
Causal Inference in Latent Class Analysis

Stephanie T. Lanza1,2, Donna L. Coffman1,2, and Shu Xu1

1The Methodology Center, The Pennsylvania State University

2The College of Health and Human Development, The Pennsylvania State University

Abstract

The integration of modern methods for causal inference with latent class analysis (LCA) allows 

social, behavioral, and health researchers to address important questions about the determinants of 

latent class membership. In the present article, two propensity score techniques, matching and 

inverse propensity weighting, are demonstrated for conducting causal inference in LCA. The 

different causal questions that can be addressed with these techniques are carefully delineated. An 

empirical analysis based on data from the National Longitudinal Survey of Youth 1979 is 

presented, where college enrollment is examined as the exposure (i.e., treatment) variable and its 

causal effect on adult substance use latent class membership is estimated. A step-by-step 

procedure for conducting causal inference in LCA, including multiple imputation of missing data 

on the confounders, exposure variable, and multivariate outcome, is included. Sample syntax for 

carrying out the analysis using SAS and R is given in an appendix.

Keywords

latent class analysis; causal inference; propensity scores; average causal effect

Latent class analysis (LCA), a technique for identifying underlying subgroups (i.e., latent 

classes) in a population, is a statistical method that is now widely accessible to and 

frequently used by social, behavioral and health researchers. With this technique, a model 

with a user-specified number of latent classes is fit to a data set, yielding a vector of latent 

class membership probabilities and a matrix of class-specific probabilities of each response 

to the set of observed variables used to measure the latent variable. Recent software 

advances, including PROC LCA (Lanza, Dziak, Huang, Xu, & Collins, 2011) and Mplus 

(Muthén & Muthén, 1998–2010), make conducting LCA and its extensions straightforward. 

In addition, finite mixture models more complex than LCA are becoming widely adopted by 

applied researchers. These models include latent transition analysis (Collins & Lanza, 2010), 

associative LTA (Bray, Lanza, & Collins, 2010), growth mixture modeling (Muthén & 

Shedden, 1999 ; Nagin, 2005), and finite mixture regression (Wedel & DeSarbo, 2002). All 

of these models share the characteristic that underlying heterogeneity is explained by a latent 

grouping variable, but that individuals’ actual group membership cannot be known with 
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certainty. Rather, each individual has a (typically non-zero) probability of membership in 

each latent class.

A well-understood extension of finite mixture models that holds great practical importance 

is the ability to include observed covariates, which serve as predictors of latent class 

membership. This extension is important in that it allows scientists to better understand the 

composition of each subgroup. For example, researchers may use LCA to identify latent 

classes of substance use behavior in adolescence. In this case, the identification of factors 

that are significantly related to increased odds of membership in classes characterized by 

high-risk behavior would allow for preventive interventions to be targeted toward 

individuals with high levels on those factors.

Numerous applications of LCA with covariates have appeared in the literature recently. For 

example, a study of women’s various healthy and unhealthy weight-control strategies 

revealed four latent classes: No Weight Loss Strategies (i.e., non-dieters), Dietary 

Guidelines, Guidelines + Macronutrients (characterized by the inclusion of low-

carbohydrate dieting), and Risky Dieting (characterized by strategies such as food restriction 

and diet pills; Lanza, Savage, & Birch, 2010). The inclusion of five covariates allowed the 

scientists to assess how body mass index (BMI), weight concerns, desire to be thinner, 

disinhibited eating, and dietary restraint were related to the weight-control strategy latent 

class. Results suggested characteristics that were predictive of membership in the Risky 

Dieting latent class, and ways in which an intervention program could be adapted to meet 

the unique needs of members of each latent class in order to prevent or reduce unhealthy 

dieting behaviors.

As with any regression analysis, causality cannot be inferred about associations between 

predictors and latent class membership due to possible confounders. Fortunately, substantial 

recent work in the area of causal inference provides guidance for how we might obtain better 

inference of effects using observational data. We propose the novel but straightforward 

integration of propensity score methods with LCA in order to draw causal inference about 

factors that influence latent class membership.

Motivating Example: Effect of College Enrollment on Patterns of Adult 

Substance Use

Non-college-bound high school students drink more alcohol than their college-bound peers, 

yet heavy drinking among college youth occurs with a frequency that meets or exceeds that 

of not-enrolled youth (O’Malley & Johnston, 2002). A great deal of emphasis in research 

has been placed on the college environment as a high-risk context for heavy drinking (e.g., 

Sher & Rutledge, 2007; Wechsler, Lee, Kuo, & Lee, 2000), and the consequences that may 

accompany heavy drinking in college (e.g., Jackson, Sher, & Park, 2005; Perkins, 2002).

Despite what is known about the incidence and consequences of heavy drinking among 

college students, however, surprisingly few studies have considered the long-term impact of 

college enrollment on substance use. Such an investigation would require longitudinal data 

on both the college-enrolled and non-enrolled populations so that comparisons in adult 
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substance use behaviors could be made. One study that drew such comparisons based on 

latent trajectories in discontinuous patterns of heavy drinking from ages 18 to 30 

demonstrated that college-bound youth exhibited lower rates of heavy drinking during high 

school, similar rates during college ages (ages 19–20), and lower rates in young adulthood 

(ages 24–25) and adulthood (age 30) (Lanza & Collins, 2006). Yet this study only examined 

a single-measure outcome in adulthood, an indicator of any recent heavy drinking, as 

opposed to a more comprehensive examination of alcohol, tobacco and other drug use. 

Perhaps a more critical limitation, however, is the fact that selection effects for college 

enrollment prohibit any sort of causal statements to be made about these differences. 

Selection effects for college enrollment have been well-documented, including parental 

attitudes and education (Akerhielm, Berger, Hooker, & Wise, 1998), educational 

expectations (Akerhielm et al., 1998; Beattie, 2002), family income (e.g., Ellwood & Kane, 

2000; Klasik, 2011), and race/ethnicity differences (e.g., Cameron & Heckman, 2001; 

Klasik, 2011; Rivkin, 1995).

