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Abstract: Maintenance and faithful transmission of genomic information depends on the efficient

execution of numerous DNA replication, recombination, and repair pathways. Many of the enzymes

that catalyze steps within these pathways require access to sequence information that is buried in
the interior of the DNA double helix, which makes DNA unwinding an essential cellular reaction.

The unwinding process is mediated by specialized molecular motors called DNA helicases that

couple the chemical energy derived from nucleoside triphosphate hydrolysis to the otherwise non-
spontaneous unwinding reaction. An impressive number of high-resolution helicase structures are

now available that, together with equally important mechanistic studies, have begun to define the

features that allow this class of enzymes to function as molecular motors. In this review, we
explore the structural features within DNA helicases that are used to bind and unwind DNA. We

focus in particular on “aromatic-rich loops” that allow some helicases to couple single-stranded

DNA binding to ATP hydrolysis and “wedge/pin” elements that provide mechanical tools for DNA
strand separation when connected to translocating motor domains.
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Many DNA replication, recombination, and repair

reactions use single-stranded DNA (ssDNA) as tem-

plates for directing their genome copying and editing

functions. However, since double-stranded DNA

(dsDNA) is generally more stable than its single-

stranded form under cellular conditions, a thermody-

namic barrier must be overcome to allow genome

maintenance enzymes access to ssDNA templates.

DNA helicases provide the solution to this problem

by acting as molecular motors that couple the

energy derived from hydrolyzing phosphoanhydride

bonds present in nucleoside triphosphates (NTPs) to

DNA unwinding.1–7 Given their importance in

genome biology, the mechanisms by which helicases

carry out their core DNA unwinding functions have

been an area of intense study since their discovery

nearly 40 years ago.8 This research has produced

physical models that account for the DNA unwind-

ing functions of several helicases and explained how

individual helicase families have adapted to fit the

demands of diverse biological pathways. In this
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review, we survey what has been learned about

DNA helicases using structural approaches. In par-

ticular, we examine specialized structural elements

that allow a subset of DNA helicases to couple

ssDNA binding to ATPase activities (aromatic-rich

loops) and that mediate DNA unwinding when

coupled to a translocation motor (wedges/pins).

General overview of helicases

In terms of their biological and biochemical func-

tions, helicases can vary significantly.1–7 First, heli-

cases typically act on either DNA or RNA, with only

a few examples of enzymes acting on both. Second,

helicases differ in the particular nucleic acids struc-

tures upon which they operate. For example, some

DNA helicases preferentially act on blunt duplex

DNA whereas others require ssDNA extensions

(either 30 or 50) for loading and directional transloca-

tion. Third, the rates of helicase movement on

nucleic acids (translocation) and the average number

of base pairs unwound per helicase engagement

event (processivity) can differ radically among heli-

cases. Finally, many helicases function as compo-

nents in multiprotein complexes in which the

protein partners can alter helicase substrate target-

ing and unwinding efficiency. These differences

likely reflect adaptations that have allowed the core

activity of nucleic acid unwinding to evolve into

diverse molecular motors with fine-tuned functions

that suit a broad set of cellular needs.

Based upon sequence conservation, biochemical

activities, and three-dimensional structures, heli-

cases can be classified in a number of ways.1,4,9 An

early classification system divided helicases into five

different “superfamilies” based on conservation of a

series of protein sequence motifs.4 Superfamilies 1

and 2 (SF1 and SF2) comprise the largest number of

helicase families and members are involved in a

wide array of cellular functions that require manipu-

lation of DNA or RNA structures. SF3 helicases are

found in RNA and DNA viruses. SF4 and SF5 are

hexameric DNA helicases that function as replica-

tive and transcription termination factors, respec-

tively. A sixth family has also been proposed for

helicases that belong to the AAA1 (ATPases associ-

ated with various cellular activities) class of pro-

teins.1 Helicase superfamilies can also be subdivided

into those that translocate along DNA and unwind

in a 30–50 direction (“A” type, e.g., SF1A) or a 50–30

direction (“B” type, e.g., SF1B).1 Many recent com-

prehensive reviews of helicase superfamilies are

available.1–7 Here we briefly introduce general fea-

tures of SF1 and SF2 helicases as a backdrop for

exploring specific structural elements found within

subsets of helicases in greater detail.

