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Although solar radiation management (SRM) through
stratospheric aerosol methods has the potential to
mitigate impacts of climate change, our current
knowledge of stratospheric processes suggests that
these methods may entail significant risks. In addition
to the risks associated with current knowledge,
the possibility of ‘unknown unknowns’ exists that
could significantly alter the risk assessment relative
to our current understanding. While laboratory
experimentation can improve the current state of
knowledge and atmospheric models can assess
large-scale climate response, they cannot capture
possible unknown chemistry or represent the full
range of interactive atmospheric chemical physics.
Small-scale, in situ experimentation under well-
regulated circumstances can begin to remove some of
these uncertainties. This experiment—provisionally
titled the stratospheric controlled perturbation
experiment—is under development and will only
proceed with transparent and predominantly
governmental funding and independent risk
assessment. We describe the scientific and technical
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foundation for performing, under external oversight, small-scale experiments to quantify the
risks posed by SRM to activation of halogen species and subsequent erosion of stratospheric
ozone. The paper’s scope includes selection of the measurement platform, relevant aspects of
stratospheric meteorology, operational considerations and instrument design and engineering.

1. Scientific perspective
Solar radiation management (SRM) supposes that deliberate addition of aerosol to the
stratosphere could reduce climate risks by partially offsetting the radiative forcing from
accumulating greenhouse gases. The past few years have seen a tremendous surge in research
examining the efficacy and risks of SRM. A large body of research has used general circulation
models (GCMs) to examine the climate response to SRM forcing. Most of these have used
very simple models of stratospheric aerosol. For example, many simply adjust the top of the
atmosphere radiative forcing [1–3]. A more limited set of studies have used interactive aerosol
models in GCMs, but, in most such studies, to date, the aerosol size distribution has been
prescribed [4–6], and changes in climate (temperature, precipitation) predicted without chemical
feedbacks.

There have been studies using two-dimensional models with aerosol dynamics in which
the size distribution is allowed to freely evolve [7,8], but these two-dimensional models
have important limitations. For example, they cannot accurately treat stratosphere–troposphere
exchange nor can they examine zonal heterogeneity. A few models have employed aerosol
dynamics within a three-dimensional framework [9,10] but without any chemical interactions
with ozone. All such studies find that aerosol particle distributions in a geoengineered
stratosphere could be larger than observed after the 1991 Mt. Pinatubo eruption, and that the
size distribution is sensitive to the injection method, location and frequency.

While a set of studies have examined the impacts of SRM on ozone chemistry, all of the studies
have used simple prescriptions of aerosol distributions [6,11] or aerosol distributions calculated
in off-line models [7]. This is a serious limitation as the distribution of aerosol surface area can
have a profound effect on ozone chemistry, with feedback effects also linking ozone chemistry
to temperature and dynamics. Tilmes et al. [12] found that geoengineering could greatly enhance
chlorine activation in the polar regions during cold winters, possibly enlarging the region of polar
ozone depletion. The Heckendorn et al. [7] study using a chemistry-climate model found that
aerosol heating near the tropical tropopause induced by geoengineering modified stratospheric
water vapour, which resulted in additional ozone depletion.

To first order, between the local tropopause and approximately 30 km altitude at mid-latitudes,
ozone concentrations are controlled by a combination of transport and photochemical production
and loss, with photochemical control increasing with increasing altitude. At altitudes above
approximately 30 km in summer, ozone concentrations are dominantly controlled by catalytic
photochemistry. Therefore, the assessment of SRM depends on the coupling of chemistry and
dynamics in the lower stratosphere. Furthermore, it has been demonstrated that the catalytic
chemistry is highly sensitive not only to aerosol surface area density (SAD), but also to
water vapour [13]. Elevated levels of lower stratospheric water vapour constitute an additional
uncertainty and risk factor for ozone and SRM.

(a) Catalytic chemistry
In 1994, it was demonstrated by direct in situ observations of the rate-limiting radicals by
Wennberg et al. [14] that chemical ozone loss in the lower stratosphere is dominated by
catalytic removal through reactions with the hydrogen–oxygen (HOx) radicals OH and HO2. This
represented a major turning point in our understanding of ozone loss from the previously held
view that the catalytic loss of ozone was rate limited by NOx radicals, specifically NO and NO2 in
the lower stratosphere. In fact, because HOx radicals are the dominant rate-limiting radicals in this
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system, and because reactions with NOx radicals are the dominant reactive pathways converting
the rate-limiting HOx, ClOx (ClO and Cl) and BrOx (BrO and Br) radicals to their non-catalytic
inorganic forms, the NOx radicals become the buffering species rather than the catalytic species
in ozone removal. As a result, with a decreasing concentration of NOx species, the rate of ozone
catalytic loss in the lower stratosphere increases, because the rate-limiting radicals HO2, ClO and
BrO that are removed by NOx increase in concentration.

Large ozone losses that occur over the polar regions result directly from heterogeneous
reactions involving inorganic chlorine [15]. These reactions serve primarily to transform inorganic
chlorine (principally HCl and ClONO2 that constitute approx. 97% of available inorganic
chlorine) into the rapidly photolysed intermediates Cl2 and HOCl, followed by reaction of the
product Cl atoms with ozone to form the primary catalytically active chlorine radical, ClO.
What proved to be of particular importance from the NASA SAGE III ozone loss and validation
experiment mission [16–20] was that examination of conditions in the Arctic lower stratosphere
coupled with emerging results from laboratory experiments showed that the dominant pathway
for chlorine activation appears to be on simple, ubiquitous, cold sulfate–water aerosols [15,21–24].
Thus, it is both temperature and water vapour concentration in combination with simple binary
sulfate–water aerosols that primarily determine the kinetics for rapid chlorine activation.

