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Abstract

Although prediction of class membership from observed variables in latent class analysis is well 

understood, predicting an observed distal outcome from latent class membership is more 

complicated. A flexible model-based approach is proposed to empirically derive and summarize 

the class-dependent density functions of distal outcomes with categorical, continuous, or count 

distributions. A Monte Carlo simulation study is conducted to compare the performance of the 

new technique to two commonly used classify-analyze techniques: maximum-probability 

assignment and multiple pseudo-class draws. Simulation results show that the model-based 

approach produces substantially less biased estimates of the effect compared to either classify-

analyze technique, particularly when the association between the latent class variable and the 

distal outcome is strong. In addition, we show that only the model-based approach is consistent. 

The approach is demonstrated empirically: latent classes of adolescent depression are used to 

predict smoking, grades, and delinquency. SAS syntax for implementing this approach using 

PROC LCA and a corresponding macro are provided.
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Finite mixture modeling (McLachlan & Peel, 2000), particularly latent class analysis (LCA; 

Collins & Lanza, 2010), has become a statistical tool that social and behavioral scientists 

turn to with increasing frequency. Scientific questions that can be addressed with this set of 

methods are different from, and often complementary to, those that are addressed with more 

traditional methods such as multiple regression and analysis of variance. Mixture models 

posit that there are two or more underlying subgroups in a population, and subgroup 

membership must be inferred from responses to multiple items. In other words, population 

heterogeneity is explained by the identification of latent classes that are unique from one 

another, but each class is comprised of individuals who are similar on a set of observed 

variables.
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In many empirical studies, interest lies in understanding which characteristics predict latent 

class membership. For example, does poor parenting predict membership in trajectory 

classes of criminal offending (Roeder, Lynch, & Nagin, 1999)? Do adolescents’ friendship 

goals predict substance use patterns (Lanza, Patrick, & Maggs, 2010)? When the predictor is 

observed and the outcome is latent (i.e., predicting latent class membership from an 

observed covariate), the mathematical model is well understood. LCA with covariates has 

been described in detail in the literature (see Collins & Lanza, 2010; Lanza, Collins, 

Lemmon, & Schafer, 2007) and is summarized below. However, scientists are often 

interested in an effect in the opposite direction, in which the predictor is latent and the 

outcome is manifest (i.e., predicting a distal outcome from latent class membership). To be 

more precise, we are interested in the conditional distribution of a distal outcome, Z, given a 

latent class variable, C. In this case, the problem is more difficult because the predictor (true 

subgroup membership) is unknown (see Figure 1; Lanza, Collins, Schafer, & Flaherty, 

2005).

Being able to predict a distal outcome from latent class membership will provide etiological 

information about how the confluence of characteristics and/or behaviors at an initial time 

point predicts an outcome of interest; potential application abounds. Within public health, 

examples include predicting alcohol dependence from early substance use behavior and 

predicting contraction of a sexually transmitted infection from early sexual risk behavior. To 

date, researchers have typically used classify-analyze strategies in an attempt to approximate 

the effect of C on Z. These strategies assign individuals to a latent class in a first analysis 

step; then class membership is treated as observed and used to predict the distal outcome in 

a second analysis step (e.g., Clogg, 1995). Examples in the literature include predicting pain 

outcomes from latent classes defined by barriers to cancer pain management (Roberts & 

Ward, 2011) and predicting depression from peer victimization latent classes (Nylund, 

Bellmore, Nishina, & Graham, 2007).

The two most common approaches to LCA with a distal outcome are the maximum-

probability assignment rule (Nagin, 2005) and the multiple pseudo-class draws approach 

(Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997; Wang, Brown, & Bandeen-Roche, 

2005). Because these two classify-analyze approaches involve assigning (i.e., imputing) 

latent class membership and conducting the outcome analysis in separate steps, conclusions 

drawn about the effect of C on Z may be incorrect for several reasons. First, there is 

uncertainty related to class membership, which is not taken into account in the maximum-

probability assignment rule. Second, and more importantly, all standard classify-analyze 

approaches impute the latent variable under a model that is not sufficiently general; this may 

result in attenuated estimates of the relation between C and Z.

We propose a new model-based approach to LCA with distal outcomes that is flexible in 

terms of the metric of Z and straightforward to implement. After a brief introduction to the 

latent class model, we describe current classify-analyze approaches to estimating the effect 

of C on Z; we then introduce a model-based approach to LCA with a distal outcome, and 

perform a simulation study to demonstrate its performance relative to classify-analyze 

approaches; finally, we present an empirical demonstration of the model-based approach to 

LCA with a distal outcome. This paper has two goals: (1) We will present a new model-
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based approach to LCA with distal outcomes; and (2) We will present SAS syntax for 

implementing this model-based approach, which relies on an add-on procedure and macro 

that are freely available.

A Brief Review of the Latent Class Model

The latent class model, which is described in detail by Collins and Lanza (2010) and Lanza 

et al. (2007), can be summarized as follows. Suppose that there are K latent subgroups that 

must be inferred from j = 1, …, J observed variables, and that variable j has rj = 1, …, Rj 

response categories. Let x = (r1, …, rJ) represent the vector of a particular subject’s 

responses to the J variables. Let C represent the latent variable with latent classes c = 1, …, 

K. Finally, I(xj = rj) is an indicator function that equals 1 when the response to variable j = 

rj, and equals 0 otherwise. The probability of observing a particular response pattern is

(1)

where γc represents the probability of membership in latent class c and  represents 

the probability of response rj to item j given membership in latent class c.

This model can be extended to include covariates (i.e., predictors of latent class 

membership) using a logistic regression model in which the outcome is a categorical latent 

variable (see (Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997; Collins & Lanza, 2010; 

Dayton & Macready, 1988)). Suppose that a covariate U is used to predict latent class 

membership. Then the latent class model can be expressed as

(2)

where γc(u) = Pr{C = c|U = u} is a standard baseline-category multinomial logistic model 

(e.g., Agresti, 2002).

With a single covariate U, γc(u) can be expressed as

(3)

for c′ = 1, …, K −1 and reference class K.