SF1 and SF2 helicases can be identified based

on evolutionary conservation of seven sequence

motifs (I, Ia, II–VI) that are required for ATP bind-

ing/hydrolysis, nucleic acid binding, and/or translo-

cation (Fig. 1).4 Within these, motifs I and II are the

most highly conserved and are essential for ATP

hydrolysis. Motif I (also known as the Walker A ele-

ment or P-loop) binds to phosphate groups in ATP

and contains an invariant Lys residue that helps to

stabilize the transition state intermediate during

ATP hydrolysis. Motif II (also known as the Walker

B or DExx element) binds to a catalytic Mg21 ion

that also stabilizes the ATP hydrolysis intermediate

and provides a residue side chain that acts as a gen-

eral base to activate a water nucleophile for phos-

phoanhydride hydrolysis.3,12

Helicase motifs Ia and III–VI have greater

sequence variation among the helicase superfamilies

than that observed within motifs I and II. These

motifs play important roles in ATP and nucleic acid

binding and in coordinating ATPase function with

translocation/unwinding reactions.4 Additional

sequence motifs have been defined that confer

important functional adaptations in specific subsets

of helicases (e.g., TxGx, Q-motif, motif 4a, and

TRG).13–16

Crystal structures of several SF1 and SF2 heli-

cases have shown that these enzymes include a con-

served core helicase domain that is comprised of two

subdomains that share similarity with RecA

ATPase/recombinase enzyme family (Fig. 1). This

domain contains all of the helicase motifs, with I, Ia,

II, and III found in the N-terminal RecA-like subdo-

main and IV–VI in the C-terminal subdomain (Fig.

1). The two subdomains abut one another to create

an ATP binding/hydrolysis active site on one face of

the domain and a nucleic acid binding surface along

the opposite face.1 The composite nature of the

ATPase active site helps to link ATPase cycle-

dependent conformational changes within the heli-

case domain to translocation along nucleic acids.

Helicases generally also encode additional domains

that regulate substrate binding, provide additional

enzymatic functions (e.g., nuclease domains), and/or

mediate interactions with other protein partners.

A total of nine X-ray crystal structures of SF1

and SF2 helicases bound to partial-duplex DNA

have been determined to date. The SF1 helicase/

DNA complexes are G. stearothermophilus PcrA,10

E. coli UvrD,17 D. radiodurans UvrD,18 E. coli RecB

in the RecBCD complex,19 and B. subtilis AddA in

the AddAB complex,20,21 which are all SF1A

enzymes. The SF2 helicase/DNA complexes are

A. fulgidus Hel308,22,23 human RecQ1 (unpublished,

PDB: 2WWY), and 2 human BLM structures (Ref.

11 and unpublished, PDB: 4CGZ)), which are all

SF2A enzymes. When these structures are superim-

posed using the structural similarity of their heli-

case domains, an intriguing pattern emerges that

highlights how different groups of helicases associ-

ate with DNA. Two groups of SF1 arrangements are
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observed—one projects the duplex portion of the sub-

strate orthogonally into the helicase domain for the

closely related single-subunit PcrA and UvrD heli-

cases and a second wraps the duplex “behind” the

helicase domain in the multisubunit RecBCD and

AddAB enzymes (Fig. 2). In contrast, the duplex

projects more laterally into the helicase domain of

the single-subunit SF2 enzymes RecQ1, BLM, and

Hel308 (Fig. 2). From this comparison it is also

apparent that both the helicase domain and nonheli-

case domains of SF1 and SF2 enzymes are involved

in binding to DNA and that the ssDNA along which

these enzymes track is threaded across a common

face of the helicase domain in both helicase superfa-

milies (Figs. 1 and 2). A second difference becomes

apparent when the substrates from the helicase/

DNA structures are compared (individual examples

are shown in Fig. 3). The single-subunit SF1 heli-

cases induce a �90–110� bend angle at the ss/dsDNA

junction whereas the DNA bend angles of both the

SF2 and multisubunit SF1 enzymes are only �20–

60�. Larger bend angles could contribute to unwind-

ing activity by wrenching apart the duplex as the

enzyme translocates along ssDNA.17 One aspect that

makes it difficult to draw functional conclusions

from structural analysis of single-subunit helicases,

however, is that many of these enzymes function

optimally (or perhaps obligatorily) as homooligom-

ers,24–31 but structural studies to date have captured

only 1:1 helicase:DNA complexes. Thus alternative

ss/dsDNA bend angles in higher order structures

could be possible. It will be interesting to see

whether future structures of DNA helicases bound

to partial-duplex DNA conform to the general DNA

binding arrangements established by the structures

that are currently available.

