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Abstract

Purpose—Neuroblastoma is an embryonal tumor with contrasting clinical courses. Despite 

elaborate stratification strategies, precise clinical risk assessment still remains a challenge. The 
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purpose of this study was to develop a PCR-based predictor model to improve clinical risk 

assessment of patients with neuroblastoma.

Experimental Design—The model was developed using real-time PCR gene expression data 

from 96 samples and tested on separate expression data sets obtained from real-time PCR and 

microarray studies comprising 362 patients.

Results—On the basis of our prior study of differentially expressed genes in favorable and 

unfavorable neuroblastoma subgroups, we identified three genes, CHD5, PAFAH1B1, and NME1, 

strongly associated with patient outcome. The expression pattern of these genes was used to 

develop a PCR-based single-score predictor model. The model discriminated patients into two 

groups with significantly different clinical outcome [set 1: 5-year overall survival (OS): 0.93 ± 

0.03 vs. 0.53 ± 0.06, 5-year event-free survival (EFS): 0.85 ± 0.04 vs. 0.042 ± 0.06, both P < 

0.001; set 2 OS: 0.97 ± 0.02 vs. 0.61 ± 0.1, P = 0.005, EFS: 0.91 ± 0.8 vs. 0.56 ± 0.1, P = 0.005; 

and set 3 OS: 0.99 ± 0.01 vs. 0.56 ± 0.06, EFS: 0.96 ± 0.02 vs. 0.43 ± 0.05, both P < 0.001]. 

Multivariate analysis showed that the model was an independent marker for survival (P < 0.001, 

for all). In comparison with accepted risk stratification systems, the model robustly classified 

patients in the total cohort and in different clinically relevant risk subgroups.

Conclusion—We propose for the first time in neuroblastoma, a technically simple PCR-based 

predictor model that could help refine current risk stratification systems.

Introduction

Neuroblastoma, the most common solid extracranial pediatric tumor, is heterogeneous in 

terms of its biologic, genetic, and morphologic characteristics. Such tumors exhibit diverse 

clinical behaviors whereby patients with similar clinicopathologic features can have 

radically different outcomes. Since treatment strategies vary from surgery alone to intensive 

multimodal regimens, precise risk assessment is critical for therapeutic decisions. Currently, 

several clinical, biologic, and morphologic parameters, such as age at diagnosis, tumor 

stage, genomic amplification of MYCN oncogene, copy number alterations of the 

chromosomal regions 1p, 11q, and 17q, ploidy, and histologic features, are considered as 

markers of neuroblastoma outcome (1–4). However, despite elaborate risk stratification 

strategies, there remain cases where these markers have shown limited clinical use.

Microarray gene expression studies have contributed to identify sets of genes of prognostic 

importance in numerous neoplasias, including neuroblastoma (5–13). Nevertheless, the use 

of microarrays in clinical practice is limited by the large sets of genes identified and the 

need for complex statistical analyses required to extract informative patterns from raw 

microarray data. Furthermore, there has been little overlap in the prognostic gene sets 

identified by different groups. To translate these profiles into clinically applicable tests, it is 

essential to reduce the number of genes and create profiles that can be analyzed with a 

conventional assay such as quantitative real-time PCR (qRT-PCR).

In our previous study, we identified differentially expressed genes capable of discriminating 

between subgroups of neuroblastoma with radically different clinical course; namely, near-

triploid (favorable prognosis) and near-diploid/tetraploid tumors (unfavorable prognosis). A 

substantial portion of these genes mapped to chromosomes 1 and 17, chromosomal regions 
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found to be recurrently altered in neuroblastoma (14). Tumor cell ploidy has recently been 

included in the International Neuroblastoma Risk Group (INRG) classification system as a 

significant neuroblastoma biomarker together with MYCN status and 11q23 allelic status (3). 

Gene expression profiles associated with different neuroblastoma ploidy status may 

contribute to the identification of genes that are predictive of outcome. In this study, we 

investigated whether the identified gene expression profiling data allowed for the 

development of an outcome predictor model that could both accurately predict 

neuroblastoma outcome and be technically simple and applicable for routine clinical use. To 

this end, we examined the prognostic significance of 11 high-ranked, differentially 

expressed genes located on the chromosomes 1 and 17, chosen on the basis of our previous 

study (14). The results of a qRT-PCR–based analysis enabled the development of a single-

score predictor model based on the expression pattern of 3 genes, CHD5, PAFAH1B1, and 

NME1, strongly associated with patient outcome.

