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Abstract

Primate inferotemporal cortex is subdivided into domains for biologically important categories, 

like faces, bodies, and scenes, as well as domains for culturally entrained categories, like text or 

buildings. These domains are in stereotyped locations in most humans and monkeys. To ask what 

determines the location of such domains, we intensively trained 7 juvenile monkeys to recognize 3 

distinct sets of shapes. After training, the monkeys developed regions that were selectively 

responsive to each trained set. The location of each specialization was similar across monkeys, 

despite differences in training order. This indicates that the location of training effects does not 

depend on function or expertise, but rather some kind of proto-organization. We explore the 

possibility that this proto-organization is retinotopic or shape-based.

In normal adult humans and macaques, inferotemporal cortex (IT) is functionally organized 

into domains that are specialized for different biologically important object categories, like 

faces, objects, bodies, and scenes. This organization must be a consequence of visual 

experience interacting with innate programs. There are two broad themes in Learning 

Theory that address the mechanisms of how representations arise in the brain: Nativism, 

which stresses innate factors, and Empiricism, which stresses the influence of experience. 

The reproducible location of different category-selective domains in humans and 

macaques1,2 suggests that some aspects of IT category organization must be innate. 

However the effects of early experience on face recognition3, changes in fMRI domains 

during development4,5, the existence of a Visual Word Form area6, the effects of expertise7, 

and our recent finding that novel specializations appear in IT as a consequence of intensive 

early training8 indicate that experience must also be important in the formation or 

refinement of category-selective domains in IT. What are the restrictions, or initial 

constraints, on the organization of IT, and how does experience manifest its effect on this 

organization?

Most normally educated humans exhibit a domain for written text6, and this domain is in 

approximately the same location in most people, irrespective of the language they read. It is 

unlikely that a domain dedicated to processing text evolved by natural selection, given how 

recently literacy has been prevalent, so there must be some other explanation for the 

stereotyped localization of the Visual Word Form Area. “Cultural recycling” theory 

proposes that this stereotyped localization is due to exaptation9 of cortical regions that 

without education would normally process the kinds of line junctions that are also common 

in objects and scenes and may be critical for figure/ground segregation10. The 

“Connectionist” model proposes that the stereotyped localization arises because processing 
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text requires both visual and linguistic connectivity, and that connectivity is innate11. 

“Constructivist” theory proposes that the stereotyped localization is a consequence of the 

timing of experience or training interacting with a programmed developmental trajectory12. 

Lastly “Expertise” theory proposes that the stereotyped location is a function of the level of 

skill or categorization required for reading13. We recently reported8 that macaque monkeys 

intensively trained as juveniles to recognize human writing symbols develop specialized 

regions selectively responsive to the trained symbols, compared to visually similar, but 

untrained, symbols. This novel domain formation was observed in approximately the same 

location in all animals that were trained as juveniles, but was absent in monkeys identically 

trained, but as adults. Here we extended this paradigm using 3 distinct symbol sets and 

varied training schedules with the goal of disentangling the effects of expertise, function, 

and order of learning on the localization of training-induced effects in IT. To our surprise we 

discovered no evidence that any of these factors matters for the localization of the training 

induced domains, leading us to explore other possible factors, including shape and 

eccentricity.

Results

Part 1: Effects of training on IT organization

Seven juvenile (1–5 years of age) male macaque monkeys were intensively trained to 

discriminate 3 distinct sets of 26 shapes each (Fig. 1, top). The ‘Helvetica’ symbol set 

consisted of standard digits and letters; the ‘Tetris’ set consisted of patterns made by filling 

4–5 squares in a 3×3 grid; the Cartoon Face symbol set was derived from the 19 parameter 

cartoon face set that we previously used to study face tuning in the middle face patch14. 

Each Cartoon Face symbol had one parameter set to one of the extreme value used in this 

previous study, and the other 18 parameters set to neutral value. The monkeys were trained 

using a touch-screen mounted in their home cage to associate each of the 26 shapes in each 

set with a particular reward value of 0 to 25 drops of liquid. In each trial they were presented 

with two symbols, and they were rewarded with a number of drops corresponding to the 

symbol on whichever side they touched first. They were rewarded no matter which side they 

chose (except for value zero), but they most often chose the side with the symbol 

representing the larger reward. The monkeys learned the symbols in a given set in increasing 

order, until they reached criterion performance on all 26 symbols in the set. It took 6–8 

months for them to learn a set, and they were given at least 1 further month of practice once 

they mastered that set. Different monkeys learned the Helvetica or the Tetris symbol set 

first. Figure 1 shows the 3 symbol sets and the performance of each monkey on each symbol 

set. Figure S1 shows the timeline for all testing and scanning. Some monkeys were better 

than others at learning these symbols, but all 3 symbol sets were learned to approximately 

the same level of accuracy (no significant differences between average accuracies with a two 

tailed t-test). The order of learning did not significantly affect final performance.

We asked, first, whether learning different symbol sets would result in novel domain 

formation, as we previously found for juveniles learning the Helvetica symbol set8; second, 

if the location of such training-induced changes would be the same for different symbol sets; 

and third, whether order of learning within the juvenile period would have any effect on 
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location or size of such artificial domains, as predicted by Constructivist theory12. To do this 

we performed alert functional MRI on each monkey before and after learning each symbol 

set using a non-invasive helmet restraint system as described previously8. The alert monkeys 

sat comfortably in a sphinx position and passively viewed blocks of images. Blocks of the 

trained symbol set (omitting the three lowest value symbols of each set) were presented in 

alternation with blocks of visually similar but untrained shapes (Fig. S2) as controls for the 

Helvetica and Tetris symbol sets, and monkey faces as controls for the Cartoon Face set. 

Before training, none of the monkeys showed any regions with significantly different 

responsiveness to any of the symbol sets, contrasted with the appropriate controls 

(significance criterion: p<0.002; cluster size>=31 voxels). After training with each symbol 

set, each monkey showed patches in inferotemporal cortex that were significantly more 

responsive to the trained set than to its control set (Fig. 2 and Figs. S3&S4, for results from 

individual monkeys). The control and test stimuli did not result in differential activations in 

V1 (Fig. 2 & ref.8) either before or after training.