Enhanced ClO that results from increases in sulfate aerosols or water vapour in the
stratosphere [17,18] can accelerate ozone destruction primarily through one of two catalytic
reaction cycles: the ClO dimer mechanism, or a coupled bromine and chlorine mechanism [25]:

BrO + ClO → Br + Cl + O2

Br + O3 → BrO + O2

Cl + O3 → ClO + O2

2O3 → 3O2

Even small changes in the lower stratosphere can have significant consequences for ozone, as
the heterogeneous reactions that set the threshold conditions for chlorine activation are extremely
sensitive to temperature, water vapour and reaction aerosol surface area. We know from the
injection of sulfates following the volcanic eruption of Mt. Pinatubo [26] that the impact on ozone
of enhanced sulfates can be significant.

Accurate photochemical models for the lower stratosphere are necessary to quantitatively
assess changes to ozone loss rates resulting from increased stratospheric aerosol loading.
Currently, there are significant uncertainties in the rates of key reactions necessary to forecast
ozone loss and recovery. Monte Carlo scenario simulations of the impact of the known
uncertainties in these kinetic parameters identify chlorine and bromine reactions as the dominant
driver of uncertainty in ozone loss rates [27]. Further uncertainty in future ozone loss rates is
driven by uncertainty about the meteorological conditions under which these reactions will take
place.

(b) Water vapour and dynamics in the lower stratosphere
Changes in stratospheric water vapour content play a central role in mediating the stratosphere’s
response to greenhouse gas-driven climate change and to the use of SRM to offset such changes.
A combination of radiative [28–32], dynamical [33,34] and chemical processes [35] associated with
water vapour complicate the prediction of ozone loss rates in a deliberately engineered climate
(figure 1). We first describe the relevant determinants of water vapour in the current climate, and
then speculate about the interaction of climate change and SRM.

Observations of stratospheric water vapour indicate a mixed pattern of increases and decreases
over decadal time scales [36–38]. Projections based on coupled chemistry–climate GCMs suggest
a secular increase in stratospheric water vapour over 50 years [39]. Increased stratospheric
water vapour concentrations will add to the radiative forcing of climate and tend to exacerbate
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Figure 1. Schematic of interactions between green house gas (GHG)-driven climate change, SRM and stratospheric ozone.
A red arrow denotes an interaction where an increase in the quantity on the left generally causes an increase in the quantity
on the right; a blue arrow denotes the converse; and a grey arrow is used for indeterminate cases. Sulfate aerosol causes
direct radiative heating of the lower stratosphere and perhaps of the tropical tropopause layer (TTL). SRM would introduce
a net negative radiative forcing that would offset some impacts of the positive forcing from increased GHGs. The combined
effects of increased surface aerosol density, stratospheric temperature decreases andwater vapour increases could substantially
increase photochemical ozone losses. Conversely, SRM aerosol might decrease stratospheric water vapour, an offsetting effect.
The purpose of SCoPEx is to reduce the uncertainty in our knowledge of relevant aerosol processes and this photochemistry
through in situ perturbation experiments.

ozone loss. Other than CH4 oxidation, H2O enters the stratosphere either by transport into
the stratosphere through the tropical tropopause or by dynamical mixing of tropospheric air
into the lowermost stratosphere in mid-latitudes. Dessler et al. [40] have demonstrated a robust
correlation between increased surface temperatures and increased stratospheric H2O, but we lack
a high-quality mechanistic understanding of either pathway.

Recent findings have drawn attention to an unexpected source of tropospheric water vapour
to the stratosphere. In situ measurements of water vapour in the lower stratosphere show a
significant frequency of elevated values, occurring in approximately 50% of summertime flight
observations over the USA [35]. The convective origin of these water vapour measurements
is established by simultaneous in situ observations of H2O and the HDO isotopologue [41,42],
differentiating between direct convective injection- and other temperature-controlled pathways
linking the troposphere and stratosphere [41,43,44]. Convective injection of water vapour as
reported in [35] can occur in storm systems that are approximately 50 km across, with smaller
domains of high-altitude injection embedded within them [45,46]. The elevated concentrations of
water can spread to 100 km or more in horizontal extent within a few days, and may remain at
the elevated levels over a period of days.

The existence of these regions of substantially enhanced water vapour may represent an
important pathway for water vapour entry into the lower stratosphere as surface temperatures
warm. A coherent understanding has yet to coalesce unifying all observational and theoretical
lines of evidence [47]. Recent work by Ploeger et al. [34] and by Homeyer et al. [48–50] have
brought emphasis to the competition between (i) horizontal water vapour transport in the lower
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stratosphere from subtropics to high latitudes and (ii) deep stratospheric convective injection of
water vapour over the USA in summer, respectively.

Now we consider the impact of an increased sulfate aerosol loading in the lower stratosphere.
First, there will be a direct impact on ozone concentration through the halogen activation
pathways described above [11]. Second, there will be competing indirect effects that have received
little attention to date. On the one hand, SRM sulfates may decrease stratospheric water vapour
by decreasing tropical tropopause temperatures [50] or by decreasing the energy that drives
subtropical convective injection. On the other hand, an increase in sulfate aerosol loading in
the tropical tropopause layer will increase radiative heating rates and so raise temperatures,
potentially increasing stratospheric water vapour concentration. The increased stratospheric
water vapour could produce a wetter stratosphere, leading to much faster ozone losses.
Conversely, the net effect of SRM could be less ozone loss if the induced cooling reduces transport
of water vapour into the lower stratosphere. Figure 1 illustrates these competing pathways.