The remainder of this review focuses on two

structural elements that have been found to be

important for DNA binding and unwinding in SF1

and SF2 DNA helicases. The first is the aromatic-

rich loop, or ARL, which is a sequence element

embedded within the helicase domains of several

SF1 and SF2 enzymes. ARLs directly contact ssDNA

along which the helicases translocate and they func-

tion as coupling elements that link DNA binding/

translocation and ATPase functions. The second ele-

ment is the “wedge” or “pin,” which, when combined

with a translocase motor domain, acts as a physical

barrier to separate the two strands of duplex DNA.

Wedge/pin elements have proven to be surprisingly

Figure 1. Overview of SF1 and SF2 helicase domains structures. (A) Comparison of the helicase domains from selected SF1

and SF2 helicases. (left) The helicase domain from the SF1A DNA helicase PcrA bound to partial-duplex DNA10 (PDB 3PJR) is

shown with the N-terminal and C-terminal domains shown in blue and green, respectively. Helicase motifs are colored red and

labeled I, Ia, II–VI. DNA is colored magenta. Domains outside of the core helicase domain have been removed for clarity. (right)

The helicase domain from the SF2A DNA helicase BLM bound to partial-duplex DNA11 (PDB 4O3M) is shown with the N-

terminal and C-terminal domains shown in blue and green, respectively. Helicase motifs are colored red and labeled I, Ia, II–VI.

DNA is colored orange. Domains outside of the core helicase domain have been removed for clarity. (B) Helicase motifs from

SF1 and SF2 helicases. Conserved helicase motifs I, Ia, and II–VI as defined by the Jankowsky lab9 are listed using the single-

letter amino acid code.
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diverse, ranging from simple b-hairpin elements pro-

jecting from the helicase domain to separate folded

domains, some of which appear to be stabilized by

bound metal ions.

Aromatic-rich loops as coupling motifs that link
DNA binding and ATP hydrolysis

The conserved SF1 and SF2 helicase motifs mediate

ATP binding and hydrolysis and convert the

released chemical energy into the mechanical energy

required for translocation and DNA unwinding. Pre-

cisely how this coupling is achieved appears to be

different between SF1 and SF2 enzymes. In particu-

lar, the role of motif III is distinct in this regard.

Motif III includes two functional elements in SF1

enzymes—an N-terminal portion that is weakly

homologous between SF1 and SF2 enzymes and a

C-terminal ARL that has only been found in SF1

helicases (Fig. 4). Co-crystal structures of SF1A heli-

cases PcrA,10 UvrD,17,18 Rep,32 RecBCD,19 and

AddAB20,21 with ssDNA or partial-duplex DNA dem-

onstrate direct DNA binding by conserved aromatic

(Trp or Phe) and electropositive (Arg) residues

within the ARLs via stacking with ssDNA bases and

gripping the phosphodiester backbone, respectively

[Fig. 4(A)]. Similarly, co-crystal structures of SF1B

helicases RecD233 and Dda34 with ssDNA also show

direct ssDNA binding by a conserved Val residue in

a manner that mimics that of the Trp/Phe from

SF1A helicases [Fig. 4(B)]. The SF1 motif III

sequence also has a highly conserved Gln residue

N-terminal to the ARL that interacts with the

g-phosphate of ATP.10,17,18 In E. coli UvrD, a role for

this Gln in positioning a water molecule that is

bound by the presumed general base (Glu from motif

II) has also been noted.17 This water is in a position

to act as a nucleophile for in-line attack of ATP.