In the next section we describe the mathematical model for LCA with covariates, followed 

by a general overview of propensity score methods that includes a careful presentation of 

various causal questions that can be addressed using these methods. We then present a step-

by-step approach to integrating propensity score methods into LCA in order to adjust for 

confounding, and demonstrate this approach using an empirical analysis where propensity 

score techniques were used to adjust for confounding in the effect of college enrollment on 

adult substance use latent class membership. This is followed by a brief discussion of issues 

that can arise when integrating propensity score methods with a latent variable model. 

Sample SAS and R syntax for conducting causal inference in LCA is presented in the 

Appendix.

LCA with Covariates

Suppose that there are j = 1, …, J observed variables, and that variable j has response 

categories rj = 1, …, Rj; suppose also that the latent variable has c = 1, …, C latent classes. 

Let y represent a particular response pattern (i.e., a vector of possible responses to the 

observed variables), and let Y represent the array of all possible ys. Each response pattern y 
corresponds to a cell of the contingency table formed by crosstabulating all of the observed 

variables, and the length of the array Y is equal to the number of cells in this table. Let us 

establish an indicator function I(yj = rj) that equals 1 when the response to variable j = rj, 

and equals 0 otherwise. The probability of observing a particular response pattern or cell in 

the contingency table cross-classifying the observed variables can be written as

(1)

where γc is the probability of membership in latent class c and  is the probability of 

response rj to observed variable j, conditional on membership in latent class c. The γ 

parameters represent a vector of latent class membership probabilities that sum to 1. The ρ 

parameters represent a matrix of item-response probabilities conditional on latent class 
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membership. The model relies on the assumption of conditional independence given latent 

class. This implies that within each latent class, the J indicators are independent of one 

another.

Covariates (which also might be referred to as predictors, exogenous variables, or 

concomitant variables) can be incorporated into the latent class model in order to predict 

latent class membership (Collins & Lanza, 2010; Dayton & Macready, 1988; van der 

Heijden, Dessens, & Bockenholt, 1996). Most commonly, covariates are used to predict 

latent class membership and are added to the latent class model via multinomial logistic 

regression, although variants of the prediction model are available (e.g., collapsing latent 

classes to assess the effect of a covariate on membership in one latent class versus the 

remaining latent classes via binomial logistic regression; see Lanza et al., 2011). As with 

traditional regression, in LCA covariates can be discrete, continuous, or higher-order terms 

(e.g., powers or interactions). Indeed, this procedure is equivalent to standard logistic 

regression analysis, except that here the categorical outcome is latent.

The latent class model including a single covariate X can be expressed as

(2)

where  is the probability of response rj to observed variable j, conditional on 

membership in latent class c, and γc(x) is a standard baseline-category multinomial logistic 

regression model (e.g., Agresti, 2002)

(3)

for c′=1, …, C-1, and where C is the designated reference class. This model can be directly 

extended to include two or more covariates. Comprehensive technical details on LCA with 

covariates can be found in the recent literature (e.g., Collins & Lanza, 2010; Lanza, Collins, 

Lemmon, & Schafer, 2007). Just as with any standard regression analysis, the coefficients 

linking covariates to latent class membership cannot be interpreted as causal effects without 

further assumptions.

Propensity Score Methods for Causal Inference

Propensity score methods can be used to address two distinct types of scientific questions. 

The first is the average causal effect (ACE), which represents the estimated causal effect for 

the entire population. In our example, the ACE can answer the question: What differences in 

adult substance use patterns are expected if all individuals in the population had enrolled in 

college, compared to if no individuals in the population had enrolled in college? The second 

is the average causal effect among the “treated”, i.e. among the college-enrolled individuals 

(ACEC), which represents the effect of the treatment for the population that received it. In 

our example, the ACEC can answer the question: Among individuals who enrolled in 
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college, what differences in their adult substance use patterns are expected had they all 

enrolled in college, compared to if none of them had enrolled in college?

Rosenbaum and Rubin (1983) defined the propensity score as the probability that an 

individual receives a particular level of a treatment or exposure given measured 

confounders. A comparison of individuals in one exposure group with individuals in the 

other exposure group who have the same (or nearly the same) propensity score is the same 

as a comparison of exposure conditions that were randomly assigned (Rosenbaum, 2002). In 

other words, they create a random assignment environment even when exposures are not 

randomized (assuming that the propensity model includes all confounders). Propensity 

scores are an effective tool for capturing the essence of how the exposure groups differed at 

the beginning of the study, and equating them in terms of a large set of confounders.

Propensity score estimates, denoted π̂, are typically obtained by logistic or probit regression 

of the treatment, Ti, on a set of confounders, Xi, although more flexible alternatives such as 

generalized boosted regression (GBR; McCaffrey, Ridgeway, & Morral, 2004) and 

classification and regression trees (CART; Luellen, Shadish, & Clark, 2005) have also been 

used. In the current study, we demonstrate LCA with propensity scores derived using 

logistic regression; this is an appropriate approach when the treatment is binary. Receiving 

the “treatment,” which in our observational study corresponds to college enrollment, is 

modeled as a function of a large set of characteristics that may relate to selection into 

college. We refer to the college and non-college groups as exposure groups. In this case, the 

propensity score estimate for individual i is simply the predicted probability

(4)

from the logistic regression,

(5)

where Xi = [1, confounders]’ and b̂ are the estimated coefficients from a logistic regression.