Taken together, these considerations speak to the need to improve understanding of (i) the
radiative impact of SRM aerosols, (ii) the potential for enhanced ozone loss under conditions of
high water vapour, and (iii) the processes that determine the transport of water vapour into the
lower stratosphere.

(c) The necessity for direct experimentation in the lower stratosphere
The stratospheric controlled perturbation experiment (SCoPEx) aims to advance understanding
of the risks and efficacy of SRM. No single scientific effort stands alone. Laboratory experiments,
for example, play an essential role in understanding stratospheric processes. Sophisticated
chemical reactors have been developed to simulate stratospheric conditions and provide
controlled environments to observe reactions of free radicals [51–53]. Particle chambers have
been built to study the dynamics of aerosol particles under controlled environmental conditions.
Laboratory investigations cannot, however, simultaneously meet all conditions necessary to
quantify uncertainties associated with physical processes in the stratosphere. Laboratory systems,
for example, are limited in their ability to realize gas flows that do not interact with the chamber
walls, and interactions with the walls interfere both with chemical kinetics and with the dynamics
of particles. Nor can laboratory experiments quantitatively simulate the catalytic role of UV
photons on gas- and liquid-phase constituents with the correct solar spectrum and a realistic
population of reactive intermediates.

The consequences of the stratosphere’s multi-scale variability are hard to predict, particularly
in the case of heterogeneous reactions on aerosols, which are known to have strong nonlinear
dependencies on temperature. This unpredictability is increased by the uncertain knowledge
of the inventory of radical reservoir species and aerosol types and microphysics. Experiments
executed in situ in the lower atmosphere are therefore a necessary complement to laboratory
experiments if we are to reliably and comprehensively quantify the reactions and dynamics
defining the risks and efficacy of SRM.

Aircraft experiments revolutionized stratospheric science by exploiting the natural variability
of the stratosphere’s chemical composition by examining how one quantity covaries with another,
e.g. ClO with O3 in the polar regions [54]. These ‘partial derivative’ experiments benefit from long
flight tracks that allow us to accumulate robust statistics as a wide range of variability is observed.
Experiments to understand the risks and efficacy of SRM will sometimes be able to use the same
strategy when natural variability covers the relevant parameter space. Perturbative experiments
allow us to extend scientific investigations to look outside the natural range of variability and to
better control independent variables.

Moreover, it is plausible that conclusions reached with direct, in situ observations within the
lower stratosphere itself will greatly simplify the scientific arguments, providing a better basis
for public discussion and policy-making about the risks of SRM than computer models and
laboratory experiments alone.
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Another essential need for in situ experiments is to determine the size distribution of
aerosol particles as a function of time following injection of a sulfur-bearing gas. The size
distribution will depend on the rate at which H2SO4 gas nucleates into particles; the size
and number concentration of those particles will determine their coagulation rate into larger
particles; and the rate of plume expansion and dilution will determine the time evolution of
the size distribution. Dynamical effects within the first milliseconds will determine nucleation
properties, whereas the degree of spatial heterogeneity in the plume as it expands will affect the
later size distribution of the particles. Smaller mean particle sizes or broader distributions will
result in greater sulfate SAD, producing a larger perturbation to stratospheric chemistry and a
greater risk of ozone depletion. Larger mean particle sizes would lead to faster sedimentation
rates, a shorter stratospheric lifetime for sulfate particles, and less radiative forcing per unit of
sulfate [7,8,10].

2. Experimental approaches

(a) General requirements for in situ experimentation
The fundamental experimental protocol for SCoPEx consists of first seeding a small volume with
sulfate particles or water vapour, either individually or in combination. The chemical evolution as
a function of time within the volume must then be measured with sufficient sensitivity to detect
the progress of the photochemical reactions that limit the rate of ozone loss in the mid-latitude
lower stratosphere. The time evolution of the aerosol size distribution must be measured with
adequate resolution to compute the aerosol radiative properties, settling rate and contribution to
halogen activation. Requirements for the implementation of this experiment include

— the experimental system must be capable of injecting controlled amounts of water, and
sulfate or other aerosol into a defined well-mixed volume in the stratosphere;

— the system must track the seeded volume continuously, so that it can be re-entered at will,
and it should monitor the volume’s geometry;

— the experimental duration must exceed 24 h, because the ozone chemistry is strongly
modulated by the diurnal cycle of UV irradiance;

— disturbance of seeded volume by in situ sampling should be minimized;
— for sulfates, the system must produce aerosol with size distributions relevant to tests of

SRM deployment (0.1–1.0 µm radii);
— to minimize environmental risk, the amount of injected material should be as small as

possible, consistent with given limitations arising from signal-to-noise (SNR) and plume
dispersion during the experimental period; and

— the system must sample the seeded region in situ to obtain a sequence of observations of
the key species ClO, BrO, O3, H2O, HDO, aerosol number density and size distribution,
NO2, HCl, temperature and pressure.

Lower stratospheric chemistry experiments were often conducted by balloon in the 1970s
and 1980s. More recently, the existence of high-altitude aircraft and sophisticated, compact
chemistry payloads has shifted aircraft into the dominant role for these investigations. The
optimum platform for undertaking an investigation such as SCoPEx can be determined through
consideration of the experimental requirements.

(b) Defining an optimum experimental platform
A perturbative experiment must take repeated measurements of a small perturbed volume to
study its temporal evolution. This requirement points to platforms that have long endurance.
The need to monitor the chemistry over more than a single diurnal cycle to observe the solar
influence on the photochemistry demands an endurance of greater than 24 h. In order to satisfy
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the full set of requirements given in §2a, the observing system must be able to maintain float
altitude for an extended period of time, it must be able to navigate horizontally to (i) perturb the
selected volume with injection of sulfate aerosol and/or water, (ii) track the position of and follow
the perturbed region (so as not to lose it) as it drifts with slow background horizontal winds,
and (iii) repeatedly sample the seeded region without introducing either excessive turbulence or
chemical perturbation.

