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Abstract

Specialization and hierarchy are organizing principles for primate cortex, yet there is little direct 

evidence for how cortical areas are specialized in the temporal domain. We measured timescales 

of intrinsic fluctuations in spiking activity across areas, and found a hierarchical ordering, with 

sensory and prefrontal areas exhibiting shorter and longer timescales, respectively. Based on our 

findings, we suggest that intrinsic timescales reflect areal specialization for task-relevant 

computations over multiple temporal ranges.
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Hierarchy provides a parsimonious description of various functional differences across 

cortical areas. For instance, spatial receptive field sizes increase along the visual hierarchy1, 

and a posterior-anterior hierarchy exists for cognitive abstraction within prefrontal cortex2. 

In the temporal domain, higher areas can activate selectively for stimuli that are coherent 

over longer periods of time3,4. It remains an open question whether temporal specialization 

arises from a cortical area's intrinsic dynamical properties, that is, related to dynamics that 

exist even in the absence of direct stimulus processing. We hypothesized that differential 

dynamics would be manifested in the timescales of fluctuations in single-neuron spiking 

activity.

Variable neuronal activity is ubiquitous across the cortex5,6, yet it has been unclear what the 

timescales underlying this variability are, or whether these timescales differ across areas. 

Neuronal activity fluctuates over a wide range of timescales with potential contributions 

from distinct underlying mechanisms. For example, the timescales of correlated fluctuations 

of activity within a local microcircuit are likely longer than the timescales timescales of 

single-neuron burstiness and refractoriness7 but shorter than the timescales of drifts in 

arousal. In typical electrophysiological recordings from behaving animals, spike trains from 

a single neuron are recorded over many trials of a task. Using single-neuron spike trains, we 

sought to characterize these underlying fluctuations in activity that are not locked to trial 

onset. To measure the timescales of these fluctuations, we used the spike-count 

autocorrelation for pairs of time bins separated by a time lag. The spike-count 

autocorrelation is calculated as the correlation coefficient between the number of spikes in 

each time bin across all trials (Online Methods). As the time lag increases, the 

autocorrelation decays according to the fluctuation timescales8 (Supplementary 

Mathematical Note).

We measured intrinsic timescales using single-neuron spike trains in datasets from six 

research groups, recorded in a total of 26 monkeys, that include seven cortical areas (Fig. 
1a). Five cortical areas are constituents of the visual–prefrontal hierarchy, including sensory, 

parietal association, and prefrontal cortex: medial-temporal area (MT) in visual cortex; 

lateral intraparietal area (LIP) in parietal association cortex; lateral prefrontal cortex (LPFC); 

orbitofrontal cortex (OFC); and anterior cingulate cortex (ACC). To test for generality of 

results outside of the visual system, we also examined two somatosensory areas: primary 

somatosensory cortex (S1) and secondary somatosensory cortex (S2). These areas span 

multiple levels of the anatomical hierarchy defined by the laminar patterns of long-range 

projections among cortical areas9,10 (Fig. 1b). For each dataset, monkeys were engaged in 

cognitive tasks. We restricted our analysis to one epoch of the task, the foreperiod that 

begins each trial. During the foreperiod, the monkey was in a controlled, attentive state 

awaiting stimulus onset (fixation of eye position for visual tasks, lever hold for the 

somatosensory task). This restriction minimizes stimulus-related confounds and allows 

application of the same analyses across areas and datasets. This definition of intrinsic 

timescale does not refer to single-neuron physiology or imply that the timescale does not 

change with stimulus conditions.

The decay of autocorrelation with increasing time lag could be well fit by an exponential 

decay with an offset (Fig. 1c). This fit was obtained at the population level, rather than 
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single neuron level (Online Methods, and Supplementary Figs. 1 & 2), enabling us to 

extract an intrinsic timescale as a population-level statistic for each area in a dataset. Within 

each dataset, the intrinsic timescales differed across areas, in the range of 50–350 ms. Over 

all datasets, we found a consistent ordering of the intrinsic timescales across cortical areas 

(P < 10−5, rs = 0.89, Spearman's rank correlation) (Fig. 1d). Sensory cortex showed shorter 

timescales, parietal association cortex showed intermediate timescales, and prefrontal cortex 

showed longer timescales, with medial prefrontal area ACC consistently showing the 

longest timescale in our datasets. Hierarchical ordering was present in both visual and 

somatosensory systems. Differences in intrinsic timescales could not be explained by 

differences in mean firing rates across areas (Supplementary Fig. 3). Interestingly, this 

hierarchy of intrinsic timescales aligns with the anatomical hierarchy defined by long-range 

projections among cortical areas9,10, although our physiologically-defined hierarchy differs 

from the anatomical hierarchy for OFC (P = 0.002, rs = 0.97, Spearman's rank correlation). 