Thus the SF1 motif III provides a direct intra-

peptide link between DNA binding and ATP hydroly-

sis that can allow it to act as a “sensor” connecting

nucleotide and DNA binding activities. Consistent

with such a role, SF1 helicase variants in which

selected residues within the N-terminal or ARL

portions of motif III are altered display defective

ATP hydrolysis, DNA binding, and/or helicase

activities.38–41

Figure 2. Overlay of substrate-bound SF1 and SF2 helicase structures. (A) Orthogonal views of crystal structures of SF1

enzymes [E. coli UvrD17 (PDB 2IS1), D. radiodurans UvrD18 (PDB 4C30), G. stearothermophilus PcrA10 (PDB 3PJR), E. coli

RecB in the RecBCD complex19 (PDB 1W36), and B. subtilis AddA in the AddAB complex20,21 (PDB 3U44)] and SF2 enzymes

[(A. fulgidus Hel30822 (PDB 2P6R), human RecQ1 (unpublished structure, PDB 2WWY), and two human BLMs11 (PDB 4O3M

and unpublished structure, PDB 4CGZ)]. The helicase domains (blue 5 N-terminal subdomain and green 5 C-terminal subdo-

main) in each structure are aligned and non-helicase core domains are colored in grey. Only the helicase domains are shown

for RecBCD and AddAB due to the large sizes of each complex. The DNA is colored in magenta for SF1/DNA complexes and

in orange for SF2/DNA complexes. (B) The overlay from Figure 2(A) is shown with the non-helicase domain elements removed

to better visualize the arrangement of DNA relative to the helicase domain.
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Motifs III also exist in SF2 helicases, however

they are significantly shorter and lack the character-

istic aromatic and positively charged residues that

allow coordination of DNA binding and ATP hydroly-

sis in SF1 enzymes [Fig. 4(C)]. How then do SF2 heli-

cases regulate ATP hydrolysis in a DNA-dependent

manner? It appears that there may be multiple mech-

anisms that allow such coordination in SF2 helicases

although, interestingly, at least two SF2A enzymes

(RecQ and PriA) present ARLs on the same face of

their helicase domains as the SF1 enzymes (Figs. 1

and 4).42–44 These ARLs are not part of motif III but

are instead C-terminal to motif II in the primary

sequence. Hel308,22,23 which is also an SF2A enzyme,

and XPD,35–37 the only SF2B enzyme of known struc-

ture, both lack apparent ARLs.

Do SF2 helicase ARLs couple DNA binding to

ATPase function even though they lack an apparent

direct contact to ATP? This question has been exam-

ined in E. coli RecQ in which mutagenesis studies

highlighted its similar coupling role to that of SF1

enzymes.43 E. coli RecQ variants with altered aro-

matic or basic ARL residues retain DNA-dependent

ATPase activity, but require substantially higher

DNA concentrations to stimulate ATPase functions

and have greatly diminished helicase activity. One

Figure 3. DNA bend angles in substrate-bound SF1 and SF2 helicase structures. Comparison of ss/ds bend angles of repre-

sentative DNAs from single-subunit SF1A (UvrD, left), single-subunit SF2A (Hel308, middle), and multi-subunit SF1A (RecBCD,

right) helicase/DNA complex crystal structures.

Figure 4. Comparison of ssDNA-binding aromatic-rich loops in DNA helicases. (A) Sixty degree rotated views of selected ele-

ments extracted from crystal structures of SF1A enzymes [E. coli UvrD17 (PDB 2IS4), D. radiodurans UvrD18 (PDB 4C30),

G. stearothermophilus PcrA10 (PDB 3PJR), E. coli Rep32 (PDB 1UAA), E. coli RecB in the RecBCD complex19 (PDB 1W36), and

B. subtilis AddA in the AddAB complex20,21 (PDB 3U44)]. Motifs II, III, and the ARL are labeled and key sidechains are shown in

stick form. Color coding is the same as in Figure 1 (blue 5 segments from the N-terminal helicase subdomain; magenta 5 DNA

from SF1 structures). (B) Sixty degree rotated views of selected elements extracted from crystal structures of SF1B enzymes

