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Abstract
Metastatic cancer of unknown primary (CUP) accounts for up to 5% of all new cancer cases, with a 5-year survival rate
of only 10%. Accurate identification of tissue of origin would allow for directed, personalized therapies to improve
clinical outcomes. Our objective was to use transcriptome sequencing (RNA-Seq) to identify lineage-specific
biomarker signatures for the cancer types that most commonly metastasize as CUP (colorectum, kidney, liver, lung,
ovary, pancreas, prostate, and stomach). RNA-Seq data of 17,471 transcripts from a total of 3,244 cancer samples
across 26 different tissue types were compiled from in-house sequencing data and publically available International
Cancer Genome Consortium and The Cancer Genome Atlas datasets. Robust cancer biomarker signatures were
extracted using a 10-fold cross-validation method of log transformation, quantile normalization, transcript ranking by
area under the receiver operating characteristic curve, and stepwise logistic regression. The entire algorithmwas then
repeatedwith a newset of randomly generated training and test sets, yielding highly concordant biomarker signatures.
External validation of the cancer-specific signatures yielded high sensitivity (92.0% ± 3.15%; mean ± standard
deviation) and specificity (97.7%± 2.99%) for each cancer biomarker signature. The overall performance of this RNA-
Seq biomarker-generating algorithm yielded an accuracy of 90.5%. In conclusion, we demonstrate a computational
model for producing highly sensitive and specific cancer biomarker signatures from RNA-Seq data, generating
signatures for the top eight cancer types responsible for CUP to accurately identify tumor origin.
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Introduction
Metastatic cancer of unknown primary origin (CUP) is an important
clinical dilemma, comprising 3% to 5% of all new cancer cases [1,2].
Without a firm histologic diagnosis, the clinical management of these
patients varies widely [3], and despite protocol-driven guidelines,
outcomes remain poor. Median survival is 6 to 9 months [4], with a
5-year survival rate of only 10% [5,6]. The role of chemotherapy in
the treatment of occult primary tumors is primarily palliative and does
not improve long-term survival; the National Comprehensive Cancer
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Network (NCCN) panel encourages CUP patient enrollment in
clinical trials when possible [7]. An accurate method for distinguish-
ing tumor origin to tailor personalized therapies is therefore critical to
the successful management of these malignancies.
Thus far, there have been a number of studies focused on identifying

unique signatures that distinguish among different cancer types, using
immunohistochemistry [8–11], cytogenetic studies [12–14], compar-
ative microarray analysis [15–22], combined microarray and quantita-
tive polymerase chain reaction techniques [23,24], bead-based miRNA
profiling [25], and more recently, limited, high-throughput sequencing
data combined with microarray [26]. Currently, only qRT-PCR
[23,24] and microarray-based [19,22] assays are commercially available
for use, with diagnostic accuracies ranging from 74 – 85%.
Compared to traditional microarray technology, transcriptome

sequencing (RNA-Seq) possesses a number of advantages, including
unlimited genome coverage and discovery potential, a greater than
8000-fold dynamic range for quantifying gene expression levels, and
the ability to identify splice variants, unmapped genes, and
unrecognized non-coding RNAs [27,28]. The rapidly decreasing
cost of high-throughput sequencing methods has also improved the
accessibility of these techniques for clinical application and allowed
for the generation of large-scale datasets to robustly interrogate such
clinical problems as CUP.
3,244 cancer samples
- 26 tissue types
- 17,471 RNA-Seq transcripts per sample

688 cancer samples
(≤ 50 samples per tissue type)

2,556 cancer samples

Randomization

Figure 1. Algorithm for extracting optimal cancer biomarker signatur
characteristic curve.
In a review of all published autopsies performed on CUP patients
who died from cancer progression from 1944 to 2000, a primary
tumor was successfully identified post-mortem in 73% of the 884
cases [29]. The most common tissues of origin were lung (27%),
pancreas (24%), kidney (6%), colorectum (6%), stomach (5%), liver
(5%), ovary (3%), and prostate (3%) [4,30–38]. Our objective was
therefore to identify lineage-specific biomarker signatures for each of
these cancers, using a large, multi-cancer RNA-Seq database to
distinguish tissues of origin from among different cancer types.

Material and Methods

Multi-Cancer RNA-Seq Database
Paired-end RNA-Seq data for 364 cancer samples from 22 different

tissue types were used to compile a multi-cancer gene expression
dataset as previously described [39]. This dataset was then
supplemented with publically available RNA-Seq cancer data accessed
from the International Cancer Genome Consortium [40] and The
Cancer Genome Atlas [41]. This included four additional cancer
types (acute myeloid leukemia, endometrial cancer, head and neck
squamous cancer, and lung cancer). The dataset was restricted to
those transcripts commonly annotated across all three datasets. The
final composite data matrix was comprised of gene expression
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readouts for 17,471 transcripts from 3,244 cancer samples (139
cancer cell lines and 3,105 tissues) across 26 cancer types.

Model for Deriving an Optimal Biomarker Signature
R language [42] was used to program an algorithm to derive an

optimal biomarker signature for a cancer type of interest (Figure 1). The
3,244 samples were randomly allocated to the training or test sets
(Table 1). Amaximum of 50 samples per tissue type were assigned to the
training set (688 samples) and the remainder to the test set (2,556
samples). The training set was used to generate the optimal biomarker
signatures for each cancer type, while the test set was reserved for final,
external validation. Biomarker signatures were generated for the eight
tissue types that account for approximately 80% of CUP cases
(colorectum, kidney, liver, lung, ovary, pancreas, prostate, and stomach).

Transcript normalization. Transcript reads were normalized with
log transformation followed by quantile normalization to account for
variations between and within datasets, such as differences in the
amount of starting material and reported transcript units. The entire
688-sample training set was then divided into 10 randomly generated
subsets, each with an equal proportion of samples of the cancer type
of interest. A 10-fold cross-validation method was used to train the
model on 9-fold and test each signature on the remaining 1-fold.

Univariate transcript analysis. Within each 9-fold training
subset, area under the receiver operating characteristic (ROC) curve
values (AUC) [43] were calculated for each of the 17,471 transcripts.
The transcripts were then sorted by decreasing AUC.