Individuals’ posterior probabilities of membership in each latent class can be obtained from 

the resultant LCA parameters by applying Bayes’ theorem (e.g., Gelman, Carlin, Stern, & 

Rubin, 2003; Lanza et al., 2007):

(4)
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A model with a particular number of latent classes can be selected using a bootstrap 

likelihood-ratio test (McLachlan & Peel, 2000; McLachlan, 1987), as well as information 

criteria such as AIC (Akaike, 1974), BIC (Schwartz, 1978), CAIC (Bozdogan, 1987), and a-

BIC (Sclove, 1987). Multiple sets of random starting values should be used to assess the 

degree of certainty that the global maximum (as opposed to a local maximum) in the 

likelihood function has been identified. In addition, the ability to interpret the latent classes 

in a solution can help guide model selection.

Effect sizes in LCA

It is possible to calculate an effect size (Cohen, 1992) indicating the strength of association 

between a latent class variable C and a distal outcome Z. The effect size is calculated as 

follows:

• For a categorical outcome Z with m categories,

where Pij = Pr{Z = i, C = j} = πj Pr{Z = i|C = j}, P0ij = Pr{Z = i}. We note that ω = 

0 if and only if Pij = Pr{Z = i, C = j} = Pr{Z = i}. That is, ω = 0 if and only if C and 

Z are independent.

• For a continuous or count outcome,

where πc = Pr{C = c}, μc = E(Z|C = c), and 

.

The actual effect size will vary depending on whether a model-based approach, maximum-

probability assignment, or a multiple pseudo-class draws approach is used to estimate the 

effect. In addition, for a continuous distal outcome, the effect size will depend on whether 

the mean or mode is used to represent the distribution of the outcome given the latent class.

Common Approaches to Predicting a Distal Outcome From Latent Class 

Membership

There are two common classify-analyze approaches to estimating the effect of C on Z. The 

most straightforward approach is to assign individuals to latent classes based on their 

maximum posterior probability (see, e.g., Nagin, 2005). Specifically, a latent class model 

that only includes manifest indicators (i.e., an unconditional latent class model) is fit to the 

observed X variables and each individual’s vector of posterior probabilities of membership 

is retained. Individuals are then assigned to the latent class that corresponds to their 
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maximum posterior probability. Then, class membership is treated as known (i.e., any 

uncertainty in each individual’s true class membership is ignored) and a subsequent outcome 

analysis is conducted. All modern LCA programs provide the option to save posterior 

probabilities; any data management software could then be used to perform the outcome 

analysis. A significant drawback to this approach is that inference in the outcome analysis 

may be biased to the extent that there is uncertainty in latent class membership.

The second approach, multiple pseudo-class draws (Bandeen-Roche et al., 1997; Wang et 

al., 2005), mimics the maximum-probability assignment approach, but accounts for the 

uncertainty in class membership. As with maximum-probability assignment, the pseudo-

class approach requires a first stage of analysis in which an unconditional latent class model 

is fit to the data, and posterior probabilities are retained. In contrast to maximum-probability 

assignment, however, with the pseudo-class approach latent class membership is assigned 

randomly according to each individual’s posterior distribution. In a second stage of analysis, 

the distal outcome is, for example, regressed on latent class membership. This procedure is 

repeated multiple (typically 20) times in order to account for the uncertainty in latent class 

membership. Results are then combined across the multiple draws using rules derived for 

multiple imputation of missing data (Rubin, 1987).

The pseudo-class draws approach is also fairly straightforward to implement, and modern 

software packages for LCA such as Mplus (L. K. Muthén & Muthén, 1998–2007) include 

this technique as an option. Equality of means on the distal outcome across latent classes can 

be tested (Asparouhov, 2010). Numerous applications of this approach appear in recent 

literature, including Fried et al. (2009) and Petras and Masyn (2010).

An important limitation of both of these classify-analyze approaches is that any association 

between C and Z is ignored in the classification/imputation stage. Thus, the effect of C on Z 

estimated in the second stage will be attenuated. The missing data literature provides 

relevant insight into the impact of imputing data under a model that is more restrictive than 

the analysis model (e.g., Collins, Schafer, & Kam, 2001; Schafer, 1997).

A Model-Based Approach to Predict a Distal Outcome from Latent Class 

Membership

Although there is considerable recent interest focusing on inferring the relationship between 

a latent class variable, C, and distal outcome, Z (Clark & Muthén, 2009; Petras & Masyn, 

2010), we are not aware of literature that presents a precise statement of the underlying 

assumptions needed for such inference. In this section, we show why an additional 

assumption is needed to resolve a non-identifiability issue, and describe the proposed model-

based approach to estimate Z|C.

Let us first restate the problem more precisely. We have multiple observed indicators X, a 

distal outcome Z, and a latent class variable C. We assume that (X, C) follows an LCA 

model with a fixed number of classes. Although C is not observable, we wish to estimate the 

conditional distribution of the distal outcome for each latent class (Z|C). However, without 

certain assumptions regarding the joint distribution of (X, Z, C), the estimation of Z|C is not 
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possible. In general, the joint distribution of random variables is not identifiable from their 

marginal distributions alone (Casella & Berger, 1990). This is demonstrated in the following 

example.

In the contingency table shown below, choosing different ε ∈ (−1/4, 1/4) leads to different 

joint distributions of (X, Z), but identical marginal distributions for X and Z. This implies 

that there exists an infinite number of joint distributions of (X, Z) which have the same 

marginal distribution of X and Z.

X = 1 X = 2 Z margin

Z = 1 1/4 + ε 1/4 − ε 1/2

Z = 2 1/4 − ε 1/4 + ε 1/2

X margin 1/2 1/2

Although the problem we consider in this article, which involves X, C, and Z, is more 

complicated than this example, the key idea still applies: marginal distributions cannot 

determine the joint distribution without additional information. That is, we cannot determine 

the joint distribution of (X, C, Z) given the marginal distributions of (X, C) and (X, Z), 

without additional assumptions. Hence, we cannot infer Z|C solely based on the distributions 

of (X, Z) and (X, C).