A propelled balloon has significant advantages over aircraft in meeting these requirements.
The required endurance is well within the capabilities of super-pressure balloons (SPBs) [55–60].
Monitoring and tracking the perturbed volume is greatly simplified by a measurement system
that can drift with ambient winds. No available aircraft meets our combined requirements of
endurance and payload capacity. Finally, a balloon can take advantage of the relatively quiescent
state of the background stratosphere [61,62] to minimize the size of the perturbed volume
required to observe the reactions of interest, thereby reducing environmental risk.

(c) Creating and monitoring a well-mixed, chemically perturbed volume
The experimental protocol for SCoPEx depends on understanding the dispersion processes that
define the geometry and temporal behaviour of the perturbed volume. The unique characteristics
of the mid-latitude lower stratosphere are advantageous in simplifying the implementation
of perturbation experiments such as SCoPEx. First is the most obvious—the stratosphere is
stable against vertical exchange, because the intrinsic temperature increase with altitude severely
restricts vertical exchange. Thus, the ‘stratosphere’ designation. Second, over the USA in summer,
the lower stratosphere in the altitude range from 18 to 23 km is remarkably quiescent with respect
to both zonal flow velocities and shear. During May through September, lower stratospheric
temperatures in the region of 50–70 hPa are in the range of 200–214 K, and wind speed is in
the range of 2–7 m s−1. Turbulent mixing in the background stratosphere is dominated by large
regions of minimal turbulent activity, punctuated by small ‘pancakes’ of turbulence [61,62] where
energetic mixing occurs. In these regions, a small perturbed volume will mix very slowly with
surrounding air. The slow dilution of passive tracers in the stratosphere has been analysed by
Newman et al. [63] using high-altitude (70–100 hPa) observations of rocket plume dispersion that
define the rate of horizontal spreading from a point source.

Molecular diffusion is too slow, and background turbulent mixing too unpredictable to allow
the creation of well-defined and well-mixed experimental perturbations. Some external mixing
is required to create a well-defined volume where the reactions of interest can occur. We ran
numerical simulations to see if this could be achieved by the atmospheric mixing in the wake of
a propelled balloon.

Our simulation was driven by background meteorological conditions determined by
combining inspection of wind data from reanalysis [64] and radiosonde data with a survey [65–67]
of the literature on stratospheric turbulence. Based on these efforts, we defined base and limiting
cases with diffusion coefficients of 0.01 and 1.0 m2 s−1, vertical shears of 0 and 2 m s−1 km−1,
and balloon airspeeds of 1 and 5 m s−1, respectively. The simulation assumed a 60 m diameter
balloon and a 20 m tether to the suspended payload. The base case diffusion coefficient was
chosen as a most representative value on small spatial scales for quiescent stratospheric air based
on a review of in situ measurements [68]. The propeller and balloon parameters were chosen to
approximately represent a range of possible engineering designs rather than one specific finalized
design. Aerodyne Research, Inc. (Billerica, MA) provided a computational fluid dynamics (CFD)
simulation (G Magoon, J Peck, R Miake-Lye 2013, unpublished work) of the plume covering the
initial development of the turbine propeller wake over the first 45 min following injection. This
simulation used the OpenFOAM [69] CFD code run in a Reynolds-averaged stress mode modified
to represent the dispersion of a passive tracer. We then used our own advection–diffusion code
driven by reanalysis winds to examine how the plume might evolve over a 24 h period following
release. This code uses a second-order numerical scheme with a fixed diffusion coefficient to
compute kinematic parcel trajectories (see Bowman et al. [70] for a review of related models).
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Figure 2. Results of CFD calculations for balloon physical configuration and propulsion assuming 1 m s−1 at 20 km altitude.
(a) The plume radius—defined by a passive tracer concentration of 5 × 10−3 of the initial peak concentration found on the
centreline of thewell-developedplume—asa function of the distance downstream (km). Plumedispersalwill be dominatedby
wakesgeneratedbyballoonmotion. Theplume initially expands rapidly, slowingafter a fewhours towards anasymptotic radius.
(b) The tracer concentration at distances of 1000 and 3000 m downstream as a function of plume radius. (c) The concentration
of a passive tracer (arbitrary units) released from the balloon gondola as it travels right to left.

The results for the base case (figure 2) show that a well-developed plume forms in the
propeller wake with an initial radius of about 20 m. At a distance of 8 km from its initial
injection, the plume radius grows to about 85 m (or order 100 m for defining a nominal plume
volume). These results suggest that the propeller wake can be used to create a well-mixed area
in which to perform the perturbation experiment. The propelled balloon payload in SCoPEx thus
performs two interdependent tasks. First, it allows us to create a perturbed region, and, second,
it allows us to manoeuvre around that region, so its evolution can be tracked and monitored
over time.

The rate of plume dispersion is crucial to (i) forming an appropriately sized particle
distribution using the methods of Pierce et al. [8], (ii) understanding the distribution of induced
chemical perturbations within the plume, and (iii) understanding how the plume evolves in
three dimensions to ensure that the payload can re-enter the plume multiple times during the
experiment. Note that the experimental design is based on probing the variation of observed
chemistry with simultaneously observed perturbations of H2O and aerosols. Therefore, while
plume modelling is needed for operations, the accuracy of scientific results does not strongly
depend on our ability to model concentrations in the plume.