Methods

Patients and samples

Tumor specimens from 96 patients with neuroblastoma were obtained at the time of 

diagnosis from different institutions [Memorial Sloan-Kettering Cancer Center (MSKCC), 

NY (n = 42), Hospital Sant Joan de Déu (HSJD), Barcelona, Spain (n = 32); Hospital Niño 

Jesús, Madrid, Spain (n = 11); Hospital La Paz, Madrid, Spain (n = 7); and Hospital La Fe, 

Valencia, Spain (n = 4)] and represented the training set of this study (Table 1 and 

Supplementary Table S1).

The first 36 unselected cases of the training cohort (36 of 96 neuroblastoma) were used to 

develop the gene expression–based model; the remaining 60 primary neuroblastoma tumors 

were used as preliminary testing cohort. The complete training cohort (n = 96) was 

subsequently used to refine the obtained model (Table 1 and Supplementary Table S1).

A separate set of 120 primary neuroblastoma tumors (hereafter referred as set 1) of patients 

diagnosed and treated at the Department of Pediatric Oncology, University Children’s 

Hospital of Cologne, Cologne, Germany, was used as an independent, blinded set of RNA 

samples to validate the model by qRT-PCR.

Tumors were assessed by a pathologist, only tumors with more than 70% viable tumor cell 

content were included in the study. Risk assessment was defined by the International 

Staging System (INSS; ref. 1). Neuroblastoma stages I–IV were treated without use of 

cytotoxic therapy, when possible. Patients with stage IV neuroblastoma were treated with 

the combination of intensive chemotherapy (including high-dose therapy and autologous 

stem cell rescue), radiotherapy, and surgery. Written informed consent was obtained from 

each subject or from his or her guardian before collection of samples. This study was 

approved by the Institutional Review Boards.

Gene expression data

Two published gene expression data sets from different platforms comprising 352 patients in 

total were used as validations sets. Expression data were downloaded from the National 
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Centre of Biotechnology Information Gene Expression Omnibus (GSE3960; ref. 15) and 

from the European Bioinformatics Institute ArrayExpress database (E-TABM-38; ref. 9). 

Updated clinical data were obtained from the authors. The validation sets will be hereafter 

referred to as set 2 [n = 101 (ref. 15)] and set 3 [n = 251 (ref. 9)]. Sets 2 and 3 were used to 

assess the prediction performance of the model across different neuroblastoma expression 

data sets. Set 3 includes expression data of 110 patients comprised in set 1. This set of 

overlapping samples (n = 110) was used to estimate the prediction performance of the model 

in neuroblastoma tumors analyzed by different expression methods (qRT-PCR and 

microarray analyses). Set 3 was used for further analyses aimed to test the classification 

performance of the model as compared with current risk stratification systems. Set 3 was 

selected for these analyses as it comprises a full representation of the neuroblastoma tumor 

spectra and a median follow-up time of more than 5 years (Table 1 and Supplementary 

Table S5).

The analyses were done blinded of clinical and biologic data and sample identification.

RNA isolation and qRT-PCR

Total RNA was isolated from the 96 snap-frozen samples using Tri Reagent (Sigma), 

following manufacturers’ protocols. The cDNA was synthesized from 1 µg total RNA as 

previously described (14). Gene expression was quantified with TaqMan Gene Expression 

Assays (Supplementary Table S2) products on an ABI PRISM 7000 Sequence Detection 

System, using the ΔΔCT relative quantification method. All experiments included no-

template controls and were carried out in duplicate and repeated twice independently. 

Transcript levels were measured relative to 3 normal tissue samples (adrenal gland, lymph 

node, and bone marrow) and normalized to TATA-box–binding protein (TBP), 

hypoxanthine phosphoribosyltransferase 1 (HPRT1), and succinate dehydrogenase complex, 

subunit A (SDHA) expression values as previously described by Vandesompele and 

colleagues (16).