An Important Assumption: Conditional Independence Between X and Z Given C

In order to be able to estimate the conditional distribution of Z given C, f(Z|C), we propose 

making the assumption of conditional independence between X and Z given the latent class 

variable C. That is, we assume that f(X, Z|C) = f(X|C)f(Z|C). Although there might be 

alternative assumptions which can also resolve the non-identifiability issue, we prefer this 

conditional independence assumption for its similarity to the local independence assumption 

underlying most LCA models (Collins & Lanza, 2010).

For completeness, the assumptions underlying the proposed model-based approach to LCA 

with distal outcomes can be explicitly listed as follows. First, we assume that in addition to 

the observed response indicator variables X and distal outcome Z, there exists a latent class 

variable C, and the marginal distribution of the latent class variable C is Pr{C = c} = πc (c = 

1, 2, …, K), with 0 < πc < 1 (c = 1, 2, …, K) and . Second, we assume that the 

conditional distribution of X given C is implied by the fundamental LCA model, defined 

above. Third, we assume that the conditional distribution of C given Z can be summarized 

by a logistic regression model:
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Assuming a logistic regression model for predicting C from a covariate is quite reasonable, 

and is standard practice in the LCA literature (e.g., Vermunt & Magidson, 2005).

Modeling the Latent Class Variable and the Effect of C on Z Simultaneously

In LCA with a distal outcome, interest lies in the density f{Z = z|C = c}. We can determine 

the desired distribution of Z|C by applying Bayes’ Theorem:

Given the assumptions above, f{C = c} is determined by the LCA model and f{C = c|Z = z} 

is determined by the LCA model with Z included as a covariate. The final piece of necessary 

information, f{Z = z}, depends on the distribution of Z. We first present the case in which Z 

is a binary distal outcome, and discuss extending this approach to categorical outcomes with 

more than two categories and to count outcomes; we then present an approach for estimating 

the conditional distribution of a continuous Z. No assumption about the particular 

distributional form of Z, such as Gaussian, is required.

Prediction of a binary/categorical/count distal outcome—When Z is binary, 

including Z as an additional indicator in the LCA model, including Z as a grouping variable 

in the LCA model, and incorporating Z into the LCA model as a covariate are 

mathematically equivalent. All of these approaches require the assumption of conditional 

independence between X and Z given C (Roeder et al., 1999). We recommend the third 

approach of incorporating Z as a covariate because it can be readily extended to other types 

of distal outcomes without requiring distributional assumptions of Z. Then, the density of 

concern, f{Z = z|C = c}, can be expressed as

Using this approach, Pr{Z = z} is estimated from the empirical distribution of Z (i.e., from 

the proportions in the observed data); the estimates for {β0c, β1c; c = 1, 2, …, K − 1} are 

provided by the LCA with covariates model; and the marginal distribution Pr{C = c} can be 

obtained by multiplying Pr{C = c | Z = z} by the marginal distribution Pr{Z = z}. Thus, we 

can estimate Pr{Z = z|C = c} given these estimates for Pr{Z = z}, Pr{C = c}, and {β0c, β1c; c 

= 1, 2, …, K − 1}.

The above arguments can be extended to a categorical outcome with more than two 

categories (i.e., Z ∈ {1, 2, 3…, m} and m ≥ 2), if we assume that
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An Excel calculator has recently been published online (Lanza & Rhoades, 2011b) so that 

analysts can implement this approach to LCA with a binary distal outcome in their work. 

The calculator uses as inputs the logistic regression coefficients (β1c) and the known 

marginal probabilities of the binary distal outcome; the calculator then provides the 

probabilities of Z given C. This approach is demonstrated in the corresponding article by 

Lanza and Rhoades (2011a).

The model for LCA with a binary distal outcome can also be extended to a count type 

outcome with more than two categories (i.e., Z ∈ {0, 1, 2, 3, …}), if we assume that

In this approach, Pr{Z = z} is also estimated from the empirical distribution of Z, instead of 

assuming a certain conditional distribution for Z|C, such as a conditional Poisson 

distribution Z|(C = c) ~ Poisson(λc).

Prediction of a continuous distal outcome—Obtaining the distribution of a 

continuous distal outcome given C is a more complicated case than that of a categorical Z. 

We propose extending the approach described above for a binary/count distal outcome to 

continuous outcomes. That is, below we explain how to include the continuous distal 

outcome, Z, as a covariate in the latent class model. Similar to the binary/count case, using 

this approach we are able to obtain estimates for {β0c, β1c; c = 1, 2, …, K − 1} from the LCA 

with covariates model. Then, to estimate f{Z = z|C = c} we need to estimate f{Z = z}, and the 

marginal distribution Pr{C = c} can be obtained by multiplying Pr{C = c | Z = z} by the 

marginal distribution f{Z = z}. We estimate the density of Z using kernel density estimates 

(Silverman, 1986) for continuous variables, which can be readily implemented using SAS 

PROC KDE (SAS Institute Inc., 2002–2004). The default bandwidth selection method in 

PROC KDE is based on the plug-in formula of Sheather and Jones, as suggested in Jones, 

Marron, and Sheather (1996). In sum, we propose a flexible, semi-parametric approach for 

modeling the effect of C on a continuous Z, in which we empirically estimate the 

distribution of Z. Using the conditional and marginal distributions we can obtain the mean 

(or mode) of Z for each latent class. Again, this approach does not require a specification of 

the conditional distribution of Z given C, such as a conditional normal distribution Z|(C = c) 

~ N(μc, σ2); instead, it uses the empirical distribution of Z.

Software—LCA, as well as the proposed model-based approach to LCA with a distal 

outcome, can be conducted in SAS. Syntax for conducting LCA with a distal outcome is 

included in the Appendix. The SAS procedure for conducting latent class analysis, PROC 

LCA (Lanza, Dziak, Huang, Xu, & Collins, 2011), and the new %LCA_distal macro, are 

available for download at methodology.psu.edu.