Figures 2, 3, S3 and S4 show that, first, training with different symbol sets did reproducibly 

result in the appearance of selective responsiveness to the trained shapes compared to 

control shapes in posterior inferotemporal cortex (PIT). There was no significant 

relationship between the monkeys’ level of performance and the size or strength of the 

training-induced selectivities. Second, the training-induced activations by the Helvetica 

symbol set were on average localized to a similar region as described previously8, except 

slightly more dorsal on average than in our previous study, in which monkeys learned only 

the Helvetica symbol set (cf Fig. 3c). In addition we observed an occasional second smaller 

patch more anterior, in anterior or central IT (CIT, AIT, see Fig. 3), which we had not 

observed in our previous study, between the superior temporal sulcus (STS) and the anterior 

medial temporal sulcus (AMTS). The new Tetris>control activations that appeared in PIT 

after training with the Tetris symbol set were usually just ventromedial on each monkey to 

the location of the Helvetica>control patch, centered along the occipitotemporal sulcus. In 

two monkeys there was also a small, more anterior Tetris patch in CIT or AIT. The larger 

PIT Tetris selective region was in approximately the same location that a previous study 

reported to be scene selective15. Before Cartoon Face training, none of the monkeys showed 

any differential localization of Cartoon Face responsiveness compared to monkey face 

activations. But, after Cartoon Face training, Cartoon Faces activated a patch just ventral to 

the monkey face activation. The Cartoon Face patch was dorsal to the Helvetica patch, 

between the STS and posterior medial temporal sulcus (PMTS). All monkeys showed 

bilateral Cartoon face patches and Tetris patches; two monkeys showed bilateral Helvetica 

patches, three monkeys showed significant Helvetica responses only on the right 

hemisphere, and one monkey only on the left.

For each monkey we defined Helvetica, Tetris, and Cartoon Face ROIs using scan data 

obtained immediately after the end of the training epoch for that symbol set (using contrasts 

Helvetica>control, Tetris>control, and Cartoon Faces>monkey faces); the anterior, middle, 

and posterior face patch ROIs were defined using the contrast faces>Helvetica AND 

faces>Tetris on scans obtained immediately before Cartoon face training. Using independent 

data sets we calculated the average percent signal change (normalized to the V1 signal 

change for the same image set, to account for any differences in attention or viewing) in 
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each ROI to each symbol set and its control before training and after all training was 

completed. Figure 2d shows the normalized responses averaged across hemispheres (except 

for the unilateral Helvetica regions) and across monkeys in each inferotemporal ROI during 

the presentation of each symbol category and control both before and after training. A 2 × 2 

ANOVA for trained set vs control × pre- vs. post-training was calculated (Fig. 2), and a 

robust interaction between stimulus (trained symbols vs control) and training (pre- vs post-) 

was observed in all training-induced regions. All the training-induced patches were 

significantly more activated by their trained stimulus category compared to controls after 

training, but none of the ROIs showed significant differences between their preferred 

stimulus category and controls prior to training. Pre-training, there was no significant 

difference between monkey faces and Cartoon faces in any of the face patches, but post-

training, there was a significantly smaller response to Cartoon faces vs monkey faces in the 

Anterior and Middle Faces Patches and a significantly larger response to Cartoon faces vs 

monkey faces in the Cartoon face patch. Though the changes in Fig. 2d are complex, taken 

collectively, they indicate that extensive training can alter the selectivity of regions in 

inferior temporal cortex.

Despite some variability (Fig. 2), the locations of the different training-induced patches were 

similar across monkeys (Fig. 3), irrespective of training order. The three training-induced 

patches in all the monkeys were distributed along the dorso-ventral axis of the 

inferotemporal gyrus, with the Cartoon face patch usually lying just ventral to the lip of the 

STS and dorsal to the Helvetica patch, and the Helvetica patch dorsolateral to the Tetris 

patch, which usually lay along the ventral surface of the inferotemporal gyrus, or even more 

medial on its medial surface (Fig. S3–S10).

The localization is easier to see in the computationally flattened map in Fig. 3b where it is 

clear that the patches are distributed systematically along the dorso-ventral extent of PIT. 

This can also be seen in the distribution of the centers of mass of each of the patches (Fig. 

3c). The within-category distances in inflated spherical coordinates between patch centers 

were significantly smaller than the between-category distances for all 3 pairwise 

combinations of categories (Supplementary Table 1), indicating that the different training-

induced patches were indeed in different locations. The location of the selective patch for 

each symbol set did not depend on the relative timing of training, but did differ 

systematically between different symbol sets (Supplementary Table 2)

Part 2: Exploration of other possible factors

Thus intensive training with different symbol sets resulted in the appearance of novel 

selectivities that mapped on average to different dorso-ventral locations along PIT. We 

found no evidence for an effect of training order on the localization of these training-

induced patches. Furthermore, the monkeys were on average equivalently good at 

recognizing the different symbol sets, so the differential localization cannot depend on 

amount of training, degree of expertise, shared function (value representation), or level of 

categorization. The location of these novel domains must therefore be a consequence of 

something unique to each set. The kinds of differences among these 3 symbol sets that could 

account for this differential localization include shape, discriminability, and resemblance to 
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natural categories. The 3 symbol sets do have different shapes, in that it would be apparent 

at a glance to which set any particular symbol belonged. The 3 symbol sets may be 

differentially discriminable, although the monkeys learned all 3 sets at about the same rate, 

and to the same level of expertise; nevertheless the spatial scale of what distinguishes 

elements of each set may differ. Certainly Cartoon Faces resemble the natural category of 

faces, but it is not immediately obvious what natural category Helvetica or Tetris might 

correspond to. Any of these 3 factors could play a role in novel domain localization in IT 

since category, eccentricity and shape have all be reported to be systematically organized 

across IT15–22. We will explore each in turn.