Stepwise logistic regression. To generate an optimal signature, an
iterative approach was used, rather than inputting all 17,471
transcripts into the model, which would increase computational
burden and the likelihood of overfitting. The top 100 transcripts,
based on univariate AUC rank, were introduced into a stepwise
logistic regression model, to determine the optimal signature at each
iteration for n, between 1 and 100 input transcripts. Logistic
Table 1. Allocation of Cancer Samples to RNA-Seq Training and Test Sets

Cancer Type All Training Set Test Set

Adrenal gland 3 3 0
Acute myeloid leukemia 174 50 124
Bladder 70 50 20
Breast 864 50 814
Cervix 8 8 0
Colorectum 244 50 194
Endometrium 333 50 283
Germ cell 1 1 0
Kidney 24 24 0
Liver 15 15 0
Head and neck 263 50 213
Lung 348 50 298
Lymphoma 11 11 0
Medulloblastoma 1 1 0
Melanoma 136 50 86
Merkel cell 3 3 0
Myeloproliferative neoplasm 9 9 0
Neuroblastoma 2 2 0
Neuroepithelioma 1 1 0
Oropharynx 4 4 0
Ovary 418 50 368
Pancreas 76 50 26
Prostate 154 50 104
Rhabdomyosarcoma 1 1 0
Salivary gland 4 4 0
Stomach 77 50 27
Total 3244 688 2556
regression was performed in both directions to optimize the Akaike
information criterion (AIC) [44–46] so that at each step, it was
calculated whether the current signature would be improved not only
by adding the next variable but also by discarding any of the variables
present within the currently optimized signature. The final signatures
were used to calculate the predicted likelihood of each sample in the
remaining 1-fold being of that cancer type, given n input transcripts.

Biomarker signature selection. A final “cross-validated AUC” was
determined for each signature generated from n transcripts, based on
the calculated predictions for each sample compared to their true
identities. The optimal biomarker signature was determined to be the
one generated from the top n* number of transcripts that yielded the
highest cross-validated AUC. The entire 688-sample training set was
then used as the input training set to generate a final, optimal
biomarker signature based on the top n* transcripts.

Internal validation. Each cancer biomarker signature was
internally validated by using the entire 688-sample training set as
the input. Each sample received a predicted value,m, between 0 and 1,
indicating likelihood of the sample being the cancer type of interest.
The predicted values were then used to generate ROC curves for each
signature. Optimal score thresholds, k, (above which was defined as
“positive” for that cancer type and below which was “negative”) were
calculated by selecting the point on the ROC curve with the minimum
distance from (0,1), which represents a perfect test of 100% sensitivity
and specificity [47].

External validation. Each cancer biomarker signature was then
externally validated against the reserved 2,556-sample test set using
the optimal score thresholds. Overall sensitivity and specificity were
calculated for each cancer signature.

Duplicate cancer predictions. Each of the 2,556 cancer samples in
the reserved test set was tested using each of the eight cancer
biomarker signatures. Those samples that predicted positive for more
than one cancer type were assigned the cancer type that had the
highest relative predicted value, defined as [m – k]/[1 – k].

Additional analysis. Graphs were plotted using GraphPad Prism.
The heat map was generated with Cluster 3.0 [48] and visualized
using TreeView [49]. Statistical analysis was performed using R and
GraphPad Prism.

Results
The results of our biomarker-generating model are shown in Figure 2.
For all eight cancer types, the maximum, cross-validated AUC was
obtained within the first 100 input transcripts. Interestingly, cross-
validated AUC plots of the colorectal, lung, pancreas, and stomach
cancer samples yielded prominent peaks, beyond which the inclusion
of additional transcripts worsened the biomarker signature’s accuracy.
Conversely, liver and ovarian cancer samples yielded relatively flat
curves of near-perfect cross-validated AUC’s, suggesting that these
cancer types have such unique biomarker profiles that many highly
accurate signatures may be generated. Optimal signatures for each
tissue type were objectively determined by selecting the number of
input transcripts, n*, that corresponded with the maximum cross-
validated AUC (Figure 2, red points).

Next, using the entire 688-sample training set as the input test set,
the final list of transcripts was generated for each cancer biomarker
signature, by performing stepwise logistic regression of the top n*
transcripts. The entire model was then run again using a new, random
allocation of training and test samples. The final biomarker signatures
for each cancer type were concordant with the signatures generated
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Figure 2. Scatter plots of 10-fold cross-validation method to determine optimal biomarker signatures for 8 different cancer types. Points
highlighted in red indicate the highest, cross-validated AUC for each cancer type. AUC, area under the receiver operating characteristic curve.
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from the first randomization (Table 2), with an overall cosine
similarity measurement of 0.53 [50].
ROC curves were then generated for each biomarker signature,

yielding high AUC’s (Figure 3); for comparison, lines of identity are
shown, representing a random test that has no prognostic value. From
each cancer signature ROC curve, threshold cut-offs minimizing the
distance to (0,1) were calculated to use in subsequent external
validation testing (Figure 3, red points).

The cancer biomarker signatures were then externally validated
using the reserved 2,556-sample RNA-Seq test set. Each sample was
tested against each of the 8 biomarker signatures and predicted to be
positive or negative for that cancer type based on the threshold cut-



Table 2. Cancer Biomarker Signatures Generated from Two Separate Randomizations

Cancer type Randomization #1 Randomization #2

Colorectum ATOH1
FAM55A
FAM55D
NOX1

CDX1
CDX2
NOX1

Kidney CTSL3 
DPYS 
FXYD2 
GLYAT 
NR1H4 
OR2T10
RBP5 
SLC17A3 
TMEM174

CTSL3 
DPYS 
FXYD2 
SLC17A3
SLC39A5 
TMEM174

Liver APOH 
IGFBP1

ALB
IGFBP1

Lung NAPSA
SCGB3A2 
SFTPB

AQP4
NAPSA 
SCGB3A2 
SFTPB 
TBX4

Ovary BEST1 
BGLAP

BEST1 
IER5L

Pancreas ANKHD1-EIF4EBP3 
NKX3-1 
NKX3-2 
NKX6-1 
PALM2-AKAP2 
PPAN-P2RY11 
STON1-GTF2A1L 
TNFSF12-TNFSF13

ANKHD1-EIF4EBP3
NKX3-2 
NKX6-1

Prostate FEV 
KLK3 
MMP26
NKX3-1 
OR51F2 
OR51T1 
PRAC 
SI

KLK15 
KLK2
KLK3 
MYBPC1 
PRAC

Stomach FAM166A 
GKN1 
LIPF
MUC17 
OTC
PRSS3 
SI 
TM4SF5 
USH1C

CTSE 
FAM166A 
GKN1 
GKN2 
HNF4A 
OTC 
SI 
TM4SF5 
USH1C 
VIL1

Transcripts highlighted in red are common between the two signatures.

