LOAD)

M– CDR0 M+ CDR0 M+ CDR0.5 M+ CDR>1 CDR0 CDR0.5 CDR1

N 25 31 15 8 343 74 27

Age (yrs) (sd) 30.9 (10.0) 33.9 (8.5) 41.4 (10.4) 49.4 (8.7) 68.7 (9.5) 74.0 (7.7) 70.1 (11.4)

Sex (% male) 40% 39°% 33% 63% 34% 58% 37%

Education (yrs) (sd) 14.6 (2.0) 14.7 (2.3) 13.9 (2.1) 11.6 (1.1) 15.8 (2.6) 15.0 (2.6) 14.3 (2.5)

MMSE (sd) 29.5 (0.71) 28.7 (3.6) 26.5 (2.7) 14.1 (8.1) 28.9 (1.3) 26.8 (2.9) 21.2 (4.1)

% APOE4 20% 16% 27% 25% 29% 49% 42%

% Frame Rej 5.3% (7.3%) 6.6% (8.9%) 7.1% (8.9%) 12.2% (14.1%) 9.4% (12.1%) 12.2% (8.4%) 13.2% (7.1%)
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Table 2

MRI imaging parameters for autosomal dominant AD (ADAD) and late-onset AD (LOAD). Scanning 

parameter differences between the two cohorts are in bold.

ADAD LOAD

MPRAGE (T1) TE = 16 msec, TR = 2,400 msec, TI = 1,000 msec, 
flip angle = 8°, 256 × 256 acquisition matrix, 1 × 1 × 
1 mm voxels)

TE = 16 msec, TR = 2,400 msec, TI = 1,000 msec, flip angle = 8°, 
256 × 256 acquisition matrix, 1 × 1 × 1 mm voxels)

FSE (T2) No FSE available. TE = 86.0 msec, TR = 6150.0 msec, 256 × 256 acquisition matrix, 
1 acquisition, 1 × 1 × 4 mm voxels, flip angle = 120°

rs-fcMRI TE = 27 msec, TR = 2200 msec, field of view = 256 
mm, flip angle = 90°

TE = 30 msec, TR = 2200 msec, field of view = 256 mm, flip 
angle = 90°

rs-fcMRI length 1×(140) frames 2×(164) frames

TE: echo time

TR: repetition time

TI: inversion time

MPRAGE: magnetization-prepared rapid gradient echo

FSE: fast spin echo
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Table 3

Left columns) Results of independent omnibus mixed models that assessed the fixed effects of CDR and CDR 

by AD type interaction for both cohorts with a random effect of ADAD family; Right Columns) stepwise 

inclusion of additional factors (scanner, age as a continuous variable, and apolipoprotein ε4 (APOE) genotype) 

reduced power to observe a CDR effect but did not completely eliminate observed changes

CDR AD Type CDR × AD Type Step 1 Step 2 Step 3

t(31) t(6) t(429) Scanner Age APOE

DMN t –2.18 2.54 1.17 CDR
0.03

* 0.21 0.21

p
0.036

* 0.011 0.24 CDRxAD type 0.28 0.15 0.54

Age
0.0001

**
0.0001

**

APOE 0.72

DAN t –2.90 0.097 0.16 CDR
0.0086

** 0.04 0.043

p
0.0064

* 0.92 0.87 CDRxAD type 0.92 0.8 0.7

Age
0.0014

**
0.0013

**

APOE 0.93

CON t –2.31 2.41 0.29 CDR
0.034

* 0.19 0.21

p
0.027

*
0.016

* 0.77 CDRxAD type 0.72 0.47 0.89

Age
0.0001

**
0.0001

**

APOE 0.62

SAL t –0.38 6.91 0.63 CDR 0.71 0.96 0.96

p 0.71
0.001

** 0.52 CDRxAD type 0.52 0.5 0.54

Age
0.086

t
0.05

t

APOE 0.15

SMN t –1.36 4.95 1.44 CDR 0.17 0.25 0.29

p 0.18
0.001

** 0.15 CDRxAD type 0.16 0.14 0.15

Age 0.33 0.17

APOE 0.55

DMN:DAN t 3.16 3.11 0.35 CDR
0.0032

**
0.032

*
0.038

*

p
0.0032

**
0.002

** 0.73 CDRxAD type 0.7 0.98 0.64

Age
0.0001

**
0.0001

**

APOE 0.63

DMN:SMN t 0.96 1.12 1.09 CDR 0.34 0.59 0.65

p 0.34 0.26 0.28 CDRxAD type 0.27 0.17 0.39

Age
0.037

*
0.015

*

APOE 0.9
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CDR AD Type CDR × AD Type Step 1 Step 2 Step 3

t(31) t(6) t(429) Scanner Age APOE

CON:SMN t –0.17 5.36 2.24 CDR 0.78 0.45 0.45

p 0.86
0.001

**
0.026

* CDRxAD type
0.021

*
0.011

*
0.012

*

Age
0.013

*
0.019

*

APOE 0.79

t
denotes trend p<0.1

*
denotes p<0.05

**
denotes p<0.005.
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