Summary—Using Bayes’ theorem as the foundation, the proposed model-based approach 

is a general procedure for estimating the conditional distribution of Z given C, regardless of 

whether the distal outcome is a categorical, count, or continuous variable. The approach 
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empirically derives the class-specific distribution of Z using observed proportions or kernel 

density estimation, along with information provided by the latent class model. This approach 

also yields the information needed to test for the significance of the association between C 

and Z. Because this approach includes Z as a covariate, the difference in the log-likelihood 

between the latent class models with and without Z can be used to construct this test. This 

log-likelihood difference times −2 can be compared to a chi-square table with degrees of 

freedom equal to the number of latent classes minus one.

In order to examine the properties of this model-based approach to LCA with a distal 

outcome, we now move to a simulation study. The impact of four factors on performance of 

this technique is examined for binary, count, and continuous outcomes. Performance of the 

proposed model-based approach is compared to that of maximum-probability assignment 

and multiple pseudo-class draws.

A Comparison of Three Estimation Methods for LCA with a Distal Outcome

Design

In this simulation study, we examined the effect of four factors on the performance of the 

model-based approach, as well as the two classify-analyze approaches, to LCA with a distal 

outcome. The factors were the conditional distribution of the distal outcome, Z; the strength 

of the association between the latent class variable and the distal outcome (i.e., effect size); 

the quality of the LCA measurement model (i.e., the degree of association between the 

observed and latent variables, which in this case corresponds to the degree of separation 

between latent classes); and the sample size. Specifically, the levels of the factors considered 

were as follows.

Type of Z—Three types of the distal outcome were considered: binary, continuous, and 

count. In our simulation, we let Z|C = c ~ Binom(pc) for binary Z; Z|C = c ~ N(μc, 1) for 

continuous Z; and Z|C = c ~ Poisson(λc) for count Z. We hypothesized that any attenuation 

observed when a model-based approach is not used would be present regardless of the 

distribution of Z.

Strength of the effect of C on Z—For each Z distribution listed above, four strengths of 

association between the latent class variable and the distal outcome were considered. These 

corresponded to no effect, weak effect, medium effect, and strong effect as defined by 

Cohen (1992). The corresponding population values of pc (for binary Z), μc (for continuous 

Z), and λc (for count Z), are listed in the top, middle and lower panel of Table 1, 

respectively. We hypothesized that attenuation of the effect of C on Z would increase as the 

effect size increases, and that this attenuation would be much smaller for the model-based 

approach as compared to the two classify-analyze approaches.

LCA measurement model—Using the empirical example of latent classes of adolescent 

depression described in Lanza, Flaherty, & Collins (2003) as a basis, latent class models 

with eight binary indicators and five latent classes were considered. We specified latent 

class prevalences and measurement models that had a structure similar to that in the 

empirical study. For all models in this simulation study, the proportion of individuals in 
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Classes 1 through 5 were specified to be 40%, 20%, 20%, 10%, and 10%, respectively. Two 

levels of measurement quality were considered: moderate, characterized by item-response 

probabilities equal to .8 or .2, and high, characterized by item-response probabilities equal 

to .9 or .1. Table 2 shows the set of item-response probabilities specified to achieve these 

two levels of measurement. We hypothesized that high measurement quality would reduce 

bias under any other combination of factors, regardless of estimation method.

Sample size—We considered sample sizes of 500 and 1000. Assessing performance for 

very small sample sizes was not a goal of this study; rather, we were interested in examining 

whether any benefits are achieved by increasing n from a moderate size to a large size. We 

hypothesized that there would be little difference between these sample sizes.

The fully crossed factorial design consisted of 48 conditions. For each condition, we 

implemented three approaches for estimating the effect of C on Z: the proposed model-based 

approach, the maximum-probability assignment approach, and the multiple (in this case, 20) 

pseudo-class draws approach. For each condition, we replicated the analysis 1000 times and 

summarized the simulation outputs to assess how each factor affected performance of the 

three approaches.

Procedure

The following Monte Carlo procedure was used in each of the 48 simulation design cells.

Step 1: Generation of LCA data—Given the specified LCA model (i.e., latent class 

prevalences and item-response probabilities) and the specified strength of association 

between C and Z, to generate one random observation, we first generated a latent class 

variable C from a multinomial distribution specified by the latent class prevalences (i.e., 

mixing proportions); we then generated item responses based on the item-response 

probabilities (i.e., ρ parameters) for that cell, and then generated the distal outcome Z based 

on the C-Z model for that cell.

Step 2: LCA model fitting—For each replicate data set, two different LCA models were 

fit. The first model included no distal outcome Z (for the maximum-probability assignment 

and pseudo-class draws approaches), and the second model included the distal outcome Z as 

a covariate (for the model-based approach). We used 100 sets of random starting values for 

the LCA model that did not include Z in order to avoid local maxima and for an examination 

of model identification. The parameter estimates from the model that did not include Z were 

used as starting values for the LCA model with Z as a covariate.

Step 3: Calculation of Z given C for each approach—Given the LCA results 

derived in Step 2, along with the random sample, the estimation of the effect of C on Z was 

conducted for each approach. For the model-based approach we employed the procedure 

described above, which relies on the β, γ and ρ parameters from the LCA model with Z 

included as a covariate. For maximum-probability assignment and multiple pseudo-class 

draws, we first inferred the latent classes C for each observation using the corresponding 

approaches (described above), and then in a subsequent model we estimated the effect of C 
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on Z. For the pseudo-class draws approach, this final step was repeated 20 times and results 

were combined across draws.

Step 4: Summary of results—The goal of this step was to summarize results across the 

1000 replicate data sets in order to draw comparisons between the three methods of 

estimation. For each approach, we first compared the estimated effect of C on Z to the true 

effect, shown in Table 1, and then summarized the results across replications to obtain the 

bias and root mean squared error (RMSE) for each parameter estimate. This step required 

that we address the issue that the ordering of the latent classes is random across the 1000 

replicates. To impose a standard order on the latent classes, we wrote a SAS macro to take 

the LCA estimates and true LCA model parameters as inputs, then reordered the latent 

classes based on distance calculations comparing the estimated LCA parameters and the true 

LCA model parameters.