[D. radiodutans RecD233 PDB 3GPL), and T4 Dda34 PDB 3UPU)]. Motifs II, III, and the ARL are labeled and key sidechains are

shown in stick form. (C) Sixty degree rotated views of selected elements extracted from crystal structures of SF2A enzymes

that have ARLs [human RecQ1 (unpublished structure, PDB 2WWY), and two human BLMs11 (PDB 4O3M and unpublished

structure, PDB 4CGZ)]. Motifs II, III, and the ARL are labeled and key sidechains are shown in stick form. Color coding is the

same as in Figure 1 (blue 5 segments from the N-terminal helicase subdomain; orange 5 DNA from SF2 structures). Hel308,22,23

which is also an SF2A enzyme, and XPD,35–37 the only SF2B enzyme of known structure, are omitted from this comparison

since both lack apparent ARLs.
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variant in which the conserved Phe from the ARL

was altered had a strong increase in ATPase activity

in the absence of DNA, indicating that the ARL in

RecQ helps to suppress ATPase activity that is not

coupled to DNA binding. Each of the RecQ variants

retained similar ssDNA and ATP binding affinities to

those observed in the wild-type enzyme, suggesting

that the sequence changes selectively decouple DNA

binding and ATPase activities.43 Structures of DNA-

bound human RecQ proteins have not revealed the

mechanism by which the ARL functions since the 30

ssDNA extensions included in the substrates have

been too short to reach the ARL [Fig. 4(C)]. However,

our lab has recently determined the structure of a

bacterial RecQ/DNA complex that shows direct

ssDNA binding by the ARL (Manthei and Keck, sub-

mitted). In this structure, ssDNA binding stabilizes a

conformation of the ARL that is distinct from that

observed in the unbound structure. Complex forma-

tion also alters the ATPase active site in a manner

that appears to poise the enzyme for ATP hydrolysis.

Thus, similarly to the effect in SF1 helicases, DNA

binding at the RecQ ARL appears to modulate the

position of residues within the ATPase active site to

regulate enzyme function. Whether similar effects

will be observed in the recently identified ARL of

PriA helicase and if additional ARLs are utilized in

other DNA or RNA helicases remain open questions.

Pins and wedges: Structural aids to duplex DNA

unwinding
Precisely how helicases unwind DNA remains an

active area of research. However, a growing number

of examples point to structural elements that, when

coupled to a translocation motor, act as physical bar-

riers that help plow apart the strands of dsDNA.

These structures, commonly called “pins” or

“wedges,” range from simple b-hairpins to more com-

plicated domains (Fig. 5). The structures of SF1

DNA helicases Dda,34 RecBCD,19 RecD2,33

AddAB,20,21 PcrA,12 Rep,32 and UvrD17,18 and SF2

DNA helicases RecG,45 RecQ family,42,46,47

Hel308,22,23 NS3,22,48–51 XPD,35–37 and PriA44 all

possess elements that have been proposed to act as

pins or wedges. With the diversity of pin and wedge

domains, protein primary structures have proven to

be poor guides in predicting the positions of these

unwinding elements. Such diversity seems essential

given the broad range of substrates that helicases

must process and the myriad biological processes in

which helicases function.

Pins comprised of b-hairpin-like structures are

the simplest and most commonly observed elements

that are found at the ss/ds junction in known heli-

case/DNA complex structures. Often, pins use aro-

matic residues that base stack with duplex DNA at

the ss/dsDNA junction but other residues can be

used to cap the duplex region as well. These struc-

tures can have remarkable diversity even among

closely related family members, varying greatly in

terms of size, of their importance in helicase func-

tion, and in their sequence composition. For exam-

ple, in E. coli RecQ the pin is very short and can be

mutated without any apparent effect on DNA

unwinding, indicating that it is not critical for func-

tion.42,47 In contrast, pins observed in three human

Figure 5. Pins/wedges in DNA helicases. (A) Orthogonal views of the SF1/DNA complexes. The alignment superimposes

duplex regions of the DNA with the ss/dsDNA junction fixed among each of the substrates. Pin/wedge elements from each pro-

tein and DNA are colored as in Figure 1 (green 5 segments from the C-terminal helicase subdomain; grey 5 non-helicase

domain elements; magenta 5 DNA from SF1 structures). An iron–sulfur cluster from AddAB is labeled. (B) Orthogonal views of

the SF2/DNA complexes. Pin/wedge elements from each protein and DNA are colored as in Figure 1 (green 5 segments from

the C-terminal helicase subdomain; grey 5 non-helicase domain elements; orange 5 DNA from SF2 structures). (C) Orthogonal