First, could a pre-existing category organization explain the differential localization of the 

trained symbol sets? Macaque IT is organized by category in that faces are represented in 

distinct patches within and along the lower lip of the STS2,22,23; objects are represented in a 

series of patches just ventral to faces8,16, and places or scenes still more ventral, on the 

inferior surface of IT15,24. As shown in Fig. 2d, after training with Cartoon Faces, 

responsiveness of the original face patches to Cartoon Faces relative to monkey faces was 

reduced, and responsiveness of the new Cartoon Face patch increased to Cartoon Faces 

relative to monkey faces. If a pre-existing category organization drives the localization of 

training-induced domains, it is not clear why training should shift Cartoon Face 

responsiveness from the normal face patch to a more ventral location. Furthermore it is not 

clear to what natural category Tetris and Helvetica should belong. Thus a pre-existing 

category organization does not account in any obvious way for the differential localization 

of these trained domains.

We then considered eccentricity as a potential organizing principle to explain the observed 

training-induced changes. Early visual areas are retinotopic, with a precise map of visual 

space across cortex. IT is not as precisely retinotopic as early visual areas, though PIT does 

show a clear organization of upper vs lower visual field, ipsi vs contralateral visual field, 

and central vs peripheral visual field20,25. Furthermore, this retinotopic organization is 

correlated with category organization, in that face processing is centrally biased, and object 

and place processing more peripherally biased17,18,20,25. Malach and colleagues17,18,21 

proposed that the fundamental organizing principle of IT is eccentricity based, with a center-

periphery gradient inherited from lower visual areas. Thus because our Cartoon Face patch 

lies just ventral to the middle face patch, the Helvetica patch just ventral to that, and the 

Tetris patch still more ventral, these 3 novel domains span PIT along this previously 

reported retinotopic gradient20,25,26. To map this eccentricity gradient we scanned three 

monkeys while they viewed blocks of flickering checkerboard patterns that stimulated the 

central 3 degrees of visual field, contrasted with blocks of checkerboard patterns that 

stimulated 4 to 10 degrees of eccentricity (Fig. S2). The maps for this peripheral-field minus 

central-field contrast confirmed previous reports of an eccentricity bias, with central-field 

representation (blue) along the lower lip of the STS and peripheral-field (yellow) 

represented more dorsally and more ventrally (Fig. 4 leftmost column). Note that this swath 

of central visual field representation, flanked by more peripheral representations, extends not 

only across early visual areas, opercular V1, through V2, V3, and V4, but also through most 

of IT: including PIT and is still apparent, though weaker, through CIT and even AIT.
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The outlines of the Cartoon face, Helvetica, Tetris, and middle face patch of monkey R2 are 

overlaid on his eccentricity map (Fig. 4 upper left map). Thus the Cartoon Face activations 

mapped to a centrally biased part of IT, and Tetris activations mapped to a peripherally 

biased region, with the Helvetica symbol set mapping intermediately. The stimuli in the 3 

sets were on average the same size, as shown by the overlays of all the stimuli in each set at 

the far right of Fig. 1, and the most salient image-set difference is that the Cartoon Face 

symbols do not extend as far to the corners of the average template as the Helvetica and 

Tetris symbols do. The monkeys learned these symbol sets while they were moving around 

freely in their home cages, so it is unlikely that such small differences in image size would 

have resulted in large differences in an eccentricity-biased functional organization. It is more 

likely that differences in size could have caused differences in activation patterns during 

scanning, but retinotopic activation differences should be manifest before as well as after 

training, which they were not, and primarily in early, retinotopic, visual areas, and they were 

not (Fig. 2: note absence of any differential activations in retinotopic visual areas). 

Therefore we cannot explain the stereotyped localizations of the different training-induced 

domains by eccentricity organization, despite the presence of an eccentricity-bias 

organization in this part of IT.

Lastly we consider shape. It has been proposed9,27 that the localization of category-selective 

domains is driven by experience-dependent modification of a pre-existing shape 

organization, and, in support of this idea, Tootell and colleagues recently found that face-

selective regions respond better to curvy stimuli and place-selective regions to rectilinear 

stimuli28, suggesting that another potential organizing principle in IT is shape-based, along a 

degree-of-curvature axis. By inspection, the 3 symbol sets do differ in curvature: every 

symbol in the Cartoon face set has multiple curved contours, half the symbols in the 

Helvetica set have at least one curved contour and more than half have at least one straight 

contour, whereas none of the contours in the Tetris set are curved. To look for a correlation 

between our training-induced domains and shape, or curvature, we also scanned these same 

monkeys while they viewed blocks of full-field (20° × 20°) patterns that were predominantly 

curvy or predominantly straight (Fig. S2). Figure 4 (middle column) shows t-score maps for 

the contrast straight-patterns minus curvy-patterns also thresholded at t = ±2 and averaged 

over both hemispheres of the same monkeys. Results were indistinguishable for beaded-

curvy and wavy-curvy patterns. These maps confirm previous reports28 that the lower bank 

and ventral lip of the STS, where the face patches lie, are more responsive to curvy (blue) 

than to rectilinear shapes, whereas more ventral and dorsal regions, that are scene-

selective15, are more responsive to rectilinear shapes (yellow)29; indeed Kornblith et al.15 

found that single units recorded in a scene-selective region in the occipitotemporal sulcus 

responded strongly to long straight contours but only weakly to short curved contours

By inspection of the first two columns of Fig. 4, there is a similarity between the contrast 

maps for curvature selectivity and the contrast maps for eccentricity bias, even in early 

visual cortex. Curvy patterns (blue) tend to activate the same swath of cortex as central-field 

stimulation (blue), a swath extending from central V1, V2, V3, V4, then along the ventral lip 

of the STS, whereas straight patterns (yellow) tend to activate the same regions as were 

activated by the peripheral visual field stimulus (yellow).
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Though the similarity between the eccentricity maps and the curvature maps in Fig. 4 is 

apparent, it is difficult to assess by inspection how similar two maps are, given the 

thresholding, differences in relative activation strength of the two image sets, and variability 

between animals. Therefore we used standard correlation analysis30 to quantify the 

similarity between different contrast maps from the same individuals. To do this we 

calculated for different visual areas in each monkey the voxel-wise correlation between t-

values in different maps (Fig. 5), and used permutation analysis to establish significance (see 