Results

Tables 3, 4, and 5 show simulation results for the binary, continuous, and count outcomes, 

respectively. Within each table, we present results for n = 500 in the top panel and for n = 

1000 in the bottom panel. Moderate measurement quality is shown on the left side, and high 

measurement quality on the right side. For each effect size (zero, small, medium, large), we 

present results based on the three analytic approaches: the proposed model-based method 

(Model), maximum-probability assignment (Assign), and multiple pseudo-class draws (P-

C). Each cell reflects the bias (i.e., mean estimated value minus true value) in the estimate of 

Z given C. For example, Table 3 shows that for moderate measurement quality, n = 1000, 

and large effect size, the bias in the estimated proportion of individuals in each latent class 

with a 1 on the binary outcome was 0.003, −0.002, −0.016, −0.061, and −0.010 for Latent 

Classes 1, 2, 3, 4, and 5, respectively. Recall from Table 1 that the true proportions for this 

cell were 0.006, 0.153, 0.300, 0.447, and 0.594. Negative values of bias indicate that the 

class-specific prevalence of the outcome is underestimated. For the same set of conditions, 

the bias was from 2 to 10 times larger for the maximum-probability assignment (0.035, 

0.022, −0.105, −0.115, −0.091) and the multiple pseudo-class draws (0.042, 0.023, −0.112, 

−0.130, −0.120) approaches.

Several general patterns emerged across results for the binary, continuous, and count distal 

outcomes. First, as expected, when the effect size was set to zero, all three methods 

performed equally well, in that bias was less than 0.01 for each latent class regardless of 

sample size, measurement quality, or method. Second, because the prevalence of Latent 

Class 1 was considerably larger than that of other latent classes (0.4; see Table 2), bias was 

consistently smaller for this latent class. This was expected because, all other factors held 

constant, there is more information available related to larger latent classes, making 

estimation more accurate. Similarly, the bias was consistently larger for the smaller latent 

classes (Latent Classes 4 and 5) because there was less information available for estimation. 

Third, as expected, as the strength of the association between the latent class variable and 

the distal outcome strengthened, the potential for bias increased, and – importantly – the 

benefits of using a model-based approach became more significant. Fourth, when the 

methods performed differentially, the model-based approach consistently performed better 
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than the two classify-analyze approaches. In every case, the impact of using either 

maximum-probability assignment or multiple pseudo-class draws was manifested by an 

attenuation of the effect of C on Z. That is, the more negative biases seen in the two classify-

analyze approaches confirmed our hypothesis that these methods would result in 

underestimation of the distal outcome for the latent classes that are furthest from the mean 

on Z.

A somewhat surprising finding was that maximum-probability assignment worked at least as 

well as the multiple pseudo-class draws technique in terms of bias/attenuation of the effect 

of C on Z. This suggests that, in the long run, this simple classify-analyze approach is 

preferable to the pseudo-class draws approach. However, the variability in the estimates 

across the 1000 replicates for the maximum-probability assignment approach was higher 

than that for the multiple pseudo-class draws approach (not shown). Therefore, in empirical 

studies the pseudo-class draws approach may be more reliable than maximum-probability 

assignment. Regardless of this fact, however, the model-based approach introduced here 

performed substantially better than either of the standard classify-analyze techniques.

One final important finding is that, in addition to the model-based approach being less 

biased in the long run, this new method was shown to be consistent. That is, as n increased, 

bias was reduced. However, sample size had essentially no effect on performance of the 

maximum-probability assignment or pseudo-class draws methods; neither classify-analyze 

strategy appeared to be consistent.

In sum, improving measurement quality (i.e., moving from item-response probabilities of .2 

and .8 to probabilities of .1 and .9) had a substantial impact for all methods, such that bias 

was reduced consistently by more than half for all methods. As discussed above, as the 

effect size between C and Z increased, the potential for bias increased. With larger effect 

sizes, attenuation increased much more in the two classify-analyze approaches than it did in 

the model-based approach. All of these patterns emerged consistently for all types (binary, 

continuous, and count) of distal outcome. Thus, the model-based approach proposed here 

outperformed maximum-probability assignment and multiple pseudo-class draws under 

every condition.

We next move to an empirical demonstration of the model-based approach to LCA with a 

distal outcome. The motivating example involves latent classes of depression in 

adolescence. Three distal outcomes are included for demonstration purposes: a binary 

outcome (regular smoking), a continuous outcome (grades), and a count outcome 

(delinquency).

Empirical Example: Adolescent Depression Classes Predicting Later 

Outcomes

Method

Participants—The classify-analyze and model-based approaches to estimating LCA with a 

distal outcome were compared in the context of a latent class model for adolescent 

depression using data from The National Longitudinal Study of Adolescent Health (Add 
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Health; Harris, 2009; Harris et al., 2009). This latent class model was first demonstrated in a 

chapter by Lanza et al. (2003). Add Health was mandated by Congress to collect data for the 

purpose of measuring the effect of social context on the health and well-being of adolescents 

in the United States. The first wave of the sample included 11,796 students in 7th through 

12th grades, surveyed between April and December, 1995; the second wave included the 

same individuals surveyed again between April and August, 1996. The sample in this 

demonstration draws from the 1,044 adolescents (48.4% female) in the public-use dataset 

who were in 11th grade at Wave I and 12th grade at Wave II. So that all methodological 

comparisons could be made based on the same data set, we chose to include in the sample 

only participants who provided data on at least one depression item at Time 1 (grade 11), as 

well as data on all three distal outcomes at Time 2 (grade 12). The final sample included n = 

762 (49.3% female) adolescents.