922 Wei et al. Neoplasia Vol. 16, No. 11, 2014
offs calculated previously. The true identities of each of the 2,556
samples were then compared to the predicted identities, and high
sensitivity (92.0% ± 3.15%; mean ± standard deviation) and
specificity (97.7% ± 2.99%) were demonstrated for each biomarker
signature (Table 3). A heat map representation of the 43 transcripts
comprising the 8 biomarker signatures for all 3,244 samples illustrated
the strength with which each cancer signature successfully distinguished
samples from among the different cancer types (Figure 4). Despite
similarities in expression patterns across different cancers, the transcript
signatures were nonetheless highly specific, requiring elevated expres-
sion across all the biomarker transcripts for a given cancer type
(Table 3). Of the 3,244 samples, 2.9% had positive predictions for
more than one cancer. These samples with duplicate predictions were
assigned the final identity of the cancer type with the highest relative
predicted value, yielding an overall accuracy of 90.5% (Table 4).

Discussion
In this study, we demonstrate an effective and efficient model for
extracting highly sensitive and specific cancer biomarker signatures
from a large RNA-Seq dataset. This technique yielded transcript
signatures for the top eight cancer types that cause metastatic CUP.
The robustness of the final signatures was demonstrated by external
validation, through testing of a large test set randomly allocated
a priori. By reserving these 2,556 samples solely for external
validation, this test set represents a large dataset of “clinical unknowns”
(i.e., identities unknown to the training model). The high sensitivities
and specificities achieved with each of the cancer biomarker signatures
therefore represent a realistic approximation of the accuracy with which
the signatures may be used to predict tissue origin of a CUP sample in
the clinical setting.

Many of the cancer biomarkers identified in this study have
previously been well-characterized in their respective cancer types.
The prostate cancer signature includes KLK3, which is responsible for
encoding prostate-specific antigen, the serine protease used as a serum
marker in prostate cancer screening and disease monitoring [51], as
well as PRAC, which is known to be highly expressed in prostate
cancers [52,53]. Similarly, NKX3-1 is an androgen-regulated
homeobox gene, which transcriptionally regulates oxidative damage
response and is required for prostate stem cell maintenance; aberrant
expression has been found to correlate strongly with prostate cancer
progression [54–59]. In addition, a recent study demonstrated that
immunohistochemical staining with the kidney biomarker FXYD2, a
Na-K-ATPase regulator, is highly sensitive and specific for renal cell
carcinoma [60]. Similarly, NOX1 was highly expressed in our
colorectal cancer samples, as confirmed in prior studies, which
stimulates mitogenesis and angiogenesis though a ROS-mediated
mechanism; NOX1 expression has also been found to correlate
strongly with activating KRAS mutations, which are present in
approximately 50% of colorectal tumors [61,62]. IGFBP1, is a
hepatocyte-derived secreted protein required for normal liver
regeneration by inhibiting proapoptotic signals [63], with overex-
pression previously identified in hepatocellular cancers [64], as well as
in our study. The lung biomarker NAPSA is a well characterized
proteinase expressed in type II pneumocytes [65–67], whose
expression has high sensitivity and specificity for distinguishing
primary lung adenocarcinoma from metastatic pulmonary lesions
from other primaries [67]. The pancreas biomarker NKX6-1 is a
transcriptional regulator that has been shown to play an important role
in beta cell differentiation during pancreatic development [68–71].
Similarly,GKN1 is highly expressed in the gastric epithelium, providing
protection to the antral mucosa and promoting healing after injury; it
also acts as a tumor suppressor and is down-regulated compared to
normal gastric tissues [72–76] but in our model was still significantly
overexpressed as compared to other cancer types.

Our cancer signatures also identified transcripts that have not
previously been associated with the cancer types of interest. Although
not yet characterized in ovarian cancer, BEST1, which forms calcium-
activated chloride channels across epithelial cells to promote cell
proliferation [77], has been shown to be up-regulated in colon cancers
[78]. Similarly, hypermethylation of DPYS, a gene important in
pyrimidine metabolism, has been identified in prostate, colon, and
breast cancers, as well as melanomas [79–81], but in our study, high
expression was most sensitive and specific for kidney cancer.
Interestingly, the transmembrane glycoprotein SI was highly expressed
in both prostate and gastric cancer samples. Mutations in SI have
previously been identified in head and neck, colorectal, and ovarian
cancers, and in a recent study, SImutations resulted in significant gene
enrichment in oxidative phosphorylation, glycolysis/gluconeogenesis,
and B-cell receptor signaling pathways, for promoting malignant
progression in chronic lymphocytic leukemia [82].
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Figure 3. Internal validation of eight cancer-specific biomarker signatures yields high area under the ROC curve values. The entire 688-
sample RNA-Seq training set was used as the test set for each cancer signature. Dotted lines indicate lines of identity. Points of minimum
distance to (0,1) are highlighted in red. ROC, receiver operating characteristic; AUC, area under the ROC curve.
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In our pancreatic cancer signature, our model also identified several
gene fusions not previously associated with this disease, including
ANKHD1-EIF4EBP3, a readthrough transcript of the neighboring
cell survival scaffolding gene ANKHD1 and the downstream
translational repressor EIF4EBP3, both of which are effectors of the
RAS/MAPK pathway [83,84], which is known to play a critical role
in the development and progression of pancreatic cancer [85–88].
The prostate biomarker NKX3-1 and related family member NKX3-2
also comprised the pancreas signature. While the role of NKX3-2 in
pancreatic cancer has not yet been characterized, its role in
chondreogenesis and skeletal development has been well studied,
acting as a transcriptional repressor downstream of SHH through



Table 3. External Validation of Eight Cancer-Specific Biomarker Signatures Using 2,556-Sample
RNA-Seq Test Set

Colorectum Kidney Liver Lung Ovary Pancreas Prostate Stomach

TP 174 0 0 274 360 24 95 24
TN 2355 2533 2552 2222 2188 2389 2424 2305
FP 7 23 4 36 0 141 28 224
FN 20 0 0 24 8 2 9 3
Sensitivity (%) 89.7 - - 91.9 97.8 92.3 91.3 88.9
Specificity (%) 99.7 99.1 99.8 98.4 100 94.4 98.9 91.1

TP, true positive; TN, true negative; FP, false positive; FN, false negative.