Methods). First, as proof of principle for this approach, given the well-established 

relationship between eccentricity and spatial-frequency tuning, we calculated for the same 3 

monkeys correlations between eccentricity maps and spatial frequency maps (Fig. S11) for 

different visual areas. Central visual field has small receptive fields and responds to high 

spatial frequencies, whereas receptive fields at more peripheral eccentricities are 

systematically larger and respond better to lower spatial frequencies31,32. Consistent with 

this well-established relationship between spatial frequency tuning and eccentricity, we 

found significantly positive correlations between peripheral-minus-central eccentricity maps 

and low-minus-high spatial frequency maps in V1, V2/V3, and V4 in all 3 monkeys (Fig. 

5a; see Methods for details on spatial frequency mapping). That is, the overall positive 

correlation in early visual areas is consistent with the well-established relationship between 

eccentricity and spatial frequency tuning--regions in early visual areas that represent central 

visual field respond better to higher spatial frequencies than to lower, and regions 

representing the periphery respond better to lower spatial frequencies.

When we then compared the straight-minus-curvy contrast maps (Fig. 4 middle column) 

with the periphery-minus-central eccentricity contrast maps (Fig. 4 left column), we also 

found significantly positive correlations in all 3 monkeys in V1, V2/V3, V4, and PIT, and in 

two monkeys in CIT and AIT (Fig. 5b). This is not surprising, since the similarity is 

apparent in the maps themselves, though a degree-of-curvature organization has not been 

previously described in V1 or V2. The positive correlation means that curvy pattern 

preference was correlated with central visual field, and straight pattern preference with 

peripheral visual field.

Thus there was a strong correlation not only between eccentricity and spatial frequency (Fig. 

5a) in early visual areas but also between eccentricity and curvature (Fig. 5b), such that 

central visual field regions were more responsive to high spatial frequencies and to curvy 

patterns, compared to low spatial frequencies and straight patterns, and peripheral visual 

field showed the reverse preference; this preference was strongest in early visual cortex. 

Could the differential mapping of symbol sets or curvature be due to the well-established 

gradient for spatial frequency? Fig. 5 e–l show spatial frequency power spectra from the 

Fourier transforms averaged over all the images in each set: there is a substantial difference 

in spatial frequency between the high and low spatial frequency image sets, but a negligible 

difference between the straight image set and either of the two curvy image sets, or between 

any of the symbol sets and their controls, except for a small difference between Cartoon 

faces and Monkey faces. We conclude that the differential mapping of the curvy and straight 

patterns is due to curvature, not spatial frequency; that is to differences along contours, not 

across contours, and that the differential localization of the trained symbol domains cannot 

be explained by differences in spatial frequency.
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The rightmost column of Fig. 4 shows for the same 3 monkeys category contrast maps using 

objects minus faces (see Fig. S2 for stimuli), confirming previous studies showing that face 

selectivity maps to patches in PIT, CIT and AIT on the lip and ventral bank of the STS, with 

object selectivity ventral, and sometimes dorsal, to that2,16,23. There is no clear similarity 

between maps for eccentricity and category or between curvature and category in early 

visual areas, but there is in IT. By inspection of Fig. 4 (rightmost column), regions that are 

face selective (blue) lie along the lower bank and ventral lip of the STS, the same general 

region that is centrally biased and selective for curvy patterns25,28, whereas object selective 

regions (yellow) lie mostly ventral to that, on the inferior temporal gyrus, in the same 

general region as more peripheral visual field representation and rectilinear bias29. 

Consistent with this impression and with previous results, correlations between category and 

eccentricity were not significantly positive in V1 or V2/V3, but were significantly positive 

for 2 monkeys in V4, for 2 monkeys in PIT, for 2 monkeys in CIT, and one monkey in AIT; 

these positive correlations indicate that there is a tendency for face-selective regions in IT to 

have a central visual field bias, as previously reported20,26,33, and object-selective domains 

to be more peripherally biased. Correlations between curvature and category were similarly 

not significantly different from zero in V1, V2/V3, or V4, but were significantly positive for 

all 3 monkeys in PIT and for 2 monkeys in CIT. This is consistent with a previous report 

that category selectivity is correlated with a curvature gradient25,28.

We last asked how the novel training-induced domains were localized along both 

eccentricity and curvature gradients in monkeys Y1, Y2, R2 and B1. We measured the t-

score for each contrast averaged within Monkey Face, Cartoon Face, Helvetica, or Tetris 

ROIs, for these four monkeys, except monkey Y1, who lacked Tetris training. In Fig. 6 we 

plot the z-score for each ROI averaged across all 4 monkeys. Across monkeys the ROIs 

were distributed along both the eccentricity and curvature gradients in central-to-peripheral 

and curvy-to-straight order: Monkey faces, Cartoon faces, Helvetica, Tetris. The ROIs were 

distributed along the eccentricity contrast for all 4 individual monkeys, but there was more 

variability in the individual monkey distribution along the curvature axis, in that in monkey 

B1 the Cartoon face ROI was the most straight biased ROI, and there was no curvature 

difference in monkey R2 between any of the ROIs except Monkey Faces. Nevertheless there 

was, on average and individually, a consistent alignment of the four patches with 

eccentricity, and a similar, though individually less consistent, distribution according 

curvature; the distribution was consistent with the hypothesis that the localization of these 

domains could have been determined either by shape or eccentricity.

Discussion

Intensive training of macaque monkeys with three different symbol sets resulted in localized 

increased selectivity in IT to the trained symbols compared to visually similar but untrained 

shapes. Many previous studies have already established a role for experience in shaping the 

selectivity of IT in both humans and monkeys34. The fact that the human Visual Word Form 

area is more responsive to text in a subject’s own language, compared to visually similar 

shapes or text in languages unfamiliar to the subject35 indicates that symbol training in 

particular can alter selectivity in human IT to text. We had previously found8 that extensive 

training of juvenile macaque monkeys with a set of human symbols similarly resulted in 
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localized changes in responsiveness in IT that could be visualized with fMRI. In this 

previous study we used human symbols for training monkeys because we knew that 

educated humans acquire domains selectively responsive to these shapes. We used human 

symbols as one of our symbol sets in the present study because of its clear effects in our 

previous study.