Measures of the latent class variable—Indicators of Time 1 depression latent classes 

included eight observed variables assessing the frequency of experiencing various 

depression symptoms in the past week. Four of these were indicators of sadness (Could not 

shake blues, Felt depressed, Felt lonely, Felt sad), two were indicators of feeling disliked by 

others (People unfriendly to you, People dislike you), and two were indicators of feelings 

related to failing at life (Life been a failure, Life not worth living). The original six-level 

variables were recoded so that 1 represented never or rarely experiencing the symptom, and 

2 represented experiencing the symptom sometimes, a lot, most of the time, or all of the 

time. See Lanza et al. (2003) for details on the measurement of depression in this latent class 

model.

Measures for distal outcome variables—At Time 2, 254 participants (28.4%) 

reported Yes to the question: “Since your last interview, have you smoked cigarettes 

regularly; that is, at least one cigarette every day for 30 days?”

Grades at Time 2 was measured by taking the mean of four variables assessing the grade 

received on academic subjects during the most recent grading period. Grades were reported 

on a four-point scale corresponding to A, B, C, or D/F. The four academic subjects included 

in this measure were English or Language Arts, Mathematics, History or Social Studies, and 

Science. The average score, coded such that higher scores corresponded to better grades, 

was transformed by taking the square root (to reduce skewness) and then standardized to 

facilitate interpretation of the results.

A count variable was created indicating the number of delinquent acts reported at Time 2. 

First, each of the 14 four-category delinquency items was recoded to 0 for individuals who 

reported never engaging in that act during the past 12 months, and 1 for individuals who 

reported engaging in that act at least once. Then, for each individual, the scores on the 14 

items were summed, resulting in a count variable with a range of zero to 14. The mean score 

on the delinquency scale was 1.7.

Analytic Procedure—Before considering the distal outcomes, we examined several 

models of depression with different numbers of latent classes in order to confirm that the 

five-class model reported by Lanza et al. (2003) was optimal for this particular sample. 
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Once the latent class model was selected, adolescent depression latent class membership was 

used to predict three outcomes using separate models. All latent class models were fit using 

PROC LCA (Lanza et al., 2011). The two classify-analyze approaches were carried out in 

SAS, and the new model-based approach was implemented using the SAS macro, 

%LCA_distal.

Maximum-probability assignment was conducted as follows. First, each individual’s 

posterior probability of membership in each latent class was retained from the latent class 

model. Second, individuals were assigned to the latent class corresponding to their most 

likely membership (i.e., their maximum posterior probability). Third, the class-specific 

proportions or means for the distal outcome were calculated.

To implement the multiple pseudo-class draws approach, we used the posterior probabilities 

derived for the maximum-probability assignment approach. For each individual, 20 

independent random numbers were drawn from the multinomial distribution defined by that 

individual’s posterior probabilities. These random numbers were used to assign individuals 

to latent classes with probabilities proportionate to their posterior probabilities. This resulted 

in 20 data sets with class assignment included in each set. This procedure is analogous to 

multiple imputation of missing data (Schafer, 1997). Next, the class-specific proportions or 

means for the distal outcome were calculated. Finally, results were averaged across the 20 

data sets.

The proposed model-based approach required that we estimate the latent class model of 

depression with the distal outcome included as a covariate. From this model, we retained the 

multinomial logistic regression coefficients reflecting the association between the latent 

class variable and the distal outcome. We then constructed empirically derived distributions 

of the distal outcome given latent class, under the conditional independence assumption. 

From that conditional distribution we reported the conditional probability (in the case of a 

binary distal outcome), conditional mean count (in the case of a count outcome), or 

conditional mean (in the case of a continuous outcome) for each latent class. The SAS 

syntax used for implementing the model-based approach to estimate the probability of 

regular cigarette use conditional on latent class appears in the Appendix.

Results

Consistent with previous literature (Lanza et al., 2003), the model with five latent classes of 

depression was selected on the basis of fit statistics, information criteria, and interpretability 

of the model. Table 6 shows the five latent classes of depression. The item-response 

probabilities represent the conditional probability of endorsing a past-week depression 

symptom given latent class membership; that is, these values are column-conditional. 

Estimates near zero indicate that individuals in that latent class were unlikely to have 

experienced that symptom, whereas estimates near one indicate that those individuals were 

likely to have experienced it. Together, these item-response probabilities formed the basis 

for labeling the latent classes. The most prevalent latent class was Non-Depressed (43.8%), 

followed by Sad (27.0%), Sad+Disliked (14.9%), Disliked (8.8%), and Depressed (5.5%).
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The maximum-probability assignment and multiple pseudo-class draws approaches relied on 

posterior probabilities, which varied considerably across participants. The average posterior 

probability for those in the Non-Depressed latent class was 0.93 (N = 396, MIN = 0.44, MAX 

= 0.99); for the Sad latent class, was 0.88 (N = 232, MIN = 0.35, MAX = 1.00); for the 

Disliked latent class, was 0.77 (N = 73, MIN = 0.50, MAX = 0.95); for the Sad+Disliked 

latent class, was 0.79 (N = 150, MIN = 0.48, MAX = 0.96); and for the Depressed latent 

class, was 0.90 (N = 45, MIN = 0.59, MAX = 0.99).

Table 7 presents the estimated proportion of each latent class engaging in regular cigarette 

use, the mean grade score given latent class, and the mean delinquency count given latent 

class using each of the three statistical approaches. We calculated the effect sizes for the 

various outcomes, indicating the overall strength of association between C and Z. For both 

regular cigarette use and grades, effect sizes fell in the weak to moderate range (Cohen, 

1992). For regular cigarette use, the effect size was estimated to be 0.16 for the model-based 

approach, 0.14 for the maximum-probability assignment approach, and 0.13 for the pseudo-

class draws approach. For grades, effect sizes based on the mean and mode were estimated 

to be 0.16 and 0.22, respectively, for the model-based approach; the effect size was 0.19 for 

maximum-probability assignment and 0.21 for pseudo-class draws. The effect size for the 

association between C and the delinquency count variable was 0.47 for the model-based 

approach, 0.43 for maximum probability class assignment, and 0.46 for the pseudo-class 

approach; this association fell in the moderate to strong range (Cohen, 1992).