To control for possible variations among PCR runs conducted on different days, the 

expression of the reference genes was assessed in all tumor samples and control specimens 

at commencement, halfway through, and on completion of all the analyses. The assays were 

highly reproducible, with coefficient of variation (CV) less than 0.05 (TBP = 0.035, SDHA = 

0.049, and HPRT1 = 0.040 in tumor samples and TBP = 0.029, SDHA = 0.045, and HPRT1 

= 0.022 for control specimens).

Statistical analysis

Gene expression values were normalized with a z-score transformation. From the 96 

neuroblastoma cases of the training set, the first 36 unselected cases were used for the 

selection of genes strongly associated, as independent factors, with overall (OS) and event-

free (EFS) using Cox regression models. Relapse, progression, and death from disease were 

considered as events. Genes significantly associated with OS and EFS were further tested 

using principal components analysis (PCA; multivariable unsupervised method) with the 

VARIMAX rotation method and tested using Cox regression models. This procedure was 

conducted by means of a stepwise backward selection approach. Briefly, at each step of the 
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backward selection procedure, one gene was removed from the set of genes. To select which 

gene was discarded (not independent predictor or the least statistically significant), all the 

possible combinations of genes were tested by removing and then reintroducing one by one 

each gene following an iterative procedure. Each gene set combination was thus analyzed 

using PCA and tested with Cox regression models to assess the performance and the 

association with OS and EFS. This backward selection procedure concluded when the 

combination with the minimum set of genes statistically significantly associated with OS 

and EFS is found. After testing all the combinations, genes that were not independent 

predictors and the least statistically significant genes were discarded.

The outcome predictor model was developed using a linear combination of the z-score 

transformed expression value of each of the selected genes, weighted by the regression 

coefficients (α) of components with Eigenvalue > 1. The model was tested using the 

remaining 60 neuroblastoma cases of the training set. The entire training cohort (n = 96) was 

used to refine the model. To validate the final model, we applied it to different expression 

data sets obtained by qRT-PCR (set 1) and microarray gene expression studies (sets 2 and 

3). The performance of the model was examined with multivariable Cox regression models 

using a stepwise variable selection procedure. Survival curves were described using the 

Kaplan–Meier method and compared by means of the log-rank test. The area under the 

curve (AUC) of the receiver operating characteristic (ROC) test was used for quantitative 

assessment of the final model for the testing set (set 3). Predictive values (positive and 

negative), sensitivity, specificity, and the accuracy were calculated and expressed along with 

known prognostic factors (age, INSS, MYCN status, chromosome 11q and 1p alterations, 

and histologic features). Data were analyzed with SPSS program (version 15.0; SPSS, Inc.). 

All statistical tests were 2-sided. P values ≤0.05 were considered statistically significant.

Results

Selection of genes for the outcome predictor score model

In our previous study, we found specific transcriptional profiles associated with 

neuroblastoma with different ploidy (14). A statistically significant number of genes found 

to be differentially expressed mapped to chromosomes 1 (P = 0.01) and 17 (P < 0.0001), 

chromosomes with aberrations reported to be consistently associated with outcome in 

neuroblastoma (2). For this study, we selected 11 high-ranked, differentially expressed 

genes located on the chromosomes 1 and 17, some of these known to play a role in 

neuroblastoma pathogenesis. The expression levels of the 11 genes were quantified using 

qRT-PCR in 36 neuroblastoma tumors (Supplementary Table S1). To assess the association 

with OS and EFS, qRT-PCR expression levels were normalized by z-score transformation 

and analyzed using univariable Cox regression models (Supplementary Table S3). High 

expression of 6 genes was found to be significantly associated (P < 0.05) as independent 

factors with outcome: 5 (RERE, PTPRF, GNB1, CHD5, and PAFAH1B1) were associated 

with longer OS and EFS (HR < 1 for all) and one gene, NME1, was associated with worse 

clinical outcome (HR > 1). These 6 genes were considered potential prognostic markers and 

were further studied. We conducted PCA and univariable Cox regression analyses applying 

a stepwise backward selection approach. This selection procedure identified a predominant 
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gene expression pattern. Three genes, CHD5 (chromodomain, helicase DNA-binding protein 