These CFD results show that a correctly designed propeller can provide this mixing, but it
results in a small turbulent disturbance relative to a similar experimental approach executed by
aircraft. Analysis [71] of aircraft contrails normalized to match results from the Concorde [72]
indicates that an aerosol perturbation generated in the wake of a stratospheric plane will grow to
approximately 250 m diameter after 2.5 h. This implies that over 30 times as much sulfur would
be required relative to a propeller-generated plume (with a radius of order 100 m after 2.5 h), with
a proportional increase in physical risk. The relatively rapid growth of the aircraft plume also
means that, for each pass back through the plume to make chemical measurements, a significantly
larger fraction of the aerosol plume will be disturbed and vigorously mixed with background air.
This disturbance of the plume means that the sampling regions must be further apart, meaning a
longer plume is required to achieve the same number of samples.
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Table 1. Instruments with performance notes and references for principle of operation and flight-tested implementations. The
two mixing ratios for HDO correspond to the range associated with the type of perturbative experiment under consideration,
and with its naturally occurring abundance.

instrument notes references
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aerosol generator 1 kg of liquid H2SO4 is sufficient to create approximately 3.0 × 107 m3 (100 m radius by

2 km length cylinder) of 15µm2 cm−3 surface area density
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H2O/HDO injector 10 kg of liquid H2O/HDO is sufficient to generate 10 ppmv enhancement over

approximately 3.0 × 107 m3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aerosol counter 1054 nm scatterometer with 100 size bins can measure 0.06–1µm particles,

3000 particles s−1

[73,74]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H2O direct absorption in infrared with Herriot cell: 5%± 0.2 ppmv accuracy; 2% precision

in 1 s

[75]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HDO mid-infrared integrated cavity output spectroscopy; SNR approximately 105 in 1 s at

10 ppmv, SNR approximately 5 at 1 s and 0.5 ppbv

[76,77]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LIDAR 532 nmmicropulse Light Detection and Ranging (LIDAR), integrated to scanmechanism

and mounted with clear view for hemispheric scan; range resolution 30/75 m,

integration time 1 s

[78,79]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NO2 mid-infrared integrated cavity output spectroscopy; SNR approximately 40 in 1 s at

1 ppbv

[77,80–82]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HCl mid-infrared integrated cavity output spectroscopy; SNR approximately 40 in 1 s at

1 ppbv

[77,80–82]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BrO chemical conversion–atomic resonance scattering technique with flight-tested inlet

design; SNR approximately 10 at 1 s and 10 pptv

[83,84]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ClO chemical conversion–atomic resonance scattering technique with flight-tested inlet

design; SNR approximately 10 at 1 s and 10 pptv

[83,85–87]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O3 accuracy 2% or better, precision 2% in 10 s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) Physical and chemical measurements
The instrumentation necessary to introduce the chemical perturbation, and to perform chemical
and meteorological measurements and plume tracking (table 1) is chosen according to the
following rationale:

Independent variable perturbation (the perturbations to aerosol SAD and water vapour
created by SCoPEx constitute the independent variables in the experimental analysis plan):

— aerosol injection: a vapourizer and storage tank provide the material and means to create
sulfate aerosol particles of appropriate size;

— H2O/HDO vapour injection: a combination of vapourizer and storage tank allow the
elevation of the water vapour level.

Independent variable measurement:

— aerosol sizing counter: this measurement counts the number of aerosol particles within
size bins to track microphysical evolution, constrain heterogeneous reactivity and allow
computation of radiative forcing;

— H2O/HDO: H2O concentration is a fundamental determinant of reaction rates, and HDO
provides a convenient means of distinguishing perturbed from background air; and
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— LIDAR: LIDAR plus scanning mechanism to monitor the location of the aerosol plume
relative to the balloon platform.

Dependent variable measurement (these measurements detect the response in atmospheric
composition to the SAD and water vapour perturbations):

— HCl: direct measurement of HCl quantifies the removal of inert inorganic Cl from its
dominant reservoir.

— NO2: as discussed in §1a, changes in the mixing ratio of photochemically linked NO2 or
NO are related to the potential for halogen activation.

— BrO: direct measurement of the BrO radical will be performed to constrain ozone loss
rates.

— ClO: direct measurement of the ClO radical will be performed to quantify chlorine
activation.

— Ozone: in situ ozone measurement during perturbation experiments can reveal deviations
in ozone loss rate from expectations based on existing photochemical data.

3. System architecture
We are following a phased approach to experiment development to reduce project risk, manage
costs and to allow disciplined modifications to mission design. To date, we have studied several
system architectures for SCoPEx, drawing on a suite of engineering studies, some specific to
SCoPEx and others developed for other stratospheric science missions.

The general architecture of such a system consists of a scientific balloon suspending a
propeller-driven module that also serves as the injection device for introducing commanded
combinations of sulfate aerosol and water as defined above. The distance between the balloon
and the suspended module can be adjusted such that the perturbed volume may be tracked and
repeatedly sampled with in situ instrumentation. The system must allow continuous position
surveillance of the perturbed region and repeated opportunities to transit the aerosol and
chemical sensors between the perturbed air mass and background air.

Here, we present two plausible specific system architectures denoted as stage one and two.
Prior to a decision that would commit funds to building flight hardware, we plan to do further
engineering to refine these architectures in a succeeding study that corresponds to phase A in
the NASA Systems engineering handbook [88]. The resulting mission design might adapt a staged
development approach that moved from stages one to two as defined here, or it might proceed
directly to a hybrid system.

Both architectures share a set of common design elements, including

— utilization of scientific balloons, either overpressured zero pressure (OZP) [89] or SPB
designs;

— altitude control using a winch building on heritage from the ‘reeldown’ system [90,91]
and flown in the stratosphere with a tested extension length of 13 km. Although for
SCoPEX, an extension length no longer than approximately 1 km is required; and

— propulsion systems that have been deployed for stratospheric airships [92] and have been
flight tested for numerous robotic aircraft [93] developed for high-altitude observations.
The requirements here are well within the envelope of previous flight systems.