Based on Table 7, it appears that the effects may have been attenuated, particularly for 

cigarette use and grades, when relying on maximum-probability assignment or the pseudo-

class approach. This is detectable by focusing on the column for the Depressed latent class, 

where, regardless of approach used, rates of regular cigarette use were highest. Although we 

did not know the true proportion in this latent class that reported regular cigarette use 

(because latent class membership was not known with certainty), the estimated rate of 

regular cigarette use was highest based on the model-based approach, and was somewhat 

lower for the two classify-analyze approaches.

Mean standardized grades for the Depressed latent class were lowest based on the model-

based approach (mean = −0.457), followed by the pseudo-class approach (mean = −0.401) 

and the maximum-probability assignment approach (mean = −0.346). Figure 2 shows the 

estimated distributions of grades conditional on latent class.

The association between depression class membership and the count variable had the largest 

effect size; thus, we expected to see the greatest attenuation of effects with this distal 

outcome. Because Z was not included in the class assignment step for either classify-analyze 

approach, we anticipated seeing more substantial differences across methods for larger 

effect sizes. Interestingly, for this count outcome there was virtually no difference across 

methods in the estimates of Z given C.
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Discussion

A pervasive issue in behavioral and social sciences is that computational methods do not 

exist to estimate the effect of membership in latent classes on a distal outcome. Methods to 

do this would enable scientists to understand the level of risk associated with membership in 

a particular latent class. For example, this would enable estimation of the risk of developing 

nicotine dependence given a particular set of early smoking behavior experiences, or the risk 

of contracting a sexually transmitted infection given a particular profile of sexual risk 

behavior. Although the statistical model for predicting latent class membership from an 

observed covariate is well understood, it is the opposite direction of effect that is at the heart 

of such research questions.

By applying Bayes’ theorem, we can capture information from a model that is well-

understood (LCA with covariates) and transform it into information that addresses this exact 

research question. This is the foundation for the flexible model-based approach proposed 

here. The critical pieces of information come from two sources. First, a latent class model is 

specified with the distal outcome as a covariate in order to obtain the logistic regression 

coefficients reflecting their association. Second, the class-conditional marginal density of Z 

is estimated, for example using a kernel density estimation approach. The SAS macro 

LCA_distal, introduced here for estimating LCA with distal outcomes that are categorical, 

continuous, or count variables, automates this approach.

In comparison to current approaches commonly employed for LCA with a distal outcome, 

which all rely on some sort of classification step (using the posterior probabilities) followed 

by a step for the outcome analysis, the proposed approach directly models the association. It 

is this very association that is meant to be approximated using classify-analyze approaches.

Performance of the model-based approach

A Monte Carlo simulation study was conducted to compare the performance of this new 

approach to two classify-analyze approaches: maximum-probability assignment and 

multiple pseudo-class draws. Simulation results show that the model-based approach 

produces substantially less biased estimates of the effect compared to either classify-analyze 

technique, particularly when the association between the latent class variable and the distal 

outcome is strong. Although the RMSE was larger for the model-based approach in the case 

of no or small effect size, as the strength of the effect of C on Z increased the relative 

performance reversed, such that the model-based approach had smaller RMSE. Taken 

together, when a moderate to strong relation exists between the latent class variable and the 

distal outcome, we recommend the model-based approach because of its lower bias and 

lower RMSE. In addition, we show that only the model-based approach exhibits the property 

of consistency (i.e., its performance improves as n increases).

In addition, we made several hypotheses regarding the factors examined in the simulation 

study. We expected the performance of the model-based approach to be superior to that of 

both classify-analyze approaches, regardless of the metric of the distal outcome (categorical, 

continuous, and count). This was consistently supported in the simulation study. Our 

hypothesis that the attenuation of effects would increase as the effect size increased was 
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confirmed. In addition, improving measurement quality resulted in better performance (i.e., 

less bias) for the model-based approach and for both classify-analyze approaches. As 

expected, we observed no improvement in the performance of either classify-analyze 

approach as sample size increased. For the model-based approach, however, performance 

did improve as sample size increased, suggesting that this method is statistically consistent.

Maximum-probability assignment versus pseudo-class draws

The current state-of-the-art for conducting LCA with a distal outcome is to employ one of 

two classify-analyze approaches. The first approach, maximum-probability assignment, is 

simple to do, although caution against its use is well recognized. In particular, because 

classification uncertainty is not accounted for in this approach, inference in the subsequent 

outcome analysis is known to be potentially biased. The second approach, multiple pseudo-

class draws, was originally proposed as a method to account for that classification 

uncertainty in order to conduct model diagnostics of a particular LCA model (Wang et al., 

2005). For example, within each of the 20 or so data sets, violations of the assumption of 

conditional independence between the latent class indicators given C can be examined. This 

approach was readily adopted, and assumed to outperform maximum-probability assignment 

in other settings, despite its performance not being compared systematically in those new 

settings. In particular, this technique was adopted widely for conducting LCA with distal 

outcomes (e.g., Fried et al., 2009; Petras & Masyn, 2010).

The Monte Carlo study described here suggests that the benefits of multiple pseudo-class 

draws are not readily apparent. In fact, the maximum-probability assignment approach 

consistently resulted in less bias in terms of the point estimates. We also calculated the 

variability across estimates from the 1000 replicates, and found that the multiple pseudo-

class draws approach was less variable. However, given the larger bias of this approach, it 

may not be a preferable technique despite the lower variability. We then made comparisons 

based on the RMSE, and found that when effect sizes were medium to large, maximum-

probability assignment actually had lower RMSE, thus outperforming multiple pseudo-class 

draws for conducting LCA with a distal outcome.

Including Z as an additional LCA indicator

Theoretically, to conduct LCA with a distal outcome, it is possible to treat Z as an additional 

indicator in the LCA model (along with X). Indeed, if the distal outcome is binary, then 

incorporating it as an additional indicator in the latent class model (along with X), as a 

covariate, and as a grouping variable are mathematically equivalent for a given number of 

latent classes. All of these approaches assume conditional independence between X and Z 

given C. Each of these approaches provides the necessary information to obtain estimates of 

Z given C.