Table 4. Overall Performance of RNA-Seq Biomarker Generating Algorithm for Predicting Tissue
of Origin in 2,556 Cancer Samples

Samples %

TP 946 Sensitivity 95.0
TN 1366 Specificity 87.6
FP 194 PPV 83.0
FN 50 NPV 96.5

Accuracy 90.5

Samples with duplicate cancer predictions were assigned the identity with the highest predicted
value. TP, true positive; TN, true negative; FP, false positive; FN, false negative; PPV, positive
predictive value; NPV, negative predictive value.
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interactions with the signal transduction protein SMAD4 [89–92].
SHH and its related hedgehog-signaling pathways are well-known
mediators of pancreatic carcinogenesis and are the targets of many
new therapeutics [88,93–95]. Similarly, inactivation of the tumor
suppressor SMAD4 plays a critical role in the development of
pancreatic cancer and correlates with increased tumor aggressiveness
and poor prognosis [96–99]. It is important to note that a common
difficulty encountered in the analysis of pancreatic adenocarcinoma
tissues is frequent contamination by a dense, desmoplastic stroma that
characteristically surround these tumor cells and can occupy up to
90% of a tumor sample’s content [100]. However, in our study of
76 pancreatic cancer samples, we were nonetheless able to extract an
8-transcript signature to distinguish pancreatic samples from other
cancer types with high sensitivity and specificity.
Figure 4. RNA-Seq heat map of 8 cancer-specific biomarker s
As compared to other studies focused on distinguishing tissue of
origin for CUP, our study has multiple strengths. We analyzed a large
number of cancer samples from 26 different tissue types (3,244
samples as compared to the previous studies analyzing fewer than 800
samples) [15–19,23–26]. In addition, we used multiple validation
methods to strengthen our biomarker signatures, specifically reserving
2,556 samples for external validation testing, to yield an overall
accuracy of 90.5%. This is as compared to previously reported
classification accuracies of 76% to 89% [15–17,19,23,24]. Finally, the
use of RNA-Seq expression data has a number of potential advantages
over microarray techniques, as previously outlined, including wide
genome coverage, which allowed us to identify several new biomarkers,
such as BEST1 in ovarian cancer and the gene fusion ANKHD1-
ignatures (rows) across all 3,244 cancer samples (columns).
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EIF4EBP3 in pancreatic cancer. To our knowledge, this is the first CUP
study using large-scale RNA-Seq data for both training and validation to
demonstrate a highly accurate model for cancer prediction.
One of the limitations of our study is that, although RNA-Seq allows

for the capability to detect unmapped genes, in this proof-of-concept
study, we limited our analysis to only annotated transcripts. While
computationally more intensive, a dataset comprised of chromosomal
positions rather than annotated genes would allow for additional
discovery of novel biomarkers and could potentially improve the
accuracy. In addition, in our dataset, there were insufficient kidney and
liver samples to allocate to our test set for external validation; however,
the kidney and liver biomarker signatures nonetheless yielded strong
specificities of N99%.
We have demonstrated the strength of this model in its ability to

accurately and efficiently distinguish samples of one type (i.e., cancer
type of interest) from another (i.e., heterogeneous group of other
cancer types). While this study focused specifically on deriving
lineage-specific cancer signatures by RNA-Seq, this model may be
applied to any large dataset to query other clinical questions, such as
deriving a signature that distinguishes premalignant and cancerous
lesions from inflammatory and other benign conditions. Similarly,
given a dataset of patients with known clinical outcomes, our model
could be used to derive biomarker signatures that identify patients
who would respond to a given therapy or identify patients with worse
outcomes compared to clinically and histologically-matched cohorts
who should be targeted for aggressive treatment and surveillance.

Conclusions
In this study, we introduced a computational model that successfully
extracted accurate, lineage-specific cancer signatures for the top eight
tissue types that contribute to CUP using RNA-Seq. Through
external validation of a large dataset, we have shown how these
signatures may be used to accurately identify tumors of unknown
origin, demonstrating the translational potential of not only our
cancer biomarker signatures but also the model itself, which may be
applied to other clinical queries.

References

[1] Pimiento JM, Teso D, Malkan A, Dudrick SJ, and Palesty JA (2007). Cancer of
unknown primary origin: a decade of experience in a community-based
hospital. Am J Surg 194, 833–837 [discussion 837–838].

[2] Pavlidis N and Pentheroudakis G (2010). Cancer of unknown primary site: 20
questions to be answered. Ann Oncol 21(Suppl. 7), vii303–vii307.

[3] Shaw PH, Adams R, Jordan C, and Crosby TD (2007). A clinical review of the
investigation and management of carcinoma of unknown primary in a single
cancer network. Clin Oncol (R Coll Radiol) 19, 87–95.

[4] Pavlidis N, Briasoulis E, Hainsworth J, and Greco FA (2003). Diagnostic and
therapeutic management of cancer of an unknown primary. Eur J Cancer 39,
1990–2005.

[5] Hainsworth JD and Greco FA (1993). Treatment of patients with cancer of an
unknown primary site. N Engl J Med 329, 257–263.

[6] Blaszyk H, Hartmann A, and Bjornsson J (2003). Cancer of unknown primary:
clinicopathologic correlations. APMIS 111, 1089–1094.

[7] National Comprehensive Cancer Network clinical Practice Gidelines in
Oncology. Occult Primary (Cancer of Unknown Primary [CUP]). Version 3;
2014 [nccn.org].

[8] Werling RW, Yaziji H, Bacchi CE, and Gown AM (2003). CDX2, a highly
sensitive and specific marker of adenocarcinomas of intestinal origin: An
immunohistochemical survey of 476 primary and metastatic carcinomas. Am J
Surg Pathol 27, 303–310.