views of overlayed DNA and pin/wedge elements from SF1/and SF2/DNA complexes.
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RecQ proteins (RecQ1, BLM, and WRN) form elon-

gated structures that project away from the protein

to rest atop dsDNA [Fig. 5(B)] and mutations in pin

residues that bind DNA eliminate unwinding activ-

ity.11,30,46,47 Interestingly, even among the pins in

human RecQ proteins, variety is apparent—the

dsDNA-interacting residues from pins in RecQ1,

BLM, and WRN are Tyr, Asn, and a Phe-Met dipep-

tide, respectively. Moreover, the RecQ pins appear to

be functionally diverse, with the RecQ1 pin playing

a role in oligomerization as well.30

Structural studies of the closely related SF1A

helicases UvrD and PcrA have provided the most

detailed views of pin dynamics during DNA unwind-

ing.10,17,18 The UvrD/PcrA pin is a 12-residue b-hair-

pin encoded within the helicase domain that binds

at the ss/ds DNA junction point by buttressing the

duplex DNA. A Tyr or Phe residue at the tip of the

pin in UvrD or PcrA, respectively, binds to dsDNA

through a base stacking interaction with the first

base pair of the duplex.10,17,18 An outline of how

UvrD couples ATPase function to unwinding at the

pin has been derived from different nucleotide-

bound UvrD structures.17 In this model, ATP bind-

ing leads to separation of a single base pair and the

Tyr pin flips to a vertical position that is no longer

base stacked with the duplex. ADP release allows

the Tyr to resume its base stacking position but, due

to translocation of the helicase domain, it does so

with the next base pair. Mutation of the pin residue

reduces, but does not abolish, DNA unwinding in

UvrD17 or PcrA,39 indicating that although the pin/

DNA interaction is important for helicase function,

additional mechanisms can compensate for altera-

tions within the pin. As pointed out earlier, the

DNA bend angle introduced by UvrD or PcrA could

be the driving force that accounts for this residual

activity.

Wedges can form larger domains that act as

physical unwinding elements in helicases. The loca-

tions of these domains vary based on the function of

the helicase and these accessory domains often play

multifunctional roles in the protein. RecG, a bacte-

rial SF2A helicase that processes stalled replication

forks to form Holliday junctions for subsequent

repair and restart processes, was one of the first

structures in which a wedge element was identi-

fied.45 The protein contains a canonical SF2 helicase

domain as well as a separate wedge domain, which

specifically binds at the junction of DNA arms. Aro-

matic residues within this domain are essential for

this substrate recognition. Wedge domains are not

necessarily essential for helicase function as a RecG

wedge domain deletion still displays helicase activ-

ity, but with reduced substrate affinity.52,53 In addi-

tion to its ability to act as a physical unwinding

element, the wedge domain is seen as a substrate

specificity factor and a processivity factor. The

domain by itself is capable of binding Holliday junc-

tions with high affinity, but not replication forks.53,54

Strong binding of RecG to DNA junctions appears to

allow for proper positioning of the helicase domains

in unwinding of duplex DNA. Leading and lagging

strands wrap around the wedge domain. Pulling the

template strands across the wedge domain allows

for unwinding of both leading and lagging strands

at three way junctions and subsequent formation of

the Holliday junction.45,53,55

Several recent examples of metal-containing

domains have been suggested to function as wedges

within XPD,56,57 AddAB,20,21 and PriA DNA heli-

cases.44 These examples add helicases to the grow-

ing list of metalloproteins that catalyze nucleic acid

metabolic reactions. Iron-sulfur (FeS) clusters form

the metal cofactors in XPD and AddAB. These clus-

ter are typically in 2Fe-2S, 3Fe-4S, 4Fe-4S, or 8Fe-

7S arrangements where cysteines provide sulfur

groups that coordinate the Fe atom. FeS clusters

serve a variety of biological roles including electron

transport, iron storage, protein stabilization, and

oxidative stress sensors.58 The presence of FeS clus-

ters in nucleic acid processing enzymes was first dis-

covered in the DNA glycosylase endonuclease III

from E. coli.59 Since then, FeS clusters have been

found in human primase60–62 and several SF1 and

SF2 helicases [XPD,35–37 FANCJ,63 ChlR1,64 DinG,65

and AddAB20].