The goal of the present study was to find out whether training on shapes other than those 

used in human writing would also result in changes in responsiveness in IT and whether 

order of learning or degree of expertise would affect the localization of training-induced 

effects. Our first finding is that training on shape sets other than human symbols does result 

in changes in IT, such that some regions that were initially equally responsive to those 

shapes compared to controls became more responsive to the trained shapes than to controls. 

We therefore conclude that there is not anything special about human symbols that permits 

the emergence of symbol selectivity in IT, but rather that intensive early experience with 

other shapes can also result in changes in IT that can be visualized using fMRI.

Our second major finding is that training on different symbol sets produced changes in 

selectivity in different locations in IT, rather than in the same location for all symbol sets. 

Changes in a single region might be expected given that the training always involved the 

same behavioral task, and all the symbol sets represented the same range of reward values. 

Although an anatomically distinct region might have been predicted for the Cartoon Face 

symbol set, given the spatial segregation of face processing, finding distinct regions for the 

Helvetica vs. Tetris symbol sets was unexpected.

Our third, and most surprising, finding was that the locations in IT of these training-induced 

changes were similar for each symbol set, regardless, as far as we can tell, of the order in 

which the symbol sets were learned, and despite the monkeys’ being equally expert at 

recognizing the different symbol sets. This suggests that some inherent characteristics of 

these symbols determined where expertise-related changes would occur, and supports the 

hypothesis that plasticity is constrained by some native organization in cortex9,27,36.

If some native organization determines where training-induced specializations will occur, 

why should Cartoon face responsiveness shift from the part of IT where it is found in 

untrained animals to a new location? Studies in humans have occasionally found shifts in 

selectivity as a function of training: Moore et al.37 found that learning to read an alphabet of 

human faces induces responsiveness to those faces in the left fusiform area. Moreover, the 

part of the brain that is selectively responsive to text in literate humans is, in illiterate 

people, responsive to faces38. These studies thus indicate that inferotemporal cortex can be 

differentially modified depending on competing influences of experience. Close inspection 

of Fig. 3c suggests that learning a second symbol set has a small repulsive effect on the 

localization of the first-learned set, but our sample size is too small for us to draw any firm 

conclusions. This small effect is consistent with the hypothesis that competitive interactions 

are involved in domain formation38

Although our symbol sets were not designed to probe shape or retinotopic organization in 

IT, we nevertheless asked whether any native organization of either retinotopy or curvature 
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could explain the observed localizations. We confirmed correlations in IT between maps of 

curvature and maps of category selectivity28, as well as correlations in IT between 

eccentricity and category selectivity17,20. We, in addition, discovered that our novel, 

training-induced domains in IT for completely unnatural shape categories are distributed 

along these same gradients of curvature and eccentricity (see also ref.30).

We discovered a correlation between curvature and eccentricity in early visual cortex as 

well, and this correlation was even stronger than the correlation between curvature and 

eccentricity in IT. This correlation could not be accounted for by differences in spatial 

frequency, suggesting that curvature tuning is a low-level receptive-field property that varies 

with eccentricity. Different eccentricities have different spatial resolution39; this is usually 

observed as differences in spatial frequency tuning32, which is assumed to be governed by 

receptive-field organization perpendicular to the axis of orientation. Yet selectivity for 

change vs continuity along the axis of orientation, i.e., curvature, is an important feature of 

higher visual areas, like V440. As far as we know no studies have looked at curvature tuning 

as a function of eccentricity, but it would be logical for central visual fields to prefer higher 

curvature, or faster change in orientation, since central receptive fields are smaller than 

peripheral receptive fields in all dimensions41, and end inhibition is prevalent in both 

V142,43 and V244. End-inhibited cells respond better to contours with changing orientation 

than to straight contours of the same length45.

Previous studies that found a correlation between category selectivity and curvature pointed 

out differences in natural image statistics of faces and scenes28, with faces containing more 

curvy contours and scenes more straight ones. Because our shapes are completely unnatural 

and behaviorally unrelated to either social or navigational information, our results and those 

of Op de Beeck et al.30 favor a pre-existing curvature gradient rather than a curvature bias 

that derives from a category-based organization. Previous studies that found a correlation 

between category selectivity and eccentricity attributed that correlation to resolution 

requirements of different categories or ways these categories are generally viewed; that is, 

faces require scrutiny and are usually foveated, while scenes usually encompass the entire 

visual field33. The correlation of our training-induced changes with an eccentricity gradient 

cannot be explained by viewing bias, since all 3 symbol sets were presented at the same size, 

in exactly the same manner, for the same behavioral task. Yet, in literate humans, letter 

strings map to an even more foveally biased region of the fusiform gyrus than faces18, 

whereas our monkeys show the reverse order. Our monkeys learned symbols that were 

always 4 cm high, and humans usually read symbols that are much smaller, suggesting that 

both viewing bias and shape bias can influence where training effects are localized.

Hasson et al. proposed17 that IT is organized during development according to a retinotopic 

map transmitted or inherited from earlier visual areas. Our results further indicate that a 

shape organization could arise from variations in curvature selectivity with eccentricity. 

Thus experience with different image categories may produce changes in IT that will be 

localized according to their shape statistics and/or viewing scale46. An appeal of this idea is 

the plausibility of an extension of existing mechanisms of retinotopic mapping to higher 

visual areas, and its provision of a secondary shape-based proto-organization on which 

experience can exert modifying effects. Whether the organization of IT is initially 
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established by an inherited retinotopic map, or by an innate organization for biologically 

important image categories, or by factors such as connectivity to other structures like the 

hippocampus or motor system11 is ultimately, however, a developmental question, and the 

key experiments have not yet been done.