The correspondence between physiological, anatomical, and functional hierarchies suggests 

functional importance of these timescales in large-scale cortical coordination.

What is the potential relevance of intrinsic timescales to functions which may operate over 

longer timescales? We examined whether the intrinsic timescale (in the range of 50–350 ms) 

may be correlated with the capacity for neurons in an area to sustain signals over long 

behavioral timescales (e.g., 5–10 s). Neuronal fluctuations include contributions that operate 

over a wide range of timescales. Long timescales contribute an effective offset to the 

autocorrelation (Fig. 2a and Supplementary Mathematical Note). The offset can therefore 

reflect the strength of fluctuations at long timescales that cannot be resolved with a limited 

duration of the foreperiod. We found that the autocorrelation offset positively correlates with 

the intrinsic timescale (P = 0.004, t(9) = 3.4, t-test) (Fig. 2b). We also found that the offset 

reflects the strength of trial-to-trial correlations (P = 0.002, t(9) = 3.9, t-test), indicating that 

a portion of long-timescale variability persists across trials (Supplementary Fig. 4). These 

results imply that hierarchy may exist across multiple temporal ranges.

Of relevance to function, fluctuations at long timescales can include contributions from 

long-lasting memory traces of stimuli or task variables such as reward. In the Lee dataset, 

which includes areas LIP, LPFC, and ACC, we previously measured the temporal 

modulation of neuronal activity by reward events during a decision-making task, at the 

single-neuron level11 (Supplementary Fig. 5). We refer to the time constant characterizing 

the decay of a neuron's modulation by reward as its reward timescale. Consistent with this 

link between intrinsic timescale and long functional timescales, the order of areas according 

to median reward timescale aligns with the order according to intrinsic timescale (Fig. 2c). It 

is noteworthy that the median reward timescale is an order of magnitude longer than the 

intrinsic timescale. These results support the interpretation that intrinsic timescales may 

reflect areal specialization for task-relevant computations over long timescales.

In summary, our physiological analyses show that cortical areas follow a hierarchical 

ordering in their timescales of intrinsic fluctuations. One interpretation of their functional 

relevance is that these timescales set the duration over which a neural circuit integrates its 

inputs12. In this interpretation, shorter timescales in sensory areas enable them to rapidly 

detect or faithfully track dynamic stimuli13,14. By contrast, prefrontal areas can utilize 

Murray et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



longer timescales to integrate information and improve the signal-to-noise ratio in short-term 

memory or decision-making computations12, 15. There is known hierarchical specialization 

across areas at the functional level, in sensory processing and cognitive tasks1–3.

The present study leaves as an open question what underlying mechanisms contribute to this 

hierarchy of intrinsic timescales. Computational models of recurrent neural circuits have 

demonstrated multiple potential mechanisms12. A longer intrinsic timescale in the circuit 

could reflect timescales of cellular or synaptic dynamics. Consistent with this mechanism, 

there are interareal differences in the dynamical properties of recurrent excitatory synapses, 

including differential composition of glutamate receptors16, expression of short-term 

synaptic plasticity17, and level of neuromodulation18. Interareal differences in cellular 

physiology can also be driven by factors such as neuronal morphology 19. A longer 

timescale in the circuit could also arise from stronger synaptic connections mediating 

recurrent excitation, which slows intrinsic dynamics by partially canceling leak12. There are 

increases across the cortical hierarchy in the number and density of excitatory synapses onto 

pyramidal cells20, which may reflect increased recurrent strength across areas. Modeling 

studies have further shown that strong recurrent connections can endow a cortical circuit 

with the capability to exhibit persistent activity in working memory and slow accumulation 

of information in decision making15. A hierarchy of intrinsic timescales may link 

neurophysiological properties to functional specialization.