[9] Kaufmann O and Dietel M (2000). Thyroid transcription factor-1 is the
superior immunohistochemical marker for pulmonary adenocarcinomas and
large cell carcinomas compared to surfactant proteins A and B. Histopathology
36, 8–16.

[10] Dennis JL, Hvidsten TR, Wit EC, Komorowski J, Bell AK, Downie I, Mooney
J, Verbeke C, Bellamy C, and Keith WN, et al (2005). Markers of
adenocarcinoma characteristic of the site of origin: development of a diagnostic
algorithm. Clin Cancer Res 11, 3766–3772.

[11] Kaufmann O, Fietze E, Mengs J, and Dietel M (2001). Value of p63 and
cytokeratin 5/6 as immunohistochemical markers for the differential diagnosis
of poorly differentiated and undifferentiated carcinomas. Am J Clin Pathol 116,
823–830.

[12] Motzer RJ, Rodriguez E, Reuter VE, Bosl GJ, Mazumdar M, and Chaganti RS
(1995). Molecular and cytogenetic studies in the diagnosis of patients with poorly
differentiated carcinomas of unknown primary site. J Clin Oncol 13, 274–282.

[13] Atkin NB and Baker MC (1982). Specific chromosome change, i(12p), in
testicular tumours? Lancet 2, 1349.

[14] Ilson DH, Motzer RJ, Rodriguez E, Chaganti RS, and Bosl GJ (1993). Genetic
analysis in the diagnosis of neoplasms of unknown primary tumor site. Semin
Oncol 20, 229–237.

[15] Bloom G, Yang IV, Boulware D, Kwong KY, Coppola D, Eschrich S,
Quackenbush J, and Yeatman TJ (2004). Multi-platform, multi-site,
microarray-based human tumor classification. Am J Pathol 164, 9–16.

[16] Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd
C, Reich M, Latulippe E, and Mesirov JP, et al (2001). Multiclass cancer
diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A 98,
15149–15154.

[17] Shedden KA, Taylor JM, Giordano TJ, Kuick R, Misek DE, Rennert G,
Schwartz DR, Gruber SB, Logsdon C, and Simeone D, et al (2003). Accurate
molecular classification of human cancers based on gene expression using a
simple classifier with a pathological tree-based framework. Am J Pathol 163,
1985–1995.

[18] Tothill RW, Kowalczyk A, Rischin D, Bousioutas A, Haviv I, van Laar RK,
Waring PM, Zalcberg J, Ward R, and Biankin AV, et al (2005). An expression-
based site of origin diagnostic method designed for clinical application to cancer
of unknown origin. Cancer Res 65, 4031–4040.

[19] Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M,
Benjamin H, Shabes N, Tabak S, and Levy A, et al (2008). MicroRNAs
accurately identify cancer tissue origin. Nat Biotechnol 26, 462–469.

[20] Ojala KA, Kilpinen SK, and Kallioniemi OP (2011). Classification of unknown
primary tumors with a data-driven method based on a large microarray reference
database. Genome Med 3, 63.

[21] Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey
SS, Van de Rijn M, and Waltham M, et al (2000). Systematic variation in gene
expression patterns in human cancer cell lines. Nat Genet 24, 227–235.

[22] Horlings HM, van Laar RK, Kerst JM, Helgason HH, Wesseling J, van der
Hoeven JJ, Warmoes MO, Floore A, Witteveen A, and Lahti-Domenici J, et al
(2008). Gene expression profiling to identify the histogenetic origin of
metastatic adenocarcinomas of unknown primary. J Clin Oncol 26, 4435–4441.

[23] Ma XJ, Patel R, Wang X, Salunga R, Murage J, Desai R, Tuggle JT, Wang W,
Chu S, and Stecker K, et al (2006). Molecular classification of human cancers
using a 92-gene real-time quantitative polymerase chain reaction assay. Arch
Pathol Lab Med 130, 465–473.

[24] Talantov D, Baden J, Jatkoe T, Hahn K, Yu J, Rajpurohit Y, Jiang Y, Choi C,
Ross JS, and Atkins D, et al (2006). A quantitative reverse transcriptase-
polymerase chain reaction assay to identify metastatic carcinoma tissue of origin.
J Mol Diagn 8, 320–329.

[25] Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero
A, Ebert BL, Mak RH, and Ferrando AA, et al (2005). MicroRNA expression
profiles classify human cancers. Nature 435, 834–838.

[26] Quon G and Morris Q (2009). ISOLATE: a computational strategy for
identifying the primary origin of cancers using high-throughput sequencing.
Bioinformatics 25, 2882–2889.

[27] Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert
M, Borodina T, Soldatov A, and Parkhomchuk D, et al (2008). A global view of
gene activity and alternative splicing by deep sequencing of the human
transcriptome. Science 321, 956–960.

[28] Wang Z, Gerstein M, and Snyder M (2009). RNA-Seq: a revolutionary tool for
transcriptomics. Nat Rev Genet 10, 57–63.

[29] Pentheroudakis G, Golfinopoulos V, and Pavlidis N (2007). Switching
benchmarks in cancer of unknown primary: from autopsy to microarray. Eur J
Cancer 43, 2026–2036.

http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0005
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0005
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0005
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0460
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0460
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0010
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0010
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0010
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0015
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0015
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0015
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0020
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0020
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0025
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0025
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0465
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0465
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0465
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0030
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0030
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0030
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0030
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0035
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0035
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0035
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0035
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0040
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0040
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0040
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0040
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0045
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0045
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0045
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0045
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0050
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0050
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0050
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0055
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0055
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0060
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0060
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0060
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0065
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0065
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0065
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0070
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0070
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0070
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0070
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0075
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0075
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0075
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0075
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0075
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0080
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0080
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0080
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0080
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0085
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0085
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0085
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0090
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0090
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0090
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0095
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0095
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0095
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0100
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0100
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0100
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0100
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0470
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0470
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0470
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0470
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0110
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0110
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0110
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0110
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0115
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0115
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0115
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0120
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0120
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0120
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0125
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0125
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0125
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0125
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0130
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0130
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0135
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0135
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0135


926 Wei et al. Neoplasia Vol. 16, No. 11, 2014
[30] Briasoulis E and Pavlidis N (1997). Cancer of unknown primary origin.
Oncologist 2, 142–152.