Methods

Behavioral training

Seven experimentally naïve juvenile male Macaca nemestrina monkeys 

(B1,B2,R2,Y1,Y2,G1,G2) and two juvenile Macaca mulatta monkeys (Pa and Ba) were 

trained to recognize sets of 26 distinct symbols as representing different reward amounts 

using a touch-screen (Touch Screens, Inc., St. George, Utah) mounted in their home cage. 

All training occurred before any of the monkeys reached puberty (~4–5 years, identified by 

testicle descent), but some of the scanning occurred after some of the animals reached 

puberty. A reward system dispensed liquid using a gravity feed and a solenoid; each drop 

was accompanied by a beep. Each symbol set consisted of 26 symbols representing reward 

values from 0 to 25 drops (or solenoid openings) of fluid. Two symbols were presented 

simultaneously side-by-side on the screen, and the monkey was rewarded with the number 

of drops of liquid represented by the symbol on whichever side he touched first. The values 

presented on each side were randomly chosen from values 0 to 25. The symbols were each 4 

cm high. The monkeys were rewarded no matter what side they touched (except for 

value=0), but they usually chose the larger value side. They worked to satiety daily, during 

the normal light-on period, over several hours, usually performing several hundred trials per 

day. For training on each set they started with 0 and 1 (with the solenoid opening set to a 

long duration) and new symbols were added sequentially when behavior on the previously 

learned symbol stably exceeded 80% for all choices involving that symbol. During the 

learning period for each set the solenoid open time was gradually decreased as they learned 

higher value symbols. It usually took 6–8 months of daily training for them to master all 26 

symbols in a set, then they continued daily training on all 26 symbols of that same set for at 

least 1 more month before scanning. The final behavioral testing for the data in Fig. 1 was at 

the end of the last-learned symbol set; the monkeys were given at least 1 week refresher 

training for each set before testing for 1 month with each set. See Fig. S1 for details of the 

training schedule for each monkey.

Scanning

The monkeys were scanned in the alert state, comfortably lying in a sphinx position in a 

primate restraint chair that fit into the bore of the scanner. The juveniles were restrained 

using a non-invasive padded helmet8,51 and an attached rigid chin strap with an embedded 

bite bar for fluid reward delivery for fixation. Monkeys B1, R2, and Pa reached puberty after 

learning their last symbol set, and were implanted with a plastic head-post fastened with 

ceramic screws to the occipital ridge and to the frontal bone just posterior to the brow, and 

the scans for these monkeys that were done after puberty were accomplished using this 

headpost restraint.
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All monkeys were scanned in a Tim Trio 3T scanner with an AC88 gradient insert and 

custom-made 4 channel coil arrays (made by Azma Maryam at the Martinos Imaging 

Center). Each session consisted of 10–30 functional scans. Stimuli were presented in 20 

second blocks with 20 seconds of a gray screen with a fixation spot between each block. 

Images were presented in random order within each block for 0.5 seconds each. Blocks were 

presented in different order each session, but the same order within each scan. Scan 

parameters were: EPI sequence, repetition time (TR) = 2 seconds, echo time (TE) = 13ms, 

flip angle (α) = 72°, iPAT=2, 1 mm isotropic voxels, matrix size = 96 × 96mm, 67 

contiguous sagittal slices. In order to enhance contrast52 the monkeys were injected with 

12mg/kg monocrystaline iron oxide nanoparticles (Feraheme, AMAG Pharmaceuticals, 

Cambridge, MA) in the saphenous vein just before scanning. Only scans in which the 

monkey for fixated >85% of the scan and in which there was no motion >1mm were used 

for analysis. The maps in Fig. 2 and the activations in Figs. S3–S10 were all calculated from 

30–40 blocks of each image category and each control for each monkey. The bar graphs in 

Fig. 2 were all calculated from 25–30 independent blocks of each stimulus type for each 

monkey. The eccentricity, curvature, category, and spatial frequency maps in Fig. 4 and Fig. 

S11 were each calculated from 20–25 blocks each of each pair of image categories. Eye 

position was monitored by an infrared eye tracker (ISCAN Burlington, MA). The monkeys 

were rewarded for keeping their gaze within a 2 degree fixation window on which the 

stimuli were centered.

Stimuli

Visual stimuli were presented on a back projection screen at the end of the scanner 50 cm 

from the monkeys’ eyes, using an LCD projector. The entire screen subtended 20×20 

degrees of visual angle. Helvetica, Tetris, and Cartoon Face symbols, as well as the controls 

and achromatic monkey face controls were presented at 8 degrees of visual angle in height 

on a 20×20 degree dark gray background; the full-field spatial frequency stimuli and 

curvature stimuli were presented as shown in Fig. S2 and filled 20×20 degrees of visual 

angle; the face and object images for category mapping were presented in color on a pink-

noise background, as shown in Fig. S2, covering 20 × 20 degrees of visual angle. The 

straight patterns were chosen to represent a variety of rectilinear patterns. The wavy curvy 

patterns were generated by adding waves to the straight patterns, and the beaded curvy 

patterns were generated by adding circular distortions to the straight patterns. Eccentricity 

(center/periphery) contrast maps were generated for peripheral flickering checkerboard 

patterns (4–10 degrees eccentricity) minus central flickering checkerboard patterns (0–3 

degrees eccentricity). Spatial Frequency contrast maps were generated for the contrast of 

low-spatial frequency stimuli (full field dynamic patterns of 0.4 cycles per degree) minus 

high-spatial frequency (full field dynamic patterns of 2.5 cycles per degree). Curvature 

contrast maps were generated for the contrast between full-field straight patterns minus full-

field curvy patterns. Category contrast patterns were generated for the contrast objects minus 

faces.