FeS clusters appear to have multiple roles in

DNA helicases including electrochemical functional

modulation and stabilization in DNA binding and

unwinding wedge domains. An example of the former

is provided by S. acidocaldarius XPD, an SF2B DNA

helicase with an ATP-dependent FeS redox potential

that has been linked to a possible mechanism for

selecting damaged DNA sites and for its cooperation

with Endonuclease III.66,67 In combination with a sec-

ond domain (called the “arch”), the FeS cluster in

XPD is also thought to play a role in stabilizing the

helicase’s unwinding wedge.35–37,56,57,68 The arch

domain is a mixed ab fold that is encoded between

motifs II and III, forming an insertion in the first

RecA-like subdomain of the helicase. The arch

domain and FeS cluster abut one another with the

FeS cluster-containing domain forming a wedge ele-

ment that has been proposed to unwind DNA.56 The

arch domain also folds over the first motor domain,

creating a channel that is large enough to accommo-

date ssDNA, but not dsDNA. Mutations of the FeS

cluster liganding residues lead to defects in helicase

activity69 and removal of the FeS cluster causes dra-

matic changes in the crystal structure,37 supporting

the role of the FeS cluster as a factor stabilizing the

XPD enzyme.

In addition to XPD, the AddAB helicase-

nuclease appears to rely on a wedge domain FeS

cluster for DNA unwinding.20,21,70 Structural and

1504 PROTEINSCIENCE.ORG Structural Mechanisms of DNA Helicases



functional analyses have shown that the FeS cluster

is adjacent to the ss/ds junction of partially

unwound DNA [Fig. 5(A)] and that it is essential for

DNA unwinding. The portion of AddAB that coordi-

nates the FeS cluster is in close proximity to an

apparent pin residue from the protein, implying that

the two elements may jointly function in DNA

unwinding.20

The recent structure of the PriA helicase

revealed the first example of a Zn21-binding domain

that appears to function as a DNA unwinding

wedge.44 PriA is an SF2A DNA helicase that ini-

tiates the process of DNA replication restart in bac-

teria.71 In addition to the conserved helicase motifs,

sequence comparisons of PriA have shown that the

protein has a highly conserved series of 8 Cys resi-

dues in Cys-Xxx-Xxx-Cys motifs embedded between

motifs IV and V. PriA variants with Cys sequence

changes within this element retain ssDNA-depend-

ent ATPase activity but have lost helicase/transloca-

tion activities that, in some cases, could be partially

rescued with the addition of Zn21.72 PriA Cys

variants additionally abolish the ability of PriA to

interact with another DNA replication restart pro-

tein (PriB), consistent with the Zn21-binding motif

playing roles both in DNA unwinding and in media-

ting protein-protein interactions.73 The recent PriA

structure showed that the Zn21-binding element

forms a compact 40-residue fold that coordinates

two Zn21 ions via the conserved Cys residues.44 A

b-hairpin within this Zn21-binding domain has been

proposed to serve as a DNA unwinding pin. Taken

together, these data strongly suggest a role for the

Zn21-binding element in PriA unwinding

mechanisms.

Conclusions and future perspectives

Helicases display a remarkable versatility in their

DNA unwinding mechanisms. Their biochemical

abilities include structure-specific nucleic acid bind-

ing and unwinding, directional translocation, and

protein interactions to seed macromolecular protein

complex formation. Subfamilies of helicases within

each of the superfamilies have adapted the core heli-

case domain to produce enzymes that are capable of

processing a wide range of nucleic acid structures

and of functioning in diverse biological contexts. In

terms of the DNA helicases reviewed here, the

ssDNA binding and DNA unwinding components

(ARLs and pins/wedges, respectively) show distinc-

tions in their positions within helicases and their

structures but appear to have adopted broadly simi-

lar roles across these enzymes. The features

described herein represent an incomplete list of tools

utilized by helicases to deal with the complicated

nucleic acid structures they must face. These fea-

tures are often not readily identifiable from the pri-

mary structures of helicases, making sustained

structural efforts essential for determining the level

of conservation of these features as well as for iden-

tifying new mechanistic features of helicases.
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