Once propensity scores are obtained for the sample, the degree of overlap on the distribution 

of propensity score estimates for the exposure groups should be assessed. If the distribution 

of propensity score estimates does not overlap between the groups, then causal inferences 

are not warranted. In this case it is not feasible to adjust the sample using propensity scores 

in a way that resembles a randomized controlled trial; this is because there are not 

comparable individuals in the two groups. If the distribution of scores does overlap, then the 

propensity score estimates can be used to adjust for confounding in the effect of the 

exposure to the outcome. The balancing property of the propensity score, described below, 

has led to many propensity-based techniques for adjusting for selection effects, including 

matching (Rosenbaum & Rubin, 1985), subclassification (Rosenbaum & Rubin, 1984), and 
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inverse-propensity weighting (IPW; Robins, Rotnitzky, & Zhao, 1995). We focus on 

matching and IPW, and comment on subclassification in the Discussion.

Inverse propensity weighting (IPW)

The basis for weighting is similar to that of survey weights, in that there is likely an 

underrepresentation of those who are enrolled in college but had a low propensity to have 

enrolled and an overrepresentation of those who enrolled in college and in fact had a high 

propensity to have enrolled. Thus, one solution to estimating the ACE is to up-weight those 

who are underrepresented and down-weight those who are overrepresented. This is achieved 

by weighting each individual by the inverse of the estimate of their propensity to be in the 

group that they were actually in. The weights for individuals who enrolled in college (i.e., 

received the treatment) are 1/π̂ and the weights for individuals who did not enroll in college 

(i.e., did not receive the treatment) are 1/(1–π̂). These weights adjust for confounding by 

weighting the data to mimic a randomized control trial. The weights are then treated like 

survey weights in all subsequent analysis.

To estimate the ACEC, a different set of weights are calculated with the goal of weighting 

the non-enrolled individuals so that they closely resemble the enrolled group. In this case, 

individuals who enrolled in college are not weighted (this corresponds to weights of 1) and 

the weights for individuals who did not enroll in college are π̂/(1–π̂).

Matching

There are numerous algorithms for matching individuals based on propensity score estimates 

in order to be able to form two comparable groups of individuals. In our example, the goal is 

to match individuals from the non-enrolled group to individuals in the enrolled group in a 

way such that the two groups are nearly identical in terms of all of the measured 

confounders. Matching can be done with or without replacement. Another variation of the 

matching procedure, particularly if there are many more individuals in one exposure group 

compared to the other, is to do 1:k matching in which an individual in the smaller exposure 

group is matched with k (e.g., 2) individuals in the larger exposure group. When k is larger 

than 1, individuals in the larger exposure group are then down-weighted (by 1/k) in the final 

analysis.

We used a genetic search algorithm and performed 1:1 matching using the MatchIt package 

for R (Ho, Imai, King, & Stuart, 2011), which calls the Matching package for R (Sekhon, 

2011) for the genetic search matching algorithm. The advantage of this algorithm is that it 

automates the process of achieving balance, an important requirement for causal inference 

described next.

Balance

The balancing property of propensity scores refers to the fact that all individuals with the 

same propensity score estimate, regardless of which exposure group they are in, are 

equivalent on all the measured confounders that were included in the propensity model. 

Whether or not balance on the measured confounders included in the propensity model has 

been achieved can be assessed by computing standardized mean differences between the 
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exposure groups on each of the measured confounders before and after adjustment (i.e., 

weighting or matching). It is generally recommended that the standardized mean differences 

should not exceed .2 (in absolute value) after weighting or matching because a standardized 

mean difference of this size is considered a small effect size (Cohen, 1988). If balance is not 

achieved, then the propensity score model may be revisited to include interaction terms, 

higher-order terms, and/or additional potential confounders until balance is achieved. This 

process can be tedious; thus, algorithms that automate this process, such as the genetic 

search algorithm, can be advantageous.

Methods

Participants

The data for this study were drawn from the National Longitudinal Survey of Youth 1979 

(NLSY79 ; Center for Human Resource Research, 1979), a longitudinal study that 

documents the lives of a representative sample of American youth. The participants were 

interviewed annually from 1979 through 1994. This study was based on a sample of 1092 

adolescents (51% male) who were in Grade 12 at Round 1 of the NLSY79. Among these 

adolescents, the average age was 17.6 (SD = 0.7) years old in Round 1; 66% of the sample 

were White, 30% were Black, and 4% were from other race groups. The average annual 

household income was $18,728 (SD = $13,386), and nearly 82% of the mothers of these 

adolescents had completed a 12th grade level of education or less.

Measures

The set of measured confounders to include in this study was derived primarily from the 

literature on college attendance described above. The following potential confounders were 

included to adjust for selection effects related to college enrollment: gender, race/ethnicity, 

household income, single-parent household, residential crowding, maternal education, 

maternal age, metropolitan status, language spoken at home, educational aspirations of both 

the adolescent and parent, and type of high school (vocational, commercial, general 

program, college preparatory). These variables were measured in Round 1.

Full-time college enrollment was assessed in Round 2 (in 1980), one year after the 

participants’ senior year of high school. In this sample, 423 participants (38.7%) reported 

being enrolled in college at this time.

Adult use of alcohol, cigarettes, marijuana, crack and cocaine in past month were measured 

in Round 16 (in 1994) when the participants were approximately 33 years old. Responses to 

the alcohol use indicator were coded such that 0 represented “No use,” 1 represented “Light 

use,” defined as having had alcoholic drinks in the past month with no binge drinking, and 2 

represented “Binge,” defined as having had 6 drinks or more at one time. An indicator of 

cigarette use was coded such that 0 reflected “No use” and 1 reflected “Occasional or daily 

use.” Marijuana use was coded such that 0 represented “No use” and 1 represented “Any 

use.” A composite item was created for use of either crack or cocaine, where 0 represented 

“No use” and 1 represented “Any use.”
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Analytic Strategy for Causal Inference in LCA

The following seven steps represent a straightforward approach to conducting propensity 

score analysis in LCA in order to draw causal inference about the effect of a hypothesized 

causal variable on latent class membership. Because most studies of human behavior, 

particularly when longitudinal, must be addressed using data that are partially missing, we 

include analytic steps for using multiple imputation to handle data on confounders, treatment 

exposure, and the multivariate outcome that are missing at random (MAR). Steps 1 and 2, 

described below, are to be conducted once. Then, Steps 3 through 6 must be completed 

within each imputed data set. Finally, Step 7 is completed in order to combine results across 

imputed data sets, resulting in a final estimate of the causal effect of interest.