5), PAFAH1B1 (platelet-activating factor acetylhydrolase, isoform 1B), and NME1/nm23-

H1 (nonmetastatic cells 1, protein expressed in), had a principal component with Eigenvalue 

> 1 describing more than 60% of the expression variability and were found to be strongly 

associated with OS and EFS (P = 0.001, for both). These 3 genes were selected for the 

model as the strongest prognostic markers. We thus developed a gene expression–based 

outcome predictor score model using z-transformed qRT-PCR data of each of the 3 genes 

weighted by the regression coefficients from the PCA (Supplementary Table S4), as 

described in the equation:

where, (Y36) is the outcome prediction score, equation developed using 36 neuroblastomas; 

αn is the weighted value of each gene to the definition of (Y);α1 = 0.418; α2 = 0.430; α3 = 

−0.374; and (Gene) is the z-transformed gene expression data of the sample analyzed.

The negative weighting value of NME1 indicates that the contribution of this gene is 

inversely correlated with the (Y36) score; thus, high expression levels of NME1 correlate 

with low (Y36) values. Patients were ranked according to their (Y36) score. Low (Y36) 

values were associated with shorter OS and EFS; conversely, an increase of the (Y36) score 

was associated with longer survival. Gene expression transformation to a z-distribution 

(mean, 0; SD, 1) allowed the cutoff point to divide neuroblastoma tumors with high or low 

scores to be set at the value (Y36) = 0. Kaplan–Meier estimates showed how the model could 

clearly separate the patients into groups with divergent clinical course (Supplementary Fig. 

S1A and S1B).

The first approximation of the model was tested using an independent set of 60 primary 

neuroblastoma tumors (Supplementary Table S1). For each tumor, qRT-PCR expression 

levels of the 3 genes were z-transformed and inserted into the equation (Y36). Patients were 

ranked and divided into 2 groups, Y36 < 0 or >0. The outcome predictor score could separate 

patients with significant differences in OS [HR, 9.3; 95% confidence interval (CI), 1.1–79.7; 

P = 0.013] and EFS (HR, 3.1; 95% CI, 1.2–8.03; P = 0.014; Supplementary Fig. S1C and 

S1D).

To improve the performance of the predictor model, we proceeded to reestimate the 

component coefficient scores of the 3 genes using the entire training cohort of 96 cases 

(Supplementary Table S1). The component coefficient score values obtained were 

comparable with those of the (Y36) equation (Supplementary Table S4). Kaplan–Meier 

analyses with log-rank estimates of the 96 training samples analyzed with the (Y96) model 

confirmed the strong association of the (Y96) model with OS and EFS (P < 0.001, for both; 

Supplementary Fig. S1E and S1F). The (Y96) model was tested on an independent, blinded 

set of 120 neuroblastoma tumors (set 1) by qRT-PCR. Patients were separated into 2 groups 

with significantly diverse clinical outcome (5-year OS: 0.93 ± 0.03 vs. 0.53 ± 0.06, 5-year 

EFS: 0.85 ± 0.04 vs. 0.047 ± 0.06, both P < 0.001; OS: HR, 7.5; 95% CI, 2.9–19.5; and 

EFS: HR, 4.7; 95% CI, 2.3–9.5; Supplementary Fig. S1G and S1H).

Garcia et al. Page 6

Clin Cancer Res. Author manuscript; available in PMC 2014 November 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Validation of outcome predictor model using independent microarray data

To assess whether the (Y96) model was able to predict prognosis across different 

neuroblastoma data sets, we applied it to 2 published gene expression databases from 

different microarray platforms: set 2 (n = 101; ref. 15) and set 3 (n = 251; ref. 9).