(a) Stage one system architecture
This stage comprises a single integrated balloon-suspended gondola that includes

— an OZP balloon at a float altitude of approximately 20 km with a system operating
endurance of more than 36 h;
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— a combination of water ballast dumping and vent controls that allows altitude control to
±0.5 km over a diurnal cycle;

— a winching system capable of maximum extensions of 1 km and vertical rates of 1 km h−1

sufficient to maintain altitude control in the face of the balloon’s intrinsic altitude
variability; and

— finally, a propulsion module capable of driving the system at relative air speeds of up to
1 m s−1.

(b) Stage one concept of operations
This system depends on launching during the low winds found at stratospheric ‘turn around’ [94]
as the drive velocity is not sufficient for station keeping during the higher winds prevalent at other
times of year. Operational constraints would therefore be similar to that of unpropelled balloons
used for stratospheric science and astronomy. This means there is a significant chance that one
would not get acceptable conditions during a given season and would miss a launch opportunity.

The balloon launch will be timed so that a plume can be created before dawn. After achieving
a stable float altitude chosen to avoid regions of shear-induced turbulence, the perturbed volume
would be created, following the same approach for either stage one or stage two architecture,
as follows. The perturbing material will be injected into the propeller wake for approximately
1000 s, creating a plume roughly 1 km long with an initial maximum radius of approximately
20 m (figure 2). Plume growth then slows dramatically as propeller wake energy is dissipated: in
the absence of vigorous mixing by stratospheric turbulence, the radius remains of order 100 m
yielding a total volume of approximately 0.03 km3 over the experiment duration.

The payload will then be manoeuvred to fly back and forth through the plume for the duration
of the experiment. Operational control of the payload will depend primarily on imaging of the
plume using scanning LIDAR which has very high SNR for our particle density at a range of less
than 10 km. To assist operational decisions, the payload position orientation (from GPS) will be
integrated with LIDAR data to provide the operators with a plume density map referenced to
a fixed orientation and the mean drift velocity. Even in cases where experiments do not call for
aerosol perturbations, several ‘puffs’ of aerosols will be injected over the 1 km plume length that
will provide LIDAR returns for tracking the plume location and shape. If initial experiments show
that this is insufficient for navigation, we will supplement knowledge of the plume’s location by
one or two constant altitude floats with GPS relays [95].

Data from science sensors (e.g. aerosols, H2O, HCl, NO2, ClO, BrO and O3) and analysis by
the science team may be used to confirm flight through the plume and to adjust flight profiles.
The baseline flight profile would re-enter the plume at multiple points along its length to avoid
contamination of plume chemistry by outgassing from the payload.

A central uncertainty in planning operations is the difficulty of predicting plume behaviour
under realistic wind shear and turbulence conditions. Early flights will focus on quantitative
validation of plume dynamics and on developing the ability to re-enter the plume in a controlled
manner.

An advantage of this system architecture is that it does not require an expensive (US$500 000)
SPB. It enables engineering tests for initial deployment and system-level integration of the particle
generation, LIDAR, propulsion, chemical measurements and winch. However, it is possible that
the planned airspeed of 1 m s−1 may be insufficient to generate wall-less intake flows for the ClO
and BrO sensors.

(c) Stage two system architecture
The stage two architecture is derived from engineering work performed in support of the
Airborne Stratospheric Climate Coupled Convective Catalytic Chemistry Experiment North
America (ASC5ENA) mission proposal [96], which is designed to test hypotheses about
stratospheric chemistry, dynamics and mid-latitude convection. This mission proposal has been
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gas deck

sensors

electronics

inlets

(a) (b)

Figure 3. The StratoCruiser propulsion module (a) contains the docking enclosure for the suspended payload, the articulated
solar panels for power, Li–Po batteries for energy storage, dual high-efficiency propellers for concerted directional control,
the winching system for suspended payload reeldown as well as all electronics support and command/control requirements.
A cutaway of the suspended payload (b) shows representative in situ instruments and their associated inlet systems,
meteorological measurements, electronics support, communication command and control, and safety parachute. The
configuration of sensors for SCoPEx will be finalized in future engineering studies.

submitted to NASA as an Earth Venture Suborbital investigation and engineering work is
currently supported by two SBIR grants [80,97].

The ASC5ENA system consists of a superpressure ‘pumpkin’ [55] balloon suspending a drive
unit, designated the ‘StratoCruiser’ propulsion module, that itself suspends a separate winch-
driven sensor payload (figure 3). This StratoCruiser system significantly augments the capabilities
of the SCoPEx stage one experimental system, including but not limited to:

— the capability to drive at up to 8 m s−1 relative to background winds;
— articulated solar panels to fully provide the power necessary to drive the system and

perform the science functions;
— the capability to perform vertical soundings of up to 10 km using the ‘reeldown’ winching

system, controlling the vertical position of the suspended payload at controlled rates of
up to 10 m s−1;

— an augmented sensor array, including atmospheric tracer species CO2, CO, N2O and
CH4, enhanced wind measurements, two digital cameras and measurement of condensed
phase water and the HDO isotopologue; and

— the combination of the superior drive capability and solar panels allows an augmentation
of the experimental lifetime up to six weeks.

The StratoCruiser system can be modified to implement the SCoPEx perturbative experimental
concept, leading to a system we designate as the SCoPEx stage two. The propulsion module can
be engineered to accommodate a sulfate–water injection system and a winching system to adjust
its distance to the balloon.