Step 1: Variable selection—Variables that are to be included in the analysis must be 

selected to include items for all measured confounders, an indicator of treatment exposure 

(in this case, college enrollment), and all indicators of the latent class variable (in this case, 

all items measuring adult substance use).

Step 2: Multiple imputation—Without addressing missing data with a flexible technique 

such as multiple imputation, individuals missing a response to even one confounder will 

receive a missing value on their estimated propensity score. These individuals would 

necessarily be dropped from any subsequent analysis because those scores form the basis for 

the inverse propensity weights as well as for the matching procedure. In many applied 

studies, this can result in a substantially reduced sample and biased estimation of the causal 

effect. The multiple imputation strategy has the advantage that, once missing values have 

been filled in, the analyst can proceed with any complete-case analysis technique such as the 

propensity score techniques described here. Also, missingness in variables relevant for any 

part of the analysis can be addressed under a single, general imputation model (Schafer, 

1997; Rubin, 1996). An excellent discussion of the advantages of multiple imputation 

appears in Schafer and Graham (2002). By using multiple imputation to handle missing data, 

the approach described here ensures that the causal inference in LCA is based on the full 

sample, maximizing statistical power and reducing bias in the estimated effect.

Step 3: Estimate propensity scores and assess overlap (within each imputed 
data set)—Propensity scores are obtained by predicting college enrollment from a large set 

of measured confounders, and can include interactions between confounders; the set of 

predictors should include all variables that relate to selection into college and the outcome. 

Logistic regression provides a straightforward method for estimating these scores. Once 

each individual’s propensity score is estimated, overlap must be examined to determine the 

feasibility of causal inference. The exact level of overlap required depends on whether the 

ACE or ACEC is being estimated and whether a matching or weighting strategy is being 

used. Weighting assumes at least some overlap but since individuals are not actually paired 

with other individuals, overlap is not as critical as it is for matching. Estimation of the ACE 

using matching requires that all members of each exposure group have one or more 

individuals in the other exposure group with nearly equal propensity scores. Overlap 

requirements for estimation of the ACEC are slightly less strict, as only individuals in the 

treatment group must have one or more individuals in the other exposure group with nearly 
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equal propensity scores. The easiest way to assess overlap is to compare box plots of the 

propensity scores for each group.

Step 4: Calculate weights or conduct matching (within each imputed data set)
—To use weighting to adjust for selection effects, two sets of weights can be calculated: one 

set to estimate the ACE and another to estimate the ACEC. To estimate the ACE, the 

weights for individuals who enrolled in college are calculated as 1/π̂ and the weights for 

individuals who did not enroll are calculated as 1/(1–π̂). To estimate the ACEC, weights for 

individuals who enrolled in college are set to 1 and weights for individuals who did not 

attend are calculated as π̂/(1–π̂).

An alternative to weighting is to create a matched data set that approximates data that might 

be observed from a randomized controlled trial. There are numerous strategies to implement 

matching based on the propensity scores derived in Step 3 above; we will rely on an iterative 

genetic matching method that matches 1:1 with replacement (Diamond & Sekhon, 2012). To 

create a matched data set using this approach, the current study uses the R package MatchIt 

(Ho, et al., 2011). The genetic matching algorithm automates the process of achieving 

optimal balance by minimizing differences on confounders in the matched sample based on 

paired t-tests and Kolmogorov-Smirnov tests (see Diamond and Sekhon, 2012 for details).

Step 5: Assess balance (within each imputed data set)—Standardized mean 

differences of confounders across exposure groups should be calculated before and after 

adjustment for selection, regardless of whether the causal question is ACE or ACEC and 

whether the propensity score adjustment is based on weighting or matching. When selection 

effects are observed, pre-adjusted standardized mean differences may be quite large in 

absolute value. After adjustment, however, it is desirable for the absolute values of these 

differences to be less than about 0.2 (in absolute value) for all confounders. When balance 

(i.e., small or no mean differences between exposure groups on all of the confounders) is 

achieved, the weighted or matched sample can be considered to mimic a randomized sample 

assuming that all confounders are measured and included in the propensity model, even 

though the participants were not randomly selected into college.

Step 6: Conduct LCA using the weighted or matched data set (within each 
imputed data set)—Selection of the number of latent classes necessary to represent 

heterogeneity in the outcome of interest should be conducted within each imputed data set in 

the usual way. Standard approaches include comparing information criteria (e.g., AIC and 

BIC), calculating the bootstrap likelihood-ratio test p-value, and comparing interpretation of 

the resultant latent classes. The fact that a measurement model must be selected within each 

imputed dataset raises issues that are unique to latent variable modeling, and is explored in 

more detail in the Discussion below. A thorough treatment of model selection in LCA, as 

well as the issue of model identification, appears elsewhere (see Collins & Lanza, 2010).

All latent class models should be fit using the adjusted data; that is, for IPW all models 

should include the appropriate set of weights (either to estimate the ACE or the ACEC), and 

for matching all models should be fit using the matched data set. Once a latent class model 

is selected, the exposure indicator (in our example, college enrollment) is then added as a 
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predictor of latent class membership so that the causal effect of interest can be estimated. 

The estimate of interest is a logistic regression coefficient (in the case of two latent classes) 

or a set of logistic regression coefficients (in the case of three or more latent classes) 

representing the association between exposure group and latent class membership. Typically 

these logistic regression coefficients in LCA are exponentiated, as odds ratios are easier to 

interpret.