For each patient, microarray expression data of the 3 genes were z-transformed and inserted 

into the equation (Y96). Kaplan–Meier estimation with log-rank test and univariable Cox 

regression models showed that for both data sets, the (Y96) score could clearly separate 

patients into 2 groups with different OS and EFS [set 2: 5-year OS: 0.97 ± 0.02 vs. 0.61 ± 

0.1; HR, 10.5; 95% CI, 1.3–80.7; 5-year EFS: 0.91 ± 0.8 vs. 0.56 ± 0.1; HR, 13.3; 95% CI, 

1.7–101.6, both P = 0.005; set 3 5-year OS: 0.99 ± 0.01 vs. 0.56 ± 0.06; HR, 28.1; 95% CI, 

8.7–91.2; 5-year EFS: 0.96 ± 0.02 vs. 0.43 ± 0.05; HR, 15.6; 95% CI, 7.1–34.3, both P < 

0.001; (Fig. 1)]. For set 2, only one [stage III MYCN nonamplified (NA) neuroblastoma] of 

the 50 patients (2%) assigned to the low-risk group by the (Y96) score, had a fatal disease 

progression, and was thus misclassified. For set 3, 7 of the 148 patients (4.7%) assigned to 

the low-risk group by the (Y96) model had an event. Of them, 3 (2%; stage IV, >18 months, 

MYCN NA) died of disease progression.

The estimation of the performance of the (Y96) model for prediction of outcome showed an 

AUC for the ROC test of 0.87 (95% CI, 0.83–9.21) for OS and 0.89 (95% CI, 0.84– 0.93) 

for EFS. Prediction accuracies for the (Y96) model and established neuroblastoma 

prognostic parameters (age, INSS, MYCN amplification, and chromosome 1p status) are 

shown in Table 2. Furthermore, in a multivariable Cox regression analysis evaluating the 

prognostic parameters, the model remained significantly associated with OS and EFS (P < 

0.001 for all), showing thus to be independent of other prognostic markers (Table 3).

To further assess the model across different data sets, the prediction performance of samples 

analyzed by different expression methods (qRT-PCR and microarray analyses), included in 

sets 1 and 3 (n = 110), was compared. Equivalent results were obtained (data not shown), 

showing that the classification capacity of the model is independent of the type and origin of 

the expression data used.

Classification performance of the (Y96) model with respect to current risk stratification 
systems

To evaluate the prediction performance of the (Y96) model, risk stratification systems of 

international neuroblastoma trials were applied to set 3; this set of data has a full 

representation of the neuroblastoma tumor spectra and a median follow-up time of more 

than 5 years (Table 1). According to the criteria of the INRG and of clinical trials from 

Germany [German Society for Pediatric Hematology/ Oncology (GPOH) NB2004], the 

United States [Children’s Oncology Group (COG)], and Japan [Japanese Advanced 

Neuroblastoma Study Group (JANB)], 219, 248, 224, and 250 patients could be classified, 

respectively (Supplementary Table S5). All classification systems separated patients into 

groups with significant differences in OS and EFS (Fig. 2, Table 4). In comparison, the 

classification prediction of the (Y96) model differed in a subset of patients (Fig. 2, Table 4 

and Supplementary Table S5). Specifically, 5 of the patients favorably classified had a fatal 
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outcome (INRG, n = 1 of 120; NB2004, n = 3 of 155; COG, n = 4 of 113; and JANB, n = 4 

of 154; 4 cases matched), notably, these patients were classified in the high-risk group by 

the (Y96) model. Similarly, the 4 patients with a fatal outcome assigned to the intermediate-

risk group (INRG, n = 3 of 27; NB2004, n = 3 of 15; COG, n = 1 of 36; and JANB, n = 2 of 

20; 3 case matched) were classified as high-risk patients by the (Y96) model. Conversely, 3 

cases assigned to the low-risk group according to the (Y96) model and unfavorably classified 

by the risk stratification systems, died of disease.

(Y96) model classification of patient subgroups defined by current prognostic markers

Performance of the (Y96) model was assessed within patient subgroups of set 3 defined by 

currently used prognostic markers and compared with international neuroblastoma risk 

stratification systems. The (Y96) model correctly classified patients with fatal outcome in the 

subgroup of patients younger than 18 months (5-year OS: 1.0 vs. 0.80 ± 0.65, P < 0.0001; 5-

year EFS: 0.98 ± 0.01 vs. 0.58 ± 0.83, P< 0.0001) and significantly separated patients with 

different OS and EFS within the cohort of age above 18 months (5-year OS: 0.93 ± 0.05 vs. 