[31] Abbruzzese JL, Abbruzzese MC, Lenzi R, Hess KR, and Raber MN (1995).
Analysis of a diagnostic strategy for patients with suspected tumors of unknown
origin. J Clin Oncol 13, 2094–2103.

[32] Stewart JF, Tattersall MH,Woods RL, and Fox RM (1979). Unknown primary
adenocarcinoma: incidence of overinvestigation and natural history. Br Med J 1,
1530–1533.

[33] Le Chevalier T, Cvitkovic E, Caille P, Harvey J, Contesso G, SpielmannM, and
Rouesse J (1988). Early metastatic cancer of unknown primary origin at
presentation. A clinical study of 302 consecutive autopsied patients. Arch Intern
Med 148, 2035–2039.

[34] Hamilton CS and Langlands AO (1987). ACUPS (adenocarcinoma of
unknown primary site): a clinical and cost benefit analysis. Int J Radiat Oncol
Biol Phys 13, 1497–1503.

[35] Kirsten F, Chi CH, Leary JA, Ng AB, Hedley DW, and Tattersall MH (1987).
Metastatic adeno or undifferentiated carcinoma from an unknown primary site–
natural history and guidelines for identification of treatable subsets.Q JMed 62,
143–161.

[36] Nystrom JS, Weiner JM, Wolf RM, Bateman JR, and Viola MV (1979).
Identifying the primary site in metastatic cancer of unknown origin. Inadequacy
of roentgenographic procedures. JAMA 241, 381–383.

[37] Moertel CG, Reitemeier RJ, Schutt AJ, and Hahn RG (1972). Treatment of the
patient with adenocarcinoma of unknown origin. Cancer 30, 1469–1472.

[38] Osteen RT, Kopf G, and Wilson RE (1978). In pursuit of the unknown
primary. Am J Surg 135, 494–497.

[39] Kothari V, Wei I, Shankar S, Kalyana-Sundaram S, Wang L, Ma LW, Vats P,
Grasso CS, Robinson DR, and Wu YM, et al (2013). Outlier kinase expression
by RNA sequencing as targets for precision therapy. Cancer Discov 3, 280–293.

[40] International Cancer Genome Consortium; 2014. http://www.icgc.org.
[41] The Cancer Genome Atlas; 2014. http://cancergenome.nih.gov.
[42] R language; 2014. http://www.R-project.org.
[43] Sing T, Sander O, Beerenwinkel N, and Lengauer T (2005). ROCR: visualizing

classifier performance in R. Bioinformatics 21, 3940–3941.
[44] Everitt BS and Hothorn T (2010). A handbook of statistical analyses using R.

CRC PressINC; 2010 [Vol.].
[45] Akaike H (1974). A new look at the statistical model identification. IEEE Trans

Autom Control 19, 716–723.
[46] McCullagh P and Nelder JA (1989). Generalized linear model. Chapman &

Hall; 1989 [Vol.].
[47] Perkins NJ and Schisterman EF (2006). The inconsistency of “optimal”

cutpoints obtained using two criteria based on the receiver operating
characteristic curve. Am J Epidemiol 163, 670–675.

[48] de Hoon MJ, Imoto S, Nolan J, and Miyano S (2004). Open source clustering
software. Bioinformatics 20, 1453–1454.

[49] Eisen M (2002). TreeView. http://rana.lbl.gov/EisenSoftware.htm.
[50] Pesquita C, Faria D, Falcao AO, Lord P, and Couto FM (2009). Semantic

similarity in biomedical ontologies. PLoS Comput Biol 5, e1000443.
[51] Eeles RA, Kote-Jarai Z, Giles GG, Olama AAA, Guy M, Jugurnauth SK,

Mulholland S, Leongamornlert DA, Edwards SM, and Morrison J, et al (2008).
Multiple newly identified loci associated with prostate cancer susceptibility. Nat
Genet 40, 316–321.

[52] Edwards S, Campbell C, Flohr P, Shipley J, Giddings I, Te-Poele R, Dodson A,
Foster C, Clark J, and Jhavar S, et al (2005). Expression analysis onto
microarrays of randomly selected cDNA clones highlights HOXB13 as a marker
of human prostate cancer. Br J Cancer 92, 376–381.

[53] Liu XF, Olsson P, Wolfgang CD, Bera TK, Duray P, Lee B, and Pastan I
(2001). PRAC: A novel small nuclear protein that is specifically expressed in
human prostate and colon. Prostate 47, 125–131.

[54] Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P,
Norton CR, Gridley T, Cardiff RD, and Cunha GR, et al (1999). Roles for
Nkx3.1 in prostate development and cancer. Genes Dev 13, 966–977.

[55] Bowen C, Bubendorf L, Voeller HJ, Slack R, Willi N, Sauter G, Gasser TC,
Koivisto P, Lack EE, and Kononen J, et al (2000). Loss of NKX3.1 expression
in human prostate cancers correlates with tumor progression. Cancer Res 60,
6111–6115.

[56] Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J,
Matusik R, Thomas GV, and Sawyers CL (2003). Myc-driven murine prostate
cancer shares molecular features with human prostate tumors. Cancer Cell 4,
223–238.
[57] He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS, Curtis
RT, Shell BK, Bostwick DG, and Tindall DJ, et al (1997). A novel human
prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to
8p21, a region frequently deleted in prostate cancer. Genomics 43, 69–77.

[58] Nelson WG, De Marzo AM, and Isaacs WB (2003). Prostate cancer. N Engl J
Med 349, 366–381.

[59] Wang X, Julio MKD, Economides KD, Walker D, Yu H, Halili MV, Hu YP,
Price SM, Abate-Shen C, and Shen MM (2009). A luminal epithelial stem cell
that is a cell of origin for prostate cancer. Nature 461, 495–500.

[60] Gaut JP, Crimmins DL, Lockwood CM, McQuillan JJ, and Ladenson JH
(2013). Expression of the Na+/K+− transporting ATPase gamma subunit
FXYD2 in renal tumors. Mod Pathol 26, 716–724.