Step 7: Combine results across imputations—The logistic regression coefficients 

obtained in each imputed data set (see Step 6 above) and their corresponding standard errors 

can be combined in the usual way using Rubin’s (1987) rules. Specifically, the overall 

estimate of each logistic regression coefficient is calculated as the mean of the imputation-

specific estimates. Each associated standard error estimate represents a weighted sum of the 

within- and between- imputation variances. Thus, the resultant causal effect of the exposure 

on latent class membership takes into account both selection effects due to many observed 

confounders and missing data, including attrition.

Software

SAS PROC MI was used to implement multiple imputation to handle missing data on 

college enrollment, the latent class indicators, and the confounders considered in this study. 

SAS PROC GENMOD was used to estimate the propensity scores using logistic regression. 

PROC LCA (Lanza et al., 2007; 2011) was used to fit all LCA models. In addition, the R 

package MatchIt (Ho et al., 2011) was used to conduct the propensity score matching. The 

Appendix shows SAS and R code used to conduct Steps 2 through 7 above.

Results

Five imputed data sets were created, where missing responses were replaced with plausible 

values (Step 2). Variables in the imputation model included all measured confounders, 

college enrollment, and all indicators of adult substance use behavior. Within each 

imputation, propensity scores were retained from a logistic regression of college enrollment 

on the full set of observed confounders (Step 3). Figure 1 shows the overlap of propensity 

scores across college enrollment groups using side-by-side box plots. Although there was no 

overlap for the middle 50% of propensity scores for individuals in the enrolled and not 

enrolled groups, the full distribution showed sufficient overlap for us to proceed to estimate 

both the ACE and the ACEC.

Causal Question 1: What is the Average Causal Effect (ACE) of College Enrollment on 
Adult Substance Use?

The first causal question was addressed by adjusting for selection effects using weights for 

the ACE (Step 4). Figure 2 presents the standardized mean differences on confounders 

before and after adjusting for selection using the ACE weights (Step 5). Prior to adjusting, 

the differences ranged from approximately −1.5 to 0.4. After adjusting, however, all mean 

differences were less than 0.2 in absolute value, indicating that balance was achieved using 

this procedure.
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LCA was conducted using the ACE weights (Step 6); we used 100 random sets of starting 

values to ensure that the maximum-likelihood solution was identified for each model, and 

compared models with one through three latent classes (see Table 1). The two-class solution, 

shown in Table 2, best represented the weighted dataset with N=1092 individuals. The first 

latent class, which comprised 71% of the full weighted sample, was labeled Low-Level 
Users as it is characterized by very low probabilities of binge drinking, occasional/daily 

cigarette use, marijuana use, or crack/cocaine use. The second latent class, which comprised 

29% of the full weighted sample, was labeled Heavy Drinkers, as those individuals have an 

elevated probability of reporting binge drinking; individuals in this class were as likely to 

engage in occasional/daily smoking as not.

College enrollment was then added to the weighted LCA as a covariate. Table 3 reports the 

parameter estimate and corresponding standard error, p-value, and odds ratio for the effect 

of college enrollment on membership in the Heavy Drinkers latent class in adulthood. The 

causal effect of college enrollment was statistically significant, indicating that college 

attendance leads to significantly reduced odds of adult membership in the Heavy Drinkers 

class. Specifically, if all individuals in the population were to attend college, the overall 

odds of membership in the Light Users class is 6.25 times (inverse OR = 1 / 0.16, p-value < .

01; see Table 2) more likely than if all individuals in the population were to not attend 

college. In other words, for the full population, college enrollment considerably reduces 

adulthood substance use. Thus, college could be considered an effective “treatment” of 

adulthood substance use on average for the whole population.

Causal Question 2: What is the Average Causal Effect (ACEC) of College Enrollment 
Among those who Attended College?

Method 1: ACEC based on IPW—The second causal question was addressed in two 

ways (Step 4); we first present results based on IPW, and in the next section we present 

results based on matching. Figure 3 presents the standardized mean differences on 

confounders before and after adjusting for selection using the ACEC weights (Step 5). This 

procedure is identical to the procedure above for estimating the ACE using weights, except 

that the formula for calculating the weights from the propensity scores varied slightly. As 

noted above, prior to adjusting, the differences ranged from approximately −1.5 to 0.4. After 

adjusting using the ACEC weights, the mean differences for all but one confounder were less 

than 0.2 in absolute value. The confounder on which balance was not achieved using a 0.2 

cut-off did show marked improvement in balance, however, with the mean difference 

reduced from approximately −0.55 to −0.25.

Next, LCA was conducted using the ACEC weights (Step 6); as before, identification was 

assessed for each competing model comprising one to three latent classes (see Table 1). 

Once again a two-class solution was selected; the LCA parameter estimates are shown in 

Table 2. The latent structure was similar to that of the two-class model using ACE weights. 

The Low-Level Users latent class, comprising 75% of the sample, is characterized by very 

low probabilities of binge drinking, occasional/daily cigarette use, marijuana use, or crack/

cocaine use. The Heavy Drinkers latent class, comprising the remaining 25%, is 

characterized by a probability of 0.54 of reporting binge drinking. We emphasize here that 
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despite the fact that both analyses (based on ACE weights and on ACEC weights) are based 

on the same sample of N=1092, the latent structure is not necessarily expected to replicate 

across analyses. This is because we are weighting the data in two different ways, essentially 

changing the dataset itself.

College enrollment was then added to the weighted (using ACEC weights) LCA as a 

covariate. Results for the effect of college enrollment on membership in the Heavy Drinkers 

latent class in adulthood appear in Table 3. Unlike the model used to assess ACE, in this 

model the causal effect of college enrollment was not statistically significant, indicating that 

college attendance does not lead to significantly different odds of adulthood membership in 

the Heavy Drinking class. This finding may be counterintuitive given the significant results 

reported above for the ACE, but the causal question posed here is different. Specifically, we 

find with this analysis that among the individuals who actually enrolled in college, college 

enrollment did not lead to greater or reduced odds of membership in the Heavy Drinkers 

class (OR = 0.45, p-value = 0.18).