0.32 ± 0.06, P < 0.0001; 5-year EFS: 0.87 ± 0.06 vs. 0.34 ± 0.07, P < 0.0001; 

Supplementary Figs. S2 and S3). Furthermore, the model accurately classified all patients 

with localized neuroblastoma: stage I to III MYCN not amplified (5-year OS: 1.0 vs. 0.78 ± 

0.1, P < 0.0001; 5-year EFS: 0.98 ± 0.13 vs. 0.64 ± 0.10, P < 0.0001), stage I to III age 

above 18 months (5-year OS: 1.0 vs. 0.44 ± 0.14, P < 0.001; 5-year EFS: 0.95 ± 0.44 vs. 

0.43 ±0.11, P < 0.001), as well as patients older than 18 months with stage I to III MYCN 

not amplified disease (5-year OS: 1.0 vs. 0.56 ± 0.19, P < 0.001; 5-year EFS: 0.95 ± 0.41 vs. 

0.33 ± 0.18, P < 0.0001), showing a higher classification accuracy than the risk stratification 

systems (Supplementary Figs. S4–S6). A significant classification capacity was observed for 

patients stage IV (5-year OS: 0.85 ± 0.1 vs. 0.41 ± 0.07, P = 0.02; 5-year EFS: 0.76 ± 0.1 vs. 

0.27 ± 0.06, P = 0.01; Supplementary Fig. S7). Within stage IV neuroblastoma, the 

performance of the model was less robust for stage IV with MYCN nonamplified disease (5-

year OS: 0.85 ± 0.1 vs. 0.52 ± 0.09, P = 0.095; 5-year EFS: 0.77 ±0.11 vs. 0.33 ± 0.09, P = 

0.04) or stage IV above 18 months MYCN nonamplified tumors (5-year OS: 0.77 ± 0.13 vs. 

0.33 ± 0.1, P = 0.096; 5-year EFS: 0.66 ± 0.15 vs. 0.25 ± 0.1, P = 0.125; Supplementary 

Figs. S8 and S9). However, the model showed the capacity to classify correctly all MYCN 

amplified neuroblastoma (stage I–IV) as high-risk tumors (Supplementary Fig. S10).

Validation of the robustness of the three-gene signature and the statistical procedure

To show that the 3 selected genes are highly prognostic independent of the test set used to 

build the predictive model, we developed for each validation set independently, an equation 

using exclusively microarray data. CHD5, PAFAH1B1, and NME1 microarray expression 

data were z-transformed and processed following the same statistical methodology 

mentioned above. The principal component coefficient scores obtained for each equation, 

(Yset2) and (Yset3), were similar to those of the (Y96) model (Supplementary Table S4). Set 

2 and 3 data were analyzed applying these equations. For both data sets, Kaplan–Meier 

estimates and univariable Cox regression models showed equivalent results to those 

obtained with the (Y96) model (Supplementary Fig. S11 and Table S5). These results show 

the robustness of the gene expression signature and of the statistical methodology used to 

develop the model.
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Discussion

In this study, we developed a PCR-based predictor model using the expression pattern of 

just 3 genes strongly associated with outcome of patients with neuroblastoma. CHD5, 

PAFAH1B1, and NME1 were identified through the analysis of the prognostic significance 

of 11 genes found differentially expressed in our previous study (14). The results of a qRT-

PCR–based evaluation of the expression pattern of the selected genes in a training set of 96 

primary neuroblastoma tumors enabled the development of a single-score predictor model. 

Its validity was assessed using different expression data sets obtained from qRT-PCR and 

microarray gene expression studies comprising a total of 362 patients (9, 15). Our scoring 

method reliably stratified patients into neuroblastoma groups with markedly divergent 

clinical course. Multivariable Cox models showed that the developed scoring model was an 

independent predictor marker for survival. Moreover, the prediction performance of the 3-

gene model was found to be as robust as the international neuroblastoma risk stratification 

systems based on a combination of clinical and biologic parameters. Our classifier also 

significantly discriminated between patients in most subgroups defined by currently used 

prognostic markers. Interestingly, a significantly higher prediction performance than current 

risk stratification systems was observed in clinically relevant subgroups such as children 

with localized disease MYCN nonamplified. This is a relevant finding, as outcome prediction 

in this biologically broad subgroup of localized nonamplified neuroblastoma tumors still 

remains a challenge, as suggested by the low-and intermediate-risk patients experiencing 

adverse disease. The (Y96) model could, thus, help to better stratify these patients into 

subgroups with different clinical course and treatment regimes.