A noted drawback to including the distal outcome as another indicator is that this approach 

can alter the meaning of C (Petras & Masyn, 2010). This observation deserves further 

consideration. To the extent that Z provides information in the latent class model that is 

unique from the latent class indicators X, there are important implications for both model 

interpretation and model selection. That is, if one adds unique information via the additional 
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indicator in a latent class model, the model then is being used to summarize a different set of 

information than just what X provides. Based on the more extensive information, more latent 

classes than those identified only by information in X may be identified when using both X 

and Z. Another limitation of this approach is that including Z as an additional indicator does 

not lend itself to an overall test of a hypothesized effect of C on Z.

If the distal outcome is count or continuous, inclusion of Z as a discrete grouping variable is 

not possible. Further, the approach of including Z as an additional indicator requires 

restrictive assumptions regarding the distribution of Z given C (for example, that Z follows a 

mixture of normal distributions, i.e. f{Z = z|C = c} ~ N(μc, σ2)). In contrast, with the model-

based approach, we do not need to specify the conditional distribution of Z given C if Z is 

treated as a covariate, but only need to assume that Pr{C = c|Z} follows a logistic regression 

model. This implies that the second approach (i.e., treating Z as a covariate) requires fewer 

assumptions, and hence is more flexible than the first approach (i.e., treating Z as an 

indicator). Specifically, this approach is less vulnerable to potential model mis-specification 

of the marginal distribution of Z, as the distribution of Z is estimated directly from the 

observed data.

The model-based approach described here only requires the fitting of an LCA model with Z 

as a covariate, which can be implemented with several publicly-available and proprietary 

software packages (e.g., PROC LCA, the R package poLCA, Mplus, Latent GOLD; Lanza 

et al., 2011; Linzer & Lewis, in press; L. K. Muthén & Muthén, 1998–2007; Vermunt & 

Magidson, 2005). The nonparametric estimation of the class-conditional marginal density of 

Z can be readily implemented with common statistical software programs, including SAS 

(via PROC KDE) and R.

Limitations

The model-based approach performed consistently better than the classify-analyze 

approaches in the Monte Carlo study. However, one somewhat inconsistent finding emerged 

in the empirical example involving prediction of a delinquency count variable from 

depression latent classes, in that very little attenuation could be detected in the classify-

analyze approaches compared to the model-based approach despite the large effect size. This 

merits further study, for example into the sensitivity of the performance of each method to 

violations of assumptions being made by the latent class and/or logistic models.

All of the approaches compared here require that there be no missing data on the distal 

outcome. Future research is merited on handling missing data, in particular applying this 

model-based approach to LCA with distal outcomes when multiple imputation is employed.

Conclusions and future work

We proposed a conceptually straightforward, computationally simple approach to estimating 

the effect of latent class membership on a distal outcome. This early work sets the stage for 

comparisons between this approach and others, such as multiply imputing the latent class 

variable under a fully-Bayesian model for a potentially more rigorous classify-analyze 

approximation.
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This approach to LCA with distal outcomes was shown to outperform current classify-

analyze practices under a variety of conditions, regardless of whether individuals are 

assigned based on their maximum posterior probability or if a pseudo-class draws approach 

is taken. This new solution to predicting distal outcomes from latent class membership has 

broad applicability. In particular, this strategy is relevant not just for traditional latent class 

analysis, but for the broad set of mixture models that are relevant in the social and 

behavioral sciences. These include latent profile analysis (where the indicators are 

continuous variables), growth mixture modeling (B. O. Muthén & Sheddon, 1999; Nagin, 

2005), factor mixture modeling (Lubke & Muthen, 2007; McLachlan & Peel, 2000), and 

mixture regression modeling (Kaplan, 2005).

Important work remains in applying this model-based approach to studies involving research 

questions that are more complex than just the effect of C on Z, such as moderation of effects. 

This would be relevant in various situations, such as allowing the effect to vary across race/

ethnicity groups or controlling for baseline levels on the distal outcome. It is important to 

note that in latent class models, if a distal outcome is included as a covariate (per the model-

based approach described here), including a grouping variable such as race/ethnicity 

implicity allows the interaction between the covariate and the grouping variable. That is, the 

effect of C on Z is estimated within each group. Grouping variables can be included in the 

downloadable Excel calculator (mentioned above, available for download at 

methodology.psu.edu) that implements the model-based approach for a categorical distal 

outcome (Lanza & Rhoades, 2011b). Extending the more general LCA_distal macro to 

handle more complex LCA models such as this is an important future direction.
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Appendix

SAS Syntax

This appendix provides the SAS syntax for implementing the model-based approach to 

estimating the probability of regular smoking in Grade 12 (Z) conditional on the depression 

latent class variable at Grade 11 (C).

*Estimate latent class model with binary distal outcome Z included as 

covariate;

proc lca data=outcomes start=data.baseline_start 
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outparam=data.estimates_cigZ outpost=data.posterior_cigZ;

id newaid rcig_c2;

nclass 5;

items w1fs3 w1fs6 w1fs13 w1fs16 w1fs9 w1fs19 w1fs14 w1fs17;

categories 2 2 2 2 2 2 2 2;

covariates rcig_c2;

reference 4;

run;

*Execute macro to obtain distribution of Z given C;

%LCA_distal(input_data = sasf.Variables, /*input random sample*/

param = _beta_param, /*beta parameter part*/

post = sasf.Posterior_bin_y, /*posterior membership probabilities*/

id = newaid, /*ID variable*/

distal = rcig_c2, /*distal outcome variable*/

yc = 1, /*1=discrete, 2=continuous, 3=count*/

y_cat = 2, /*number of categories of Z, given yc=1*/

method = 1, /*model-based, max assignment or pseudo-class*/

output_dataset_name= res11 /*output results*/

);
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Figure 1. 
Graphical representation of the latent class model with a distal outcome. C refers to the 

latent class variable, X1, X2, …XJ refer to manifest indicators of C, and Z refers to the distal 

outcome.
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Figure 2. 
Estimated density functions for grades at Time 2 conditional on depression latent class 

membership at Time 1.
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