(d) Stage two concept of operations
The concept of operations for stage two would proceed in a conceptually similar way to
stage one. In stage two, the system will be launched and allowed to achieve float altitude.
Because of its extended lifetime, the system will be allowed to dwell at float altitude for a pre-
operational period, during which it observes the local meteorology. Based on these meteorological
observations, the science team will select an air mass for experimentation based on its temperature
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StratoCruiser

(a) (b) (c)

Figure 4. The concept of operations for the proposed experiment is initiated by seeding a 1 km length of stratospheric air with
a combination of water vapour and sulfate aerosol using the propulsive capability of the StratoCruiser (a). Using a combination
of its altitude and propulsive capabilities, the StratoCruiser manoeuvres past and above the seeded volume, which continues
to expand owing to the turbulent wake generated by the propellers. The suspended instrument payload is reeled through the
seeded volume to measure aerosols, water vapour and chemical species including HCl and ClO (b). The propulsion capability
together with the LIDAR surveillance is used to track the seeded volume as it drifts with ambient wind and to make repeated
measurementswith the suspendedpayload, resolving the chemical evolutionwithin the seededvolumeas a functionof time (c).

and wind shear. The StratoCruiser propulsion module will then inject commanded combinations
of water and sulfate as defined in stage one, leading to a well-mixed perturbed plume
approximately 1 km in length and order 100 m in radius. The distance between the balloon
and the StratoCuiser can be adjusted over a vertical range of 1 km such that the propulsion
module can perturb the desired volume (which has been tested for quiescent conditions) and
then retract to a position approximately 1 km above the seeded region, tracking the volume
with LIDAR to maintain continuous position surveillance of the measurement region and remain
directly over the seeded volume (figure 4). The suspended payload that contains the array of in
situ instruments can then be lowered into the seeded region multiple times. This experimental
protocol is consistent with a set of operating procedures developed in partnership with the
Columbia Scientific Balloon Facility for ASC5ENA that permit safe operation within a large
designated airspace for a mission lasting six weeks during the months of June–August [96].

The enhanced capabilities of the stage two StratoCruiser system over stage one architecture
substantially reduce the risk of failing to obtain a viable experimental operating window and
increase the scientific returns, including but not limited to:

— the augmented drive capability allows safe operation during times of year of higher
stratospheric winds beyond the short turnaround periods in late spring and early
autumn. By expanding the operational window to include June–August, the probability
of gaining a launch window and completing a successful experiment campaign is
markedly improved;

— the experimental system can, on a single flight, run the injection and sampling protocol
multiple times;

— the controlled descent rate of the suspended payload ensures the isolation radical
molecules in the inlet air stream from the walls of the ClO and BrO sensors;
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— the system has greater latitude to select from a range of background meteorological
conditions, adding a further degree of control to the experimental protocol; and

— the measurement of tracer species CO2, CO, N2O and CH4 ties all measurements
to a widely used set of chemical coordinates [98,99], facilitating comparability with
other stratospheric chemistry observations that include similar tracers, regardless of
measurement platform (aircraft, balloon, satellite).

4. Expected results and data analysis

(a) Perturbation and anticipated response
SCoPEx will perform a suite of experiments to improve our understanding of aerosol
microphysics and heterogeneous ozone chemistry. We have formulated a baseline experiment to
allow quantitative evaluation of the experimental design via engineering analysis and chemical
modelling.

The preliminary experimental range is defined by

— background atmospheric conditions:

temperatures: 200–210 K, 5 ppmv H2O, 2 µm2 cm−3 aerosol SAD;

— plume nominal volume: 0.03 km3, radius of order 100 m by 1 km long;
— plume perturbations:

range of sulfate aerosol SAD increases of 10–50 µm2 cm−3

range of water vapour increases of 5–15 ppmv, to totals of 10–20 ppmv.

To provide confidence that the chemical perturbations that would be generated in the SCoPEx
experiment can be detected by the proposed instruments, we have performed simulation of the
chemical dynamics. We use a box model that is equivalent to a single grid cell of the AER two-
dimensional model [100] situated at 38◦N and 64 hPa in September. Chemical reaction rates are
from Sander et al. [101], and calculations are initialized with results from the free-running global
two-dimensional model at this location and date. While the plume would continue to expand
over the 48 h of the experiment, these calculations assume a constant H2O mixing ratio and
sulfate aerosol SAD inside the plume. We consider two limiting cases: a ‘slow’ perturbation with
aerosol SAD of 15 µm2 cm−3, H2O of 10 ppm and a temperature of 208 K, and a ‘fast’ perturbation
with aerosol SAD of 50 µm2 cm−3, H2O mixing ratio of 10 ppm and a temperature of 204 K. We
compute the evolution of chemical constituents inside and outside the plume. Figure 5 shows
the concentrations of HCl, NO, NO2 and ClO during 48 h following an injection of H2O and
H2SO4 that occurs just before dawn. The ‘slow’ case implies a decrease of HCl of only 8% over the
first 12 h, providing a sensitive test of the capability of the perturbative experiment approach to
disentangle small induced changes in composition from fluctuations owing to natural variability.
The ‘fast’ case demonstrates the increase in photochemical reaction rates that occurs when
colder temperatures and higher SAD combine to double the decrease in HCl that occurs in the
first 12 h.

Quantitative analysis of reaction rates from observations will be greatly aided by the use of
HDO to label the perturbed air. We will, for example, plot the ratio of the HCl to HDO/H2O
where the HDO/H2O ratio will serve as a very high SNR tracer of plume dilution. While changes
in HCl may be hard to detect, even in the ‘slow’ case, ClO shows a 45% increase in the first 8
hours, and an increase of approximately 100% in the second diurnal cycle.