The genes that comprise the model have been previously reported to be involved in 

neuroblastoma biology. CHD5 is a tumor suppressor gene located on chromosome 1p36.31, 

region recurrently lost in high-risk neuroblastoma (17–21). Expression of this ATP-

dependent chromatin remodeling helicase has been found to be restricted to neuronal-

derived tissues and absent in neuroblastoma cell lines and neuroblastoma primary tumors 

with high-risk features, undifferentiated neuroblasts, MYCN amplification, advanced stage, 

and 1p monosomy (18, 21). Association between CHD5 expression and favorable prognosis 

in neuroblastoma has been reported previously in microarray gene expression studies (8, 11, 

14, 22). PAFAH1B1, located on chromosome 17p13.3, encodes an acetylhydrolase involved 

in cerebral cortex development, neuronal migration, and axonal growth (23). Mutations of 

PAFAH1B1 have been related to the Miller–Dieker lissencephaly syndrome (23, 24). We 

identified PAFAH1B1 expression in low-risk neuroblastoma tumors, whereas in high-risk 

tumors, expression is significantly diminished. PAFAH1B1 has been reported previously 

associated with favorable prognosis in neuroblastoma (7). In our study, high expression of 

both CHD5 and PAFAH1B1 correlated with prolonged survival. In contrast, NME1 

displayed high expression levels in high-risk neuroblastoma tumors, as reported previously 

(25, 26). NME1, located on a region frequently gained in clinically aggressive 

neuroblastoma 17q21.3 (27, 28), has been reported in several microarray analyses to be 

associated with high-risk neuroblastoma (6, 12, 13). The product of the NME1 gene is a 

nucleoside diphosphate kinase involved in cell proliferation, normal development, and cell 

differentiation (29).
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Prognostic models, similar to ours, and gene signatures based on small sets of genes, have 

been reported previously to predict clinical outcome in diffuse large B-cell lymphoma (6 

genes; ref. 30), clear cell renal carcinoma (3 genes; ref. 31), soft tissue sarcoma (3 genes; 

ref. 32), and non-small cell lung cancer (5 genes; ref. 33). In neuroblastoma, although 

diverse studies have proposed robust microarray multigene–based classification systems, to 

date, these gene signatures are still extensive and difficult to implement to clinical routine; 

that is, 429 genes (10), 144 genes (7, 9), 59 genes (8), 55 genes (5), 42 genes (6), 39 genes 

(11), or 19 genes (12). We have reduced the classifier complexity to 3 genes strongly 

associated with patient outcome and created a prognostic model that can be applied in 

routine laboratories using conventional qRT-PCR assay. Our preliminary results provide 

evidence of a prognostic model that can accurately define neuroblastoma clinical risk groups 

and could thus assist therapeutic decisions in patients with neuroblastoma.

In conclusion, we propose a robust and technically simple PCR-based one-score predictor 

model that requires only minimal amount of mRNA, easy to interpret, reproducible, and 

cost-effective for most laboratories. These features make the model a potentially practical 

classifier for neuroblastoma risk stratification that could help refine current risk stratification 

systems. The potential of this prototype model remains to be fully validated using qRT-PCR 

in a large, prospective, and independent cohort of patients with neuroblastoma samples.
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Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Neuroblastoma risk stratification is perhaps the most advanced of all pediatric solid 

tumors. International classification systems are based on various clinicopath-ologic and 

genetic parameters. Nevertheless, there remain cases where these elaborated stratification 

strategies have shown limited clinical use. In this study, a three-gene PCR-based single-

score model was developed and tested using quantitative real-time PCR and micro-array 

expression data from four sets including 458 patients with primary neuroblastoma. The 

scoring method reliably stratified patients with significantly different outcome in all the 

test sets and in different neuroblastoma risk subgroups, showing to be robust and highly 

reproducible. Furthermore, multivariate analysis showed that the model is an independent 

prognostic factor for survival. The proposed model is a technically simple classifier that 

requires minimal amount of mRNA, easy to interpret, reproducible, and cost-effective. 