Online Methods

Datasets

All experimental methods were approved by the relevant institutional animal care and use 

committees. Experimental details for the datasets have been reported previously. We used 

single-neuron spike train data, recorded in macaque monkeys, from the foreperiod of various 

cognitive tasks. For the Romo dataset, the foreperiod entailed holding a lever by the free 

hand; for all other datasets, the foreperiod entailed fixation of eye position to a central target. 

Datasets were selected as they comprised multiple cortical areas, and the task foreperiod had 

durations of at least 500 ms with minimal task-related stimulus during the foreperiod (for 

visual tasks, only a fixation point on the screen). Only completed trials were analyzed. Cells 

and trials were filtered for further analysis by two criteria. To allow computation of spike-

count autocorrelation, we required that each time bin have a non-zero mean firing rate21. To 

minimize spurious autocorrelation due to very slow drift of firing rates across the recording 

session, we selected the longest block of trials in which the total foreperiod spike count was 

statistically stationary across trials22.

The Pasternak dataset consists of neurons recorded in MT and LPFC23–27. Monkeys 

compared two motion stimuli separated by a brief delay. The foreperiod duration was either 

500 ms or 1,000 ms. For single neurons recorded over multiple tasks, each task-neuron pair 

was treated as a separate single neuron to control for task-dependent changes in foreperiod 

firing. Single-neuron counts were 485 from MT (2 monkeys) and 427 from LPFC (4 

monkeys). The Freedman dataset contains neurons from MT, LIP, and LPFC28,29. Monkeys 

performed a motion delayed match-to-category task. The foreperiod duration was 500 ms. 

Single-neuron counts were 59 from MT (2 monkeys), 222 from LIP (4 monkeys), and 458 
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from LPFC (2 monkeys). The Lee dataset consists of neurons recorded in LIP, LPFC, and 

ACC30–32. Monkeys performed a competitive decision-making task called matching 

pennies. The foreperiod duration was 500 ms. Single-neuron counts were 192 from LIP (3 

monkeys), 293 from LPFC (5 monkeys), and 146 from ACC (2 monkeys). The Wallis 

dataset contains neurons from LPFC, OFC, and ACC33–35. Monkeys performed tasks 

involving value-based choice. The foreperiod duration was 1,000 ms. Single-neuron counts 

were 946 from LPFC (6 monkeys), 481 from OFC (7 monkeys), and 841 from ACC (6 

monkeys). The Padoa-Schioppa dataset contains neurons from LPFC, OFC, and ACC36–39. 

Monkeys performed tasks involving value-based choice. The foreperiod duration was 1,500 

ms. Single-neuron counts were 1,024 from LPFC (2 monkeys), 1,768 from OFC (2 

monkeys), and 987 from ACC (2 monkeys). The Romo dataset contains cells from S1 and 

S240. Two monkeys performed a vibrotactile delayed discrimination task. The foreperiod 

duration was variable, with a minimum of 1,400 ms. Single-neuron counts were 711 from S1 

(2 monkeys) and 928 from S2 (2 monkeys).

Analysis

Our primary analysis was the temporal autocorrelation of spike counts, which we computed 

in the following way for single neurons. We divided the foreperiod into separate, successive 

time bins of duration Δ. We set Δ = 50 ms; results were similar for changes of ±20%. For 

two time bins, indexed by their onset times iΔ and jΔ, we computed the across-trial 

correlation between spike counts N in those time bins using the Pearson's correlation 

coefficient R:

(1)

where covariance (Cov) and variance (Var) are computed across trials for those time bins, 

and is the mean spike count for a particular bin. Importantly, spike-count autocorrelation 

corrects for nonstationarity in the mean firing rate during the foreperiod (e.g., ramping), 

because covariance and varience subtract the mean spike count for each time bin.

Based on our theoretical calculations for doubly stochastic processes (Supplementary 

Mathematical Note), the decay of autocorrelation was fit to the population of neurons within 

an area by an exponential decay with an offset as a function of the time lag kΔ between time 

bins (k = |i − j|):

(2)

where τ is the intrinsic timescale and B is the offset that reflects the contribution of 

timescales much longer than our observation window. Some areas in the datasets showed 

sign of refractoriness or negative adaptation at short time lags (Fig. 1c), which would not be 

captured by Equation (2). To accommodate this feature of the autocorrelation data, fitting 

started at the time lag with maximum decrease of the mean autocorrelation. We fit Equation 

Murray et al. Page 5

Nat Neurosci. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3 to the full autocorrelation data for all neurons and times; fits were therefore performed at 

the population level rather than single-neuron level, yielding a set of fit parameters for an 

area in a dataset. For the visual presentation in Fig. 1c, autocorrelation was averaged across 

neurons and times. Autocorrelation averaged across neurons but not time is presented in 

Supplementary Fig. 1, and autocorrelation averaged across time but not neurons is 

presented in Supplementary Fig. 2.