[61] Laurent E, McCoy Iii JW, Macina RA, Liu W, Cheng G, Robine S, Papkoff J,
and Lambeth JD (2008). Nox1 is over-expressed in human colon cancers and
correlates with activating mutations in K-Ras. Int J Cancer 123, 100–107.

[62] Kamata T (2009). Roles of Nox1 and other Nox isoforms in cancer
development. Cancer Sci 100, 1382–1388.

[63] Leu JI, Crissey MAS, and Taub R (2003). Massive hepatic apoptosis associated
with TGF-β1 activation after Fas ligand treatment of IGF binding protein-1–
deficient mice. J Clin Invest 111, 129–139.

[64] Borlak J, Meier T, Halter R, Spanel R, and Spanel-Borowski K (2005).
Epidermal growth factor-induced hepatocellular carcinoma: Gene expression
profiles in precursor lesions, early stage and solitary tumours. Oncogene 24,
1809–1819.

[65] Chuman Y, Bergman A, Ueno T, Saito S, Sakaguchi K, Alaiya AA, Franzen B,
Bergman T, Arnott D, and Auer G, et al (1999). Napsin A, a member of the
aspartic protease family, is abundantly expressed in normal lung and kidney
tissue and is expressed in lung adenocarcinomas. FEBS Lett 462, 129–134.

[66] Hirano T, Auer G, Maeda M, Hagiwara Y, Okada S, Ohira T, Okuzawa K,
Fujioka K, Franzen B, and Hibi N, et al (2000). Human tissue distribution of
TA02, which is homologous with a new type of aspartic proteinase, napsin A.
Jpn J Cancer Res 91, 1015–1021.

[67] Ueno T, Linder S, and Elmberger G (2003). Aspartic proteinase napsin is a
useful marker for diagnosis of primary lung adenocarcinoma. Br J Cancer 88,
1229–1233.

[68] Habener JF, Kemp DM, and Thomas MK (2005). Minireview: transcriptional
regulation in pancreatic development. Endocrinology 146, 1025–1034.

[69] Sander N, Sussel L, Conners J, Scheel D, Kalamaras J, Dela Cruz F,
Schwitzgebel V, Hayes-Jordan A, and German M (2000). Homeobox gene
Nkx6.1 lies downstream of Nkx2.2 in the major pathway of β-cell formation in
the pancreas. Development 127, 5533–5540.

[70] Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ,
Sussel L, Johnson JD, and German MS (2000). Expression of neurogenin3
reveals an islet cell precursor population in the pancreas. Development 127,
3533–3542.

[71] Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, and Peck AB
(2002). In vitro trans-differentiation of adult hepatic stem cells into pancreatic
endocrine hormone-producing cells. Proc Natl Acad Sci U S A 99, 8078–8083.

[72] Moss SF, Lee JW, Sabo E, Rubin AK, Rommel J, Westley BR,May FEB, Gao J,
Meitner PA, and Tavares R, et al (2008). Decreased expression of gastrokine 1
and the trefoil factor interacting protein TFIZ1/GKIM2 in gastric cancer:
influence of tumor histology and relationship to prognosis. Clin Cancer Res 14,
4161–4167.

[73] Oien KA, McGregor F, Butler S, Ferrier RK, Downie I, Bryce S, Burns S, and
Keith WN (2004). Gastrokine I is abundantly and specifically expressed in
superficial gastric epithelium, down-regulated in gastric carcinoma, and shows
high evolutionary conservation. J Pathol 203, 789–797.

[74] Xing R, Li W, Cui J, Zhang J, Kang B, Wang Y, Wang Z, Liu S, and Lu Y
(2012). Gastrokine 1 induces senescence through p16/Rb pathway activation in
gastric cancer cells. Gut 61, 43–52.

[75] Yoon JH, Kang YH, Choi YJ, Park IS, Nam SW, Lee JY, Lee YS, and Park WS
(2011). Gastrokine 1 functions as a tumor suppressor by inhibition of epithelial-
mesenchymal transition in gastric cancers. J Cancer Res Clin Oncol 137,
1697–1704.

[76] Yoon JH, Song JH, Zhang C, Jin M, Kang YH, Nam SW, Lee JY, and ParkWS
(2011). Inactivation of the Gastrokine 1 gene in gastric adenomas and
carcinomas. J Pathol 223, 618–625.

[77] Kunzelmann K, Kongsuphol P, Aldehni F, Tian Y, Ousingsawat J, Warth R,
and Schreiber R (2009). Bestrophin and TMEM16-Ca2+ activated Cl−
channels with different functions. Cell Calcium 46, 233–241.

http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0140
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0140
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0145
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0145
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0145
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0150
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0150
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0150
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0155
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0155
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0155
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0155
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0160
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0160
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0160
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0165
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0165
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0165
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0165
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0170
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0170
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0170
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0175
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0175
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0180
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0180
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0185
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0185
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0185
http://www.icgc.org
http://cancergenome.nih.gov
http://www.R-project.org
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0190
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0190
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0475
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0475
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0200
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0200
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0480
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0480
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0210
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0210
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0210
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0215
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0215
http://rana.lbl.gov/EisenSoftware.htm
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0220
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0220
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0225
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0225
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0225
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0225
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0485
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0485
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0485
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0485
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0235
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0235
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0235
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0240
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0240
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0240
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0245
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0245
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0245
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0245
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0490
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0490
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0490
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0490
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0255
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0255
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0255
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0255
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0260
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0260
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0265
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0265
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0265
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0270
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0270
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0270
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0270
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0275
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0275
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0275
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0280
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0280
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0285
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0285
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0285
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0495
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0495
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0495
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0495
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0500
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0500
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0500
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0500
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0505
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0505
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0505
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0505
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0305
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0305
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0305
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0310
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0310
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0315
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0315
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0315
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0315
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0320
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0320
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0320
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0320
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0325
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0325
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0325
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0510
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0510
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0510
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0510
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0510
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0335
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0335
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0335
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0335
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0515
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0515
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0515
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0340
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0340
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0340
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0340
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0345
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0345
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0345
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0350
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0350
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0350
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0350
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0350


Neoplasia Vol. 16, No. 11, 2014 Wei et al. 927
[78] Spitzner M, Martins JR, Soria RB, Ousingsawat J, Scheidt K, Schreiber R, and
Kunzelmann K (2008). Eag1 and bestrophin 1 are up-regulated in fast-growing
colonic cancer cells. J Biol Chem 283, 7421–7428.