These results provide evidence of a practical prognostic classifier that could help refine 

pretreatment risk assessment in patients with neuroblastoma.
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Figure 1. 
Kaplan–Meier analyses with log-rank estimates for OS and EFS of set 2 (A and B) and set 3 

(C and D) classified according to the prediction (Y96) model. HR, high-risk; LR, low-risk.
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Figure 2. 
Kaplan-Meier analyses and log-rank estimates for OS and EFS of the validation cohort set 3 

classified according to the (Y96) model (A and B), INRG (C and D), GPOH NB2004 (E and 

F).

COG (G and H), and JANB (I and J). HR, high-risk; IR, intermediate-risk; LR, low-risk.
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Table 1

Clinical and biologic characteristics of the training and validation cohorts

Training Validation

Characteristics Training set (N = 96) Set 1 (N = 120) Set 2 (N = 101) Set 3 (N = 251)

Age, mo

    Median 18.94 26.9 16.3 15.03

    Range 0–216 0–299 0–156 0–276

INSS, n (%)

    Stage I–III 53 (56) 43 (36) 51 (50) 153 (61)

    Stage IV 34 (35) 52 (43) 50 (50) 67 (27)

    Stage IVS 9 (9) 25 (21) — 31 (12)

MYCN status, n (%)

    Amplified 20 (21) 24 (20) 20 (20) 30 (12)

    Nonamplified 76 (79) 96 (80) 81 (80) 220 (88)

    Undetermined — — — 1

1p status, n (%)

    LOH 11 (25) 31 (26) 28 (28) 52 (21)

    No LOH 33 (75) 88 (73) 72 (72) 194 (79)

    Undetermined 52 1 1 5

Follow-up, mo

    Median 48.22 89.21 11.73 64.46
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Table 3

Multivariate Cox regression model for OS and EFS considering the (Y96) model and clinical and biologically 

relevant parameters for risk stratification of set 3 patients

Survival Event

HR (95% CI) P HR (95% CI) P

Univariate model

Model (Y96) 28.09 (8.65–91.19) <0.001 15.59 (7.07–34.34) <0.001

Age 11.68 (5.40–25.27) <0.001 5.44 (3.16–9.36) <0.001

Model (Y96) 15.85 (4.75–52.91) <0.001 11.07 (4.89–25.07) <0.001

Age 5.41 (2.46–11.95) <0.001 2.61 (1.49–4.59) 0.001

INSS stage 10.14 (5.1–20.16) <0.001 6.27 (3.72–10.57) <0.001

Model (Y96) 15.13 (4.41–51.97) <0.001 10.32 (4.46–23.86) <0.001

INSS stage 3.65 (1.78–7.5) <0.001 2.48 (1.42–4.31) 0.001

MYCN 8.7 (4.7–16.1) <0.001 4.7 (2.73–8.1) <0.001

Model (Y96) 20.2 (6.02–67.73) <0.001 13.53 (6–30.5) <0.001

MYCN 2.74 (1.46–5.12) 0.002 1.59 (0.91–2.77) 0.105

1p LOH 7.48 (4.06–13.77) <0.001 4.25 (2.57–7.03) <0.001

Model (Y96) 18.92 (5.63–63.52) <0.001 12.83 (5.67–29.01) <0.001

1p LOH 2.93 (1.56–5.47) 0.001 1.76 (1.05–2.95) 0.033

Multivariate model

Model (Y96) 9.9 (2.8–35.3) <0.001 836 (3.6–30.4) <0.001

MYCW 3.2 (1.7–6.0) <0.001 1.7 (0.99–3.0) 0.053

INSS stage 4.2 (2.0–8.4) <0.001 2.6 (1.5–4.5) 0.001

NOTE: The analysis was conducted sequentially, adding one variable at each step, to assess how the presence of each variable influences the 
performance of the (Y96) model. The (Y96) model was statistically significantly associated with OS and EFS in univariate and multivariate 

analyses.

Abbreviation: NE, "non evaluable" P value due to "no cases" in a combination of the 2 factors.
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