Method 2: ACEC based on matching—The second causal question was then addressed 

using MatchIt (Ho et al., 2011) to obtain a new, matched data set (Step 4). The final matched 

sample had a size of N=584. Figure 4 presents the standardized mean differences on 

confounders before and after adjusting for selection using this matching approach (Step 5). 

This procedure is quite different from the first approach to ACEC (using weights), yet the 

two approaches address the same exact causal question. Because the matched sample does 

not contain all study participants, it was important to reassess balance using the new dataset. 

Prior to adjusting, the mean standardized differences on confounders ranged from 

approximately −1.5 to 0.4. After matching, the mean differences for all confounders were 

less than 0.2 in absolute value, indicating that the procedure achieved balance between the 

college-enrolled and not-enrolled groups.

Next, LCA was conducted using the matched dataset (Step 6). In this study, we implemented 

genetic matching with replacement, thus the LCA analysis was weighted to account for the 

repeated selection of observations. Once again identification was assessed for each 

competing model comprising from one to three latent classes (see Table 1), and a two-class 

solution was selected; the LCA parameter estimates are shown in Table 2. The latent 

structure was once again similar to that of the previous two analyses. The Low-Level Users 

latent class now comprised 71% of the sample and the Heavy Drinkers latent class 

comprised the remaining 29%. Just as the two weighted analyses were not necessarily 

expected to reproduce the same measurement model for adulthood substance use, the two 

analyses designed to address the ACEC (weighting and matching) were not expected to 

replicate the measurement model exactly, as they are based on different datasets.

As before, college enrollment was added to the latent class model as a covariate, but instead 

of applying weights to the full sample, the model was fit to the matched dataset. Results for 

the effect of college enrollment on membership in the Heavy Drinkers latent class in 

adulthood appear in Table 3. Just as the estimated ACEC based on weighting was not 

statistically significant, the causal effect based on matching also showed no significant effect 

of college enrollment. Based on matching, we find that among the individuals who actually 
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enrolled in college, college enrollment did not lead to greater or reduced odds of 

membership in the Heavy Drinkers class (OR = 0.52, p-value = 0.35). Thus, regardless of 

the approach taken to estimate the ACEC, we found that college enrollment does not lead to 

significantly different odds of adulthood membership in the Heavy Drinking class.

Discussion

Propensity score methods have been advanced to the point that social, behavioral, and health 

scientists are more and more routinely using them to draw causal inferences about effects, 

such as those reflected in regression coefficients, based on observational data. Integrating 

these methods into latent class models holds the promise of better understanding the causal 

mechanisms that lead to behaviors or characteristics that cannot be directly measured. Below 

we discuss what we feel is perhaps the most important advantage of taking a causal 

inference approach to estimation – the fact that researchers must think more carefully about 

the exact question being addressed. We then turn our discussion to the fact that, while in 

concept propensity score methods can be integrated with structural models in the same way 

as with more simple models such as linear regression, in practice their application to 

structural models such as LCA presents unique challenges. We discuss several of these in 

turn. Finally, we discuss limitations in the current study.

The Appropriateness of Different Causal Questions

One important advantage of taking a causal inference approach to estimating any effect, 

whether it involves a structural model or not, is that the researcher is required to express a 

very specific causal question. The ACE and ACEC reflect very different questions that may 

or may not be of scientific interest; these two questions fundamentally differ in terms of the 

population to which the answer can be generalized. We first estimated the ACE: What 

differences in adult substance use patterns are expected if all individuals in the population 

had enrolled in college, compared to if no individuals in the population had enrolled in 

college? Results, which were based in IPW, suggested that in the overall population college 

enrollment reduced adult substance use behaviors – in particular heavy episodic drinking. 

We then estimated the ACEC: Among individuals who enrolled in college, what differences 

in their adult substance use patterns are expected had they all enrolled in college, compared 

to if none of them had enrolled in college? Results of analyses relying on both IPW and 

matching suggested that among the college-enrolled population college enrollment in fact 

has no impact on adult substance use behaviors. Taken together, we may conclude that 

college enrollment would reduce adult substance use among non-college-bound youth.

It is important to consider the appropriateness of these two questions in the context of any 

example. Here, we believe the ACEC makes more intuitive sense. In concept, to answer this 

question we are comparing the college-enrolled individuals in terms of their actual substance 

use behavior to their expected behavior had they not attended college. It may be nonsensical 

to think about what the expected effect of college enrollment would be, could everyone in 

the population attend college, because – practically speaking – attending college may not be 

possible for many individuals in a population, for example due to not meeting academic 

requirements. If it had been possible to determine who in the population was actually 
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eligible to enroll in college, we could have redefined the ACE for the entire eligible 

population and answered a compelling research question (for an example of such a causal 

question see Hong & Raudenbush, 2006).

Propensity Score Techniques and the Measurement Model

In the course of conducting causal inference in LCA, an interesting and important finding 

emerged. We had initially conducted model selection and interpretation of the latent classes 

that emerged in an initial analysis of the unadjusted data. That is, we proceeded to conduct 

LCA with college enrollment as a covariate in the usual way, not adjusting for selection; this 

is the current practice for fitting structural models with covariates. Based on these results, 

we selected the three-class model, which included Low-Level Users (64.9%), Heavy 

Drinkers (33.0%), and a third class characterized by heavy drinking, cigarette smoking, 

marijuana use, and crack/cocaine use (Poly Drug Users; 2.1%). This last class was more 

common among non-enrolled individuals. We then incorporated propensity scores in our 

analysis through IPW and matching, assuming that the three-class model was most 

appropriate.