Data Analysis

Functional scan data were analyzed using AFNI53 and CARET47,48. Functional data from 

different sessions were first aligned to each monkey’s own average functional template 
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using JIP software (http://www.nitrc.org/projects/jip) and then detrended and motion 

corrected. Scans with movements more than 1mm were not used for analysis. We calculated 

the maximum likelihood maps of responses to each learned symbol set using a modified 

gamma-variate function approximating monkey hemodynamic changes in cerebral blood 

volume52. To correct for multiple comparisons, the values for minimum patch size were 

derived from a simulation that estimated the probability of false positive or noise-only 

clusters53. Using this simulation, we calculated the cluster size should be at least 31 voxels 

to keep the probability of getting a single noise-only cluster under 0.02 for a per-voxel p-

value of 0.002. The resulting corrected (for false positives) activations (Fig. S3–S10) were 

projected onto a monkey template47,48 (Figs 2&3). In order to visualize the different patches 

from different monkeys together, for each individual monkey we collapsed the thresholded 

t-maps for the two hemispheres onto the standard monkey brain (that is, a voxel was counted 

as belonging to a patch if it was significant for that contrast in either hemisphere). All the 

patches from all monkeys were color coded by symbol set and overlaid onto a single map 

using transparency to allow visualization of any pattern common to all monkeys (Figs 2&3). 

To calculate centers of mass for each symbol type for each monkey, we took the thresholded 

t-score maps for each hemisphere, and averaged the t-score maps across hemisphere. We 

then calculated centers of mass for each of these patches and projected them onto a single 

standard flat map (Fig. 3c). To generate maps of eccentricity bias, curvature, and category 

selectivity in 3 monkeys (Fig. 4 & Fig. S11), t-score maps for each contrast were calculated 

for each hemisphere and then averaged over both hemispheres of each monkey and aligned 

onto a standard flat map48,50 of macaque cortex.

ROI analysis

ROIs for selective patches for the graphs in Fig. 2d & Fig. 6 were identified using a localizer 

data set collected after training on each of the symbol sets. Percent signal changes in these 

ROIs were then measured from independent data sets collected immediately before and 

training with each symbol set (pre-training) and after training with all symbol sets (post-

training). The occipitotemporal ROIs analyzed in Fig. 5 & S11 were identified using the 

maps of Felleman & Van Essen49 that are incorporated into Caret48.

Correlation Coefficients

We calculated the similarity between pairs of contrast maps (curvy/straight, faces/objects, 

high/low spatial frequency, and central/peripheral) by calculating correlation coefficients 

between the t-values of each voxel in a given area in each pair of contrast maps in Fig. 4 (& 

Fig. S11). The correlation coefficient can range between −1 and 1; a positive correlation 

coefficient means the two maps vary in parallel across the area, zero means there is no 

relationship between the maps, and a negative correlation means the two contrasts are 

anticorrelated. To estimate confidence limits for the null hypothesis (null hypothesis: the 

two contrast maps are not correlated at all in a given visual area), we randomly shuffled the 

identity of the stimuli assigned to the stimulus blocks 32 independent times, then calculated 

contrast maps for every 1024 possible pairwise combination of identity-shuffled response 

blocks. We then calculated correlations between pairs of shuffled contrast maps for each 

area to find the 95% limits. Correlations for the unshuffled data were considered significant 

if they exceeded this limit.
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Confidence limits for average t-score plots in Fig. S12

To estimate confidence limits for the average t-scores across each ROI, we used the same 

scans and randomly shuffled the identity of the stimulus (curvy vs straight or central vs 

peripheral) assigned to each stimulus block 1000 times, then calculated t-scores for each 

voxel in each ROI based on shuffled stimulus blocks. We then found 95% limits for each 

ROI.

Animals were pair or group housed under a 12-hour light/dark cycle. All procedures 

conformed to USDA and NIH guidelines and were approve by the Harvard Medical School 

Institutional Animal Care and Use Committee.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Symbol set learning: (top) The 3 different symbol sets: Helvetica, Tetris, and Cartoon face. 

Each symbol in each set represents, in order, 0 to 25 drops of liquid reward. At the far right 

of each symbol set is an image average of all the symbols in each set. (bottom) Percent 

larger choices averaged over 1 month of daily testing for each monkey (horizontal axis) for 

each symbol set (indicated by color); chance = 50%. Numerals 1–3 indicate the order in 

which the 3 symbol sets were learned by each monkey. To the right are shown the % larger 

choices±sem for each symbol set averaged over all monkeys who learned each set, and the 

average % larger choices±sem for the first, second, and third learned sets. We found a 

negative correlation between the size of each symbol set patch and each monkey’s 

performance on that symbol set, but this correlation was not significant [Pearson’s Linear 

correlation coefficient r= −0.3828; p = 0.1057]. We found no correlation between the 

average significance value of a particular patch and the monkey’s performance [Pearson’s 

Linear correlation coefficient r= 0.0196; p = 0.9366)].
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Fig. 2. 
Effects of training on functional organization of IT. (a–c) Each panel shows overlaid 

activations from each monkey (collapsed across hemispheres; see Methods) aligned onto a 

lateral and a ventral view of a standard macaque brain47,48; the major landmarks of the 

superior temporal sulcus (STS) and V1 are indicated. Each of the overlaid patches represents 

a region from a single monkey that was significantly more active to one set of images than 

to control blocks; the patches are transparent so the overlap among different monkeys can be 

seen, as indicated by the scale. Activations for individual monkeys are shown in Figs. S3–

S10. (a) Overlaid significant activations after training to Helvetica (blue) and Tetris (green) 

from monkeys who learned Helvetica before Tetris (B1, R2, G2, & G1). (b) Overlaid 

activations after training to Helvetica (blue) and Tetris (green) from the monkeys who 

learned Tetris before Helvetica (B2 & Y1). (c) Overlaid activations to monkey faces > Tetris 

AND monkey faces>Helvetica (red) before Cartoon Face training and to Cartoon 

Faces>monkey faces (cyan) after Cartoon face training from all the monkeys who learned 

Cartoon Faces (B1, B2, R2, G2, Y1 & Y2). (d) Pre-training vs Post-training responsiveness. 

