Skip to main content
. Author manuscript; available in PMC: 2014 Nov 21.
Published in final edited form as: Struct Equ Modeling. 2013 Jan 29;20(1):1–26. doi: 10.1080/10705511.2013.742377

Table 3.

Simulation results for LCA with a binary distal outcome: Bias in proportion with Z = 1 given latent class membership

Moderate Measurement Strong Measurement

Latent Class Latent Class
Method ES 1 2 3 4 5 1 2 3 4 5
n = 500

Model Zero −0.003 −0.000 0.009 0.005 0.006 −0.000 0.002 0.002 0.002 −0.002
Assign Zero −0.002 0.001 0.002 0.002 0.004 −0.000 0.002 0.003 0.002 −0.002
P-C Zero −0.002 0.000 0.003 0.002 0.004 −0.000 0.002 0.002 0.002 −0.001
Model Sm −0.000 0.001 −0.017 −0.017 −0.009 −0.000 −0.001 −0.012 −0.009 −0.003
Assign Sm 0.008 0.007 −0.025 −0.031 −0.025 0.003 0.002 −0.017 −0.014 −0.007
P-C Sm 0.010 0.008 −0.027 −0.034 −0.030 0.003 0.002 −0.018 −0.015 −0.009
Model Med 0.001 0.005 −0.033 −0.072 −0.023 0.000 0.001 −0.030 −0.028 −0.005
Assign Med 0.023 0.020 −0.066 −0.097 −0.078 0.009 0.006 −0.050 −0.041 −0.018
P-C Med 0.028 0.020 −0.071 −0.104 −0.091 0.010 0.006 −0.053 −0.044 −0.022
Model Lg 0.010 0.003 −0.037 −0.115 −0.029 0.001 −0.001 −0.034 −0.027 −0.008
Assign Lg 0.039 0.028 −0.103 −0.150 −0.113 0.012 0.008 −0.074 −0.056 −0.026
P-C Lg 0.046 0.030 −0.111 −0.159 −0.135 0.013 0.009 −0.080 −0.061 −0.032

n = 1000

Model Zero −0.000 −0.001 0.003 −0.002 0.001 0.001 −0.000 0.001 0.003 0.001
Assign Zero 0.000 −0.000 0.002 −0.003 0.001 0.002 −0.000 0.000 0.002 0.001
P-C Zero 0.000 −0.000 0.002 −0.002 0.000 0.001 0.000 0.001 0.002 0.001
Model Sm −0.003 0.001 −0.013 −0.011 −0.004 0.000 −0.002 −0.014 −0.009 0.000
Assign Sm 0.008 0.007 −0.023 −0.023 −0.021 0.003 0.001 −0.019 −0.014 −0.004
P-C Sm 0.009 0.006 −0.025 −0.027 −0.028 0.003 0.001 −0.020 −0.015 −0.006
Model Med −0.001 −0.001 −0.030 −0.040 −0.008 0.001 −0.002 −0.020 −0.019 −0.003
Assign Med 0.023 0.015 −0.070 −0.077 −0.061 0.009 0.006 −0.048 −0.037 −0.016
P-C Med 0.028 0.015 −0.075 −0.086 −0.079 0.010 0.006 −0.051 −0.041 −0.021
Model Lg 0.003 −0.002 −0.016 −0.061 −0.010 0.000 0.001 −0.018 −0.022 −0.005
Assign Lg 0.035 0.022 −0.105 −0.115 −0.091 0.012 0.011 −0.075 −0.056 −0.024
P-C Lg 0.042 0.023 −0.112 −0.130 −0.120 0.013 0.010 −0.081 −0.062 −0.032

Note: Model = model-based approach; Assign = maximum-probability assignment rule; P-C = multiple pseudo-class draws.