[79] Chung W, Kwabi-Addo B, Ittmann M, Jelinek J, Shen L, Yu Y, and Issa JPJ
(2008). Identification of novel tumor markers in prostate, colon and breast
cancer by unbiased methylation profiling. PLoS One , 3.

[80] Furuta J, Nobeyama Y, Umebayashi Y, Otsuka F, Kikuchi K, and Ushijima T
(2006). Silencing of peroxiredoxin 2 and aberrant methylation of 33 CpG
islands in putative promoter regions in human malignant melanomas. Cancer
Res 66, 6080–6086.

[81] Vasiljević N, Wu K, Brentnall AR, Kim DC, Thorat MA, Kudahetti SC, Mao
X, Xue L, Yu Y, and Shaw GL, et al (2011). Absolute quantitation of DNA
methylation of 28 candidate genes in prostate cancer using pyrosequencing. Dis
Markers 30, 151–161.

[82] Rodríguez D, Ramsay AJ, Quesada V, Garabaya C, Campo E, Freije JMP, and
López-Otín C (2013). Functional analysis of sucrase-isomaltase mutations from
chronic lymphocytic leukemia patients. Hum Mol Genet 22, 2273–2282.

[83] Prakash T, Sharma VK, Adati N, Ozawa R, Kumar N, Nishida Y, Fujikake T,
Takeda T, and Taylor TD (2010). Expression of conjoined genes: another
mechanism for gene regulation in eukaryotes. PLoS One 5, e13284.

[84] Poulin F, Brueschke A, and Sonenberg N (2003). Gene fusion and overlapping
reading frames in the mammalian genes for 4E-BP3 and MASK. J Biol Chem
278, 52290–52297.

[85] Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, and Perucho M
(1988). Most human carcinomas of the exocrine pancreas contain mutant c-K-ras
genes. Cell 53, 549–554.

[86] Bos JL (1989). ras Oncogenes in human cancer: a review. Cancer Res 49,
4682–4689.

[87] Hingorani SR, Petricoin Iii EF, Maitra A, Rajapakse V, King C, Jacobetz MA,
Ross S, Conrads TP, Veenstra TD, and Hitt BA, et al (2003). Preinvasive and
invasive ductal pancreatic cancer and its early detection in the mouse. Cancer
Cell 4, 437–450.

[88] Morton JP, Mongeau ME, Klimstra DS, Morris JP, Yie CL, Kawaguchi Y,
Wright CVE, Hebrok M, and Lewis BC (2007). Sonic hedgehog acts at
multiple stages during pancreatic tumorigenesis. Proc Natl Acad Sci U S A 104,
5103–5108.
[89] Kim DW and Lassar AB (2003). Smad-dependent recruitment of a histone
deacetylase/Sin3A complexmodulates the bonemorphogenetic protein-dependent
transcriptional repressor activity of Nkx3.2.Mol Cell Biol 23, 8704–8717.

[90] Lefebvre V and Smits P (2005). Transcriptional control of chondrocyte fate and
differentiation. Birth Defects Res C Embryo Today 75, 200–212.

[91] Murtaugh LC, Zeng L, Chyung JH, and Lassar AB (2001). The chick
transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-
dependent axial chondrogenesis. Dev Cell 1, 411–422.

[92] Zeng L, Kempf H, Murtaugh LC, Sato ME, and Lassar AB (2002). Shh
establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP
signals to induce somitic chondrogenesis. Genes Dev 16, 1990–2005.

[93] Katoh Y and Katoh M (2009). Hedgehog target genes: mechanisms of
carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol
Med 9, 873–886.

[94] Lee CJ, Dosch J, and Simeone DM (2008). Pancreatic cancer stem cells. J Clin
Oncol 26, 2806–2812.

[95] Thayer SP, Di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers
GY, Qi YP, Gysin S, Fernández-del Castillo C, and Yajnik V, et al (2003).
Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis.
Nature 425, 851–856.

[96] Hahn SA, Schutte M, Shamsul Hoque ATM, Moskaluk CA, Da Costa LT,
Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, and Hruban RH, et al (1996).
DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.
Science 271, 350–353.

[97] Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, and DePinho RA (2006).
Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20,
1218–1249.

[98] Rozenblum E, Schutte M, Goggins M, Hahn SA, Panzer S, Zahurak M,
Goodman SN, Sohn TA, Hruban RH, and Yeo CJ, et al (1997). Tumor-
suppressive pathways in pancreatic carcinoma. Cancer Res 57, 1731–1734.

[99] Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL,
Yeo CJ, Kern SE, and Hruban RH (2000). Loss of expression of Dpc4 in
pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late
in neoplastic progression. Cancer Res 60, 2002–2006.

[100] Mahadevan D and Von Hoff DD (2007). Tumor-stroma interactions in
pancreatic ductal adenocarcinoma. Mol Cancer Ther 6, 1186–1197.

http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0355
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0355
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0355
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0360
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0360
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0360
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0365
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0365
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0365
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0365
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0520
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0520
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0520
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0520
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0375
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0375
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0375
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0380
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0380
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0380
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0385
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0385
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0385
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0390
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0390
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0390
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0395
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0395
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0400
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0400
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0400
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0400
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0405
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0405
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0405
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0405
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0525
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0525
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0525
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0410
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0410
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0415
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0415
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0415
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0420
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0420
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0420
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0425
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0425
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0425
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0430
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0430
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0435
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0435
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0435
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0435
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0530
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0530
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0530
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0530
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0440
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0440
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0440
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0445
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0445
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0445
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0450
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0450
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0450
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0450
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0455
http://refhub.elsevier.com/S1476-5586(14)00142-0/rf0455

	RNA-Seq Accurately Identifies Cancer Biomarker Signatures to Distinguish Tissue of Origin
	Introduction
	Material and Methods
	Multi-Cancer RNA-Seq Database
	Model for Deriving an Optimal Biomarker Signature
	Transcript normalization
	Univariate transcript analysis
	Stepwise logistic regression
	Biomarker signature selection
	Internal validation
	External validation
	Duplicate cancer predictions
	Additional analysis


	Results
	Discussion
	Conclusions
	References