The purpose of the propensity score techniques described here is to actually change the data 

being analyzed so that they more closely resemble a randomized controlled trial – either 

through reweighting all individuals based on IPW or through matching individuals based on 

their confounders and eliminating unmatched individuals from the analysis altogether. 

Because selection effects were very strong, both of these techniques substantially changed 

the data being analyzed. We then revisited model selection and interpretation within each 

propensity score method, and found that for answering both the ACE and the ACEC, the 

two-class solution was most appropriate. Thus, we emphasize here the importance of 

studying the structure of latent variables in the context of the causal analysis, as opposed to 

the traditional naïve (i.e., unadjusted) analysis.

Using Subclassification for Causal Inference in LCA

In addition to matching and IPW, there are several other propensity score techniques that 

were not discussed in this study. Most notably is the technique of subclassification, where 

all individuals in a study are divided into, for example, five strata corresponding to the 

quintiles of the propensity score distribution (Rosenbaum & Rubin, 1984). Then, within 

each stratum the effect of the exposure variable on the outcome (in this case, the effect of 

college enrollment on substance use latent class membership) is calculated. The average 

effect across strata is taken as the average causal effect in the population, i.e. the ACE. 

Subclassification can be thought of as a sort of coarsened matching procedure; the idea 

behind it is that individuals in the enrolled and non-enrolled groups within the same 

propensity score stratum are similar in terms of the entire set of confounders. This implies 

that balance is achieved within each stratum, something that we were not able to achieve in 

the current study.

Subclassification for conducting causal inference in LCA is perhaps the simplest propensity 

score approach to carry out. We relied on multiple-groups LCA where the variable 

indicating stratum was included as a grouping variable. Despite the apparent ease of use, 
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however, this technique proved to be particularly challenging in this context because it 

requires an assumption of measurement invariance across strata. Specifically, this means 

that the item-response probabilities that together quantify the measurement of the latent 

construct are equal for individuals with very low propensities to attend college, very high 

propensities, and everything between. Hypothesis tests indicated that this assumption was 

not plausible in our study.

One additional challenge with using subclassification is that, to the degree that selection 

effects are strong (as they were in this study), the exposure groups will be highly imbalanced 

in terms of sample sizes within the lower and higher strata. As an example, individuals with 

estimated propensity scores between 0.00 and 0.07 represented the lowest quintile. Of these 

219 individuals, only 14 (which is 6%) were in the college enrolled group whereas 205 

(94%) were in the non-enrolled group. Similarly, among individuals in the next-lowest 

quintile, only 8% were in the college enrolled group. Thus this approach suffered from 

severe imbalance in terms of sample sizes for calculating the strata-specific causal effects, 

failure to achieve balance within strata, and lack of invariance in the measurement of 

substance use across strata.

Multiple Imputation and Model Selection in LCA

To our knowledge, no previous study has carefully delineated the potential complications 

that can arise when applying LCA to data after multiple imputation was used to address 

missingness. While all modern software for LCA can accommodate missingness on the 

indicators of the latent class variable (assuming that data are missing at random), individuals 

with missing values on covariates or grouping variables cannot be included in an analysis. 

This problem is magnified when conducting propensity score analysis, as propensity scores 

cannot be obtained with logistic regression for individuals with a missing value on even one 

measured confounder. As an example, household income was an important predictor of 

college enrollment, yet many participants (17%) refused to answer this question. Therefore, 

we used multiple imputation to address missingness on all variables involved in the causal 

analysis.

To the extent that multiple imputed datasets differ from each other, it is conceivable that 

model selection – which should be conducted on each dataset – could lead to different 

solutions. Yet to combine results across imputations, researchers must select one structural 

model and assume that it holds across imputations. An additional consideration is that, even 

when the same starting values are used across all imputations, it is important to confirm that 

each model is identified and that the meaning of each latent class is consistent across 

imputations, even if the ordering of the latent classes disagrees (an issue that can be resolved 

simply by reordering the classes so that corresponding parameters are combined across 

imputations).

Limitations

As with any propensity score analysis to estimate causal effects, in this study we assumed 

that all of the confounders were measured and included in the propensity model. Because 

there is extensive literature on factors related to college enrollment, many potential 
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confounders are known. For researchers working in a relatively new area, however, it may 

be more difficult to identify the full set of important confounders. It is possible to examine 

the impact of possible unmeasured confounders by conducting a sensitivity analysis 

(Rosenbaum, 2002). Sensitivity analysis has not been well developed in this context and is a 

point for future development, thus it is beyond the scope of this paper. Certainly, though, 

even partially adjusting for selection improves any inferences that may be drawn.

Any propensity score technique presented here assumes that measurement invariance for the 

latent construct holds across exposure groups. This assumption is implied any time a 

covariate is introduced in structural models. Although the assumption is a testable one, it is 

unclear how researchers should proceed when measurement invariance does not hold.

We did not use the NLSY-provided survey weights to accommodate the complex survey 

design. One strategy that has been proposed is to simply multiply the inverse propensity 

weights by the complex survey weights in order to estimate causal effects for the original 

population; similarly, one could introduce the survey weights in a matched analysis. There is 

currently some debate, however, about the appropriateness of this latter approach; we feel 

this is an important area for future study.

Conclusions

Behavioral researchers often wish to make causal statements about phenomena that cannot 

be studied using a randomized control trial. In many cases, the phenomenon of interest may 

best be characterized as a latent variable. Our example involved estimating the effect of 

college enrollment on adult substance use behavior patterns (i.e., latent class membership). 