Equation 2 was fit to the autocorrelation data using nonlinear least-squares fitting via the 

Levenberg-Marquardt algorithm (through the SciPy function optimize.curve fit). The 

parameter covariance matrix generated by the Levenberg-Marquardt fitting procedure 

describes the dependence between parameters in fitting an individual area in a dataset. A 

positive (negative) off-diagonal term for two parameters indicates that increasing one 

parameter will increase (decrease) the other to optimize the fit. For most areas (11 of 16), 

this term had negative sign, indicating that the positive correlation in between τ and B 

shown in Fig. 2b was not a consequence of the fitting procedure. Standard error for fit 

parameters was computed by the delete-one jackknife procedure.

To test for hypothesized relationships between two measures we used a linear regression 

model:

where δd,k is a dummy variable, which is 1 for a particular dataset k and 0 otherwise. This 

model assumes that all datasets have a linear dependence of y on x across all datasets (m), 

and allows datasets to have different constant terms (bk). The statistical significance of a 

regressor, in particular the dependence term m, was assessed by a t-test. This regression 

analysis was applied to test three dependences: (1) x is intrinsic timescale, y is 

autocorrelation offset (Fig. 2b); (2) x is mean firing rate, y is intrinsic timescale 

(Supplementary Fig. 3); and (3) x is trial-to-trial correlation, y is autocorrelation offset 

(Supplementary Fig. 4). We assessed normality of residuals for the regression analyses; in 

all cases, the magnitude of skew was < 0.4. Statistical significance (defined by P < 0.05), or 

lack thereof, for each test was preserved if a single constant term bk = b was used for all 

datasets.

To test for correlation between the timescale hierarchy and anatomical hierarchy, we 

calculated the Spearman rank correlation between the ordering of areas by mean timescale 

and the discrete anatomical ordering shown in Fig. 1b. The rank correlation coefficient was 

the same for the visual–prefrontal system (MT, LIP, LPFC, OFC, ACC) and for the 

somatosensory–prefrontal hierarchy (S1, S2, LPFC, OFC, ACC). Unless otherwise stated, 

reported p-values are one-sided, as we tested a priori hypotheses of positive correlations 

between variables. Custom Python code was used for all analyses; analysis code is available 

from the authors upon request.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Spike-count autocorrelation reveals a hierarchical ordering of intrinsic timescales. (a) 

Datasets span seven cortical areas in the macaque monkey: MT, LIP, LPFC, OFC, ACC, S1, 

and S2. (b) Anatomical hierarchy of the areas, based on long-range projection patterns9,10. 

(c) Spike-count autocorrelation was computed for neuronal spiking activity during the 

foreperiod of cognitive tasks. Each panel shows the dataset for one of six research groups. 

The decay of autocorrelation was fit by an exponential decay with an offset. Some areas in 

datasets show refractory adaptation at short time lags, which were excluded from the fit 
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(Online Methods). Solid lines show the exponential fit. Intrinsic timescale extracted from 

the fit is shown for each area. Autocorrelation was computed with 50-ms time bins. (d) 

Intrinsic timescales across the visual–prefrontal hierarchy in five datasets (left), and the 

somatosensory hierarchy (right). Error bars mark s.e.
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Figure 2. 
Links between intrinsic timescale and longer functional timescales. (a) Autocorrelation 

offset (B) reflects the strength of contributions with long timescales, which do not decay 

substantially within the fixation epoch. (b) Autocorrelation offset increases with intrinsic 

timescale. Colored lines show trends for individual datasets. The arrow shows the slope of 

dependence from a regression analysis (slope m = 0.8 ± 0.2 kHz). (c) In the Lee dataset, we 

previously measured timescales characterizing the decay of modulation of single-neuron 

firing rates by reward events, while monkeys performed a competitive decision-making 

task11. The ordering of areas by reward timescale aligns with the ordering by intrinsic 

timescale. Error bars mark s.e.
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