5. Governance
SRM experiments are controversial—and rightly so, for SRM carries substantial risks, and there
are legitimate arguments against this research. The direct environmental risks of SCoPEx are very
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Figure 5. Calculated concentrations (ppbv) of HCl, NO, NO2 and ClO under background conditions (thin solid lines), and ‘slow’
(solid thick lines) and ‘fast’ (dashed thick lines) perturbed conditions for 48 h following injection that occurs just before dawn.
See details in §4a. Note that ClO concentrations have been scaled up by a factor of 10 for clarity. The background conditions are
5 ppmv H2O and 2µm2 cm−3 SAD sulfate aerosol. ‘Slow’ case has T = 208 K and 15 SADµm2 cm−3; ‘fast’ case has T = 204 K
and 50µm2 cm−3 SAD. Both cases have 10 ppmv H2O inside plume.

Table 2. Comparison of perturbations between SCoPEx and commercial air transport.

source H2O (kg) H2SO4 (kg)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

commercial jet
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 transatlantic flight of 5000 km, 6 h 140 000 180
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SCoPEx
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

baseline plume of 1 km 5 0.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

small: less than 1 kg of sulfuric acid is needed per flight, an amount that is less than the amount
of sulfur released by one commercial passenger jet in 1 min of flight time (table 2). Whatever
the physical risks are, the SCoPEx mission is committed to fostering a fully independent risk
assessment and approval process using mechanisms such as an environmental assessment under
the National Environmental Policy Act.

Quite distinct from the physical risks, there are other concerns about geoengineering research
that arise from the potential for socio-technical lock-in [75]. While a thorough review of this
topic is beyond the scope of this paper, SCoPEx has some distinctive features shaping its
potential risks. While it is possible to perturb the lower stratosphere with SCoPEx for the
purposes of testing key aspects of SRM, the cost of scaling SCoPEx as a deployment method
is so prohibitive that the development of the SCoPEx experiment would not directly accelerate
the development of hardware, industrial infrastructure or operational methods relevant to
deployment. Whatever our judgement of these risks, we will only proceed with SCoPEx if it
passes independent risk assessment and if it is financed predominantly with public funding from
a relevant scientific agency.

(a) Safety
Management of safety issues associated with SCoPEx (table 3) is of primary importance. These
issues are associated with the operation of scientific equipment, with scientific ballooning and
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Table 3. Risks and mitigation.

risk description/assessment mitigation

risks to operators concentrated sulfuric acid, high-power lasers,

high-pressure gas cylinders, propeller

standard safety procedures for caustics,

lasers, gas cylinders; propeller fixed

during launch phase
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

risks to public on the

ground

debris, uncontrolled recovery operation in area of low population

density, standard flight safety

procedures
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

risks to aircraft air traffic concerns FAA beacon and coordination

operational altitude>65 000 feet
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

risks from H2O release chemical/radiative perturbation to

stratosphere

none anticipated to be necessary

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

risks from H2SO4 release chemical/radiative perturbation to

stratosphere

none anticipated to be necessary

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

with chemical perturbations created by aerosol particles or water vapour additions. Maintaining
safe deployment of the planned chemical perturbations will be achieved in accordance with
recommendations provided through external oversight. Our current scientific and operational
planning suggest that the science objectives can be achieved with total perturbation less than 1 kg
H2SO4 and less than 10 kg H2O. These perturbations are small compared with common aircraft
activities. For example, a commercial aircraft emits roughly equal amounts of sulfur and water in
less than 2 min of flight time, and such aircraft do routinely fly in the stratosphere.

6. Summary
The development of stratospheric airships, SPBs and propulsion systems over more than three
decades provides the engineering foundation for rapid, low-risk development of the SCoPEx
platform. Our choice of a novel propelled balloon platform stems from the limited ability of
existing stratospheric aircraft or balloons to meet the mission science requirements of low-velocity
and long duration during periods of very light winds and low shear that occur on a seasonal basis
in the lower stratosphere.

The scientific instruments build directly on a decades-long history of stratospheric
composition measurements [76,77,81–87,102,103]. These instruments provide high temporal
resolution and high sensitivity to allow sampling of subtle chemical gradients that can be
used to infer the time dependence of chemical reactions. These small-scale features cannot be
measured by remote sensing methods that average over large spatial footprints, erasing essential
information about chemical reactivity. The measurements made by SCoPEx provide context for
measurements made on larger spatial scales and at longer time scales, bridging the gap between
small-scale processes and prediction of the atmosphere’s response to large-scale forcing.

To be clear, while the small-scale nature of SCoPEx minimizes a number of risks, it also
leaves a number of key uncertainties for other investigations. These include potential variations
in aerosol microphysics arising from varying meteorological conditions, different aircraft wake
characteristics and other particle generation techniques. There are also numerous uncertainties
associated with geoengineering deployment—changes to large-scale atmospheric circulations
and aerosol deposition at the surface [104], to name two—that are not addressed by SCoPEx.

External oversight and adherence to established safety practices are an essential part of the
SCoPEx approach to risk management. The physical risks associated with scientific ballooning
and custom instrumentation are managed using standard methods applied across all balloon
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missions. The size of the chemical perturbations in SCoPEx is tiny relative to chemical
perturbations caused by a few minutes of flight of a commercial passenger aircraft.

In summary, we have presented a case for an outdoor experiment to test the risks and
efficacy of SRM. The motivation for outdoor experimentation is grounded in a larger scientific
context and in the need to reduce uncertainties inherent in representing the complex atmospheric
system in the laboratory, by a natural analogue, or in a model. The scientific results are expected
to inform theoretical predictions about stratospheric composition in a changing climate with
high-resolution, high-accuracy data.
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