In this example, it would not be feasible to randomly assign high school seniors to attend 

college; thus, large selection effects may severely bias estimates of the effect of college 

enrollment on latent classes of adult substance use. Fortunately, statistical techniques for 

causal inference have advanced to the point that we can now model selection effects in 

principled ways using observational data to draw better inference. The incorporation of 

propensity scores in LCA is a novel but straightforward approach to drawing more valid 

conclusions about factors that influence subsequent latent class membership.
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Appendix

SAS and R code for implementing causal inference in LCA using 

propensity scores

The data set “rawdata” contains the original data with missing values and the data set 

“imputed1” contains a single imputation of the data set. The variable “college” is a binary 

variable coded 1 for “enrolled in college” and 0 for “not enrolled in college.” The labels 

“pretreatment_confounders” and “latent_class_indicators” used below are placeholders for 

sets of variables to be used as the predictors of college enrollment and the categorical 

indicators in the latent class model, respectively.

Step 1: Variable selection (code not shown)
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Step 2: Multiple imputation (SAS code)

proc mi data=rawdata nimpute= 5 seed=4753262 out=imputed

(keep = pretreatment_confounders college latent_class_indicators);

var = pretreatment_confounders college latent_class_indicators;

run;

Step 3: Estimate propensity scores and assess overlap (SAS code)

*estimate propensity scores using logistic regression;

proc genmod data=imputed1 descending;

model college = pretreatment_confounders/dist=binomial;

output out=temp1 predicted=propensity_score;

run;

*assess overlap;

proc boxplot data = temp1;

plot propensity_score * college ;

run;

*inverse propensity weights for ACE and ACE_C, respectively;

data final;

set temp1;

if college=1 then psweight_ACE=1/propensity_score;

else if college=0 then psweight_ACE=1/(1-propensity_score);

if college=1 then psweight_ACE_C=1;

else if college=0 then psweight_ACE_C= propensity_score/(1-

propensity_score);

run;

Step 4: Conducting matching (R code)

#R code for creating matched sample;

library(MatchIt)

library(foreign)

final <- read.csv(file = “path\\final.csv”, header = TRUE)

attach(final)

matched <-matchit(college ~ pretreatment_confounders, data = final, 

method = “genetic”)

#export matched files into SAS;

matcheddata <- match.data(matched, group=“all”, distance = “distance”, 

weights = “psweight_ACECgenetic”, subclass = “ “)

write.foreign(matcheddata, “path/matcheddata.txt”, “path/

matcheddata.sas”, package = “SAS”)

Step 5: Assess balance
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#R code for standardized mean differences after matching;

summary(matched, standardize=TRUE)

/*SAS code for standardized mean differences after weighting.

Standardized mean differences prior to weighting can be computed

using the code below without the weight statements in proc means*/

proc means data=final(where=(college=1));

var pretreatment_confounders;

weight psweight_ACE;

output out=ipw1tx1(drop=_FREQ_ _TYPE_ );

proc transpose data=ipw1tx1 out=tipw1tx1(rename=(_NAME_=NAME));

id _STAT_;

proc means data=final(where=(college =0));

var pretreatment_confounders; weight psweight_ACE;

output out=ipw1tx2(drop=_FREQ_ _TYPE_ );

proc transpose data=ipw1tx2 out=tipw1tx2(rename=(_NAME_=NAME) 

rename=(MEAN=M2) rename=(STD=STD2) rename=(N=N2) rename=(MIN=MIN2) 

rename=(MAX=MAX2));

id _STAT_;

proc sort data = tipw1tx1;

by NAME;

run;

proc sort data = tipw1tx2;

by NAME;

run;

data ipw1;

merge tipw1tx1 tipw1tx2;

by NAME;

stdeff=(M2-MEAN)/STD2;

run;

proc print data = ipw1;

var NAME N MEAN STD N2 M2 STD2 STDEFF;

run;

Step 6: Conduct LCA using the weighted or matched data set (SAS code)

*LCA model for ACE/ACE_C for weighted sample;

*ACE_C can be estimated by changing the statement ‘weight psweight_ACE;’ 

to ‘weight psweight_ACE_C;’

proc lca data=final;

nclass 2;

items latent_variable_indicators;

categories 3 2 2 2;

covariates college;
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reference 2;

weight psweight_ACE;

seed 861551;

run;

*LCA model for ACE_C using matched sample;

proc lca data=matcheddata;

nclass 2;

items latent_variable_indicators;

categories 3 2 2 2;

covariates college;

weight psweight_ACECgenetic;

reference 2;

seed 3563446;

run;

Step 7: Combine results across imputations (SAS code)

*repeat Step 3 to Step 6 for m replicated data sets;

*using Proc Mianalyze to summarize the results;

*finalmi is a rectangular data set in which a row represents the 

statistics from one imputed data set and a column represents the 

estimate (estlc2) or its standard error (serrlc2);

proc mianalyze data = finalmi;

modeleffects estlc2;

stderr serrlc2;

run;
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Figure 1. 
Boxplot of the propensity scores for each college enrollment group (for one imputed 

dataset).
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Figure 2. 
Standardized mean differences between college enrolled and non-enrolled groups on 

measured confounders before and after propensity score adjustment based on inverse 

propensity weights applied to full sample (N=1092) for estimating ACE (for one imputed 

dataset).

Lanza et al. Page 23

Struct Equ Modeling. Author manuscript; available in PMC 2014 November 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Standardized mean differences between college enrolled and non-enrolled groups on 

measured confounders before and after propensity score adjustment based on inverse 

propensity weights applied to full sample (N=1092) for estimating ACEC (for one imputed 

dataset).
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Figure 4. 
Standardized mean differences between college enrolled and non-enrolled groups on 

measured confounders before and after propensity score adjustment based on matched 

sample (N=584) for estimating ACEC (for one imputed dataset).
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Table 3

Causal Effects of College Enrollment on Latent Classes of Adulthood Substance Use

Causal Question Estimate SE p Odds Ratio

1) Average Causal Effect (ACE)

 Weighting −1.81 0.63 <.01 0.16

2) Average Causal Effect Among College-Enrolled (ACEC)

 Weighting −0.79 0.59 0.18 0.45

 Matching −0.66 0.70 0.35 0.52
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