Average percent signal change for each image category before and after training was 

normalized to the response in V1 to that same image set from the same data. Monkey face 

responsiveness was calculated before and after Cartoon face training. Bars represent mean ± 

sem of values averaged over monkeys; single asterisks indicate means that differ at p<0.05; 

double asterisks indicate p<0.01. (e) Average percent signal change in opercular V1 to the 

same image sets, from the same scan sessions, normalized to the maximum V1 activation 

among image categories.

A 2×2 ANOVA for trained set vs control × pre- vs. post-training was calculated for each 

trained-set ROI. Main effects of trained vs control were found in all the trained-symbol 

patches [Helvetica Patch [F(1,4) = 3.55, p <0.05; Tetris Patch [F(1,4) = 8.6, p<0.01, Cartoon 

Face patch: F(1,4)=2.17, p<0.05]. Main effects of training were also found in all the patches 

[Helvetica Patch [F(1,1) = 79.42, p<0.01; Tetris Patch [F(1,1) = 2.7, p <0.05, Cartoon Face 
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patch: F(1,1)=19.29, p<0.01]. Critically, a robust interaction between trained vs control and 

pre- vs post-training was observed in all ROIs [Helvetica Patch [F(1,4) = 9.88, p<0.01; 

Tetris Patch [F(1,4) = 6.91, p <0.01, Cartoon Face patch: F(1,4)=5.07, p<0.01]. Hypothesis-

driven tests indicated that the all of the training-induced patches were significantly more 

activated by their trained stimulus category compared to controls after training [Helvetica 

patch: t(12) = 2.188, p< 0.05; Tetris patch: t(12) = 2.74, p< 0.05; Cartoon Face Patch t(12)= 

−3.97 p<0.001], but none of the ROIs showed significant differences between their preferred 

stimulus category and controls prior to training (all, p > 0.05). The pattern of results in the 

Cartoon Face and Helvetica regions showed a larger response to the trained stimuli post- 

compared to pre-training [Cartoon Face Patch t(12)= −4.97 p<0.001; Helvetica Patch t(12)= 

−3.10 p<0.01], and no change in response to control stimuli. The Tetris patch developed a 

post-training selectivity to Tetris via reduced responsiveness to controls after training 

[t(12)= −2.60 p=0.02], but no significant change in responsiveness to Tetris. There was no 

significant difference between monkey faces and cartoon faces pre-training any of the face 

patches (Ps > 0.05), but post-training, there was a significantly smaller response to cartoon 

faces vs. monkey faces in the Anterior [t(12)=2.45 p<0.05] and Middle Faces Patches 

[t(12)=2.19, p < 0.05].
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Fig. 3. 
Overall organization of selective responsiveness to trained symbol sets and face patches in 7 

monkeys. (a) Patches of significant activations for all 3 symbol sets and monkey faces (each 

contrasted with its control) from each of the 7 multiple-symbol-set trained monkeys 

projected onto a standard macaque brain48 shown in a semi-inflated lateral view. (b) Same 

data shown on a flattened standard map of macaque cortex with areal borders49. (c) Centers 

of mass for different selective patches. Dots indicate the center of mass of each of the 3 

major monkey faces>shapes patches and each of the trained-symbol selective patches, 

indicated by color, in the monkeys trained in this and our previous study8. For monkeys who 

learned both Helvetica and Tetris, the squares indicate centers of the first-learned symbol set 

region immediately after learning that symbol set, and circles indicate centers of the same, 

first-trained, symbol set, but after learning the second symbol set; the two patches for the 

first-learned symbol set for each monkey are linked by a line of the same color. +’s indicate 

the centers of the Helvetica patches for the 3 monkeys from our previous study that were 

trained as juveniles on Helvetica only8. By inspection, the centers of Helvetica patches in 

Helvetica-first trained monkeys shifted slightly dorsal (away from the Tetris location) after 

Tetris training, and the Tetris patch centers in the two Tetris-first trained monkeys moved 

slightly ventral (away from the Helvetica location) after Helvetica training. The indicated 

dorso-ventral and antero-posterior axes for the flat maps are meaningful only for the lateral 

surface of the brain.
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Fig. 4. 
Maps of Eccentricity bias, Curvature, and Category selectivity in 3 monkeys, as indicated. 

T-score maps were averaged over both hemispheres of each monkey for the 3 contrasts 

indicated and aligned onto a standard macaque brain47,50 that was then computationally 

flattened. Light gray areas represent gyri and dark gray sulci. Representative images from 

the sets used to generate these contrast maps are shown at the top of each column; image 

sets are shown in Fig. S2. Visual areal borders49 are indicated. Outlines of R2’s Cartoon 

face (cyan), Helvetica (blue), Tetris (green), and middle face (red) patches are overlaid on 

his eccentricity map.
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Fig. 5. 
Relationship between eccentricity, spatial frequency, curvature and category. (a–d) Voxel-

wise correlations between pairs of contrast maps for visual areas V1, V2&V3, V4, PIT, CIT, 

and AIT from 3 monkeys (Ba, R2, & Pa); the correlations are calculated between the 

contrast maps in Fig. 4, with the addition of a map for low-spatial frequency minus high-

spatial frequency patterns for the same 3 monkeys (stimuli shown in Fig. S2; maps for 

spatial frequency in Fig. S11). Dotted line indicates zero correlation. Asterisks at the top 

indicate correlations that were significantly greater than zero at p<0.05; the asterisk at the 

bottom of the 3rd map indicates a correlation that was significantly less than zero at p<0.05. 

The contrast maps used for this analysis were Eccentricity: 4–10° patterns minus 0–3° 

patterns; Spatial Frequency: 0.4 cpd patterns minus 2.5 cpd patterns; Curvature: straight 
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minus curvy patterns; Category: objects minus faces. (e–l) Spatial frequency power spectra, 

averaged over each stimulus set, as indicated.
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Fig. 6. 
Average z-scores for eccentricity (peripheral-minus-central) and curvature (straight-minus-

curvy) contrasts for Monkey face, Cartoon face, Helvetica, and Tetris ROIs combined across 

monkeys Y1, Y2, B1 and R2; values are mean across monkeys ±sem. Plots for individual 

monkeys are shown in Fig. S12.
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