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Abstract

Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of 

Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular 

coagulation, nor death from shock, thus restricting pathogenesis studies to non-human primates. 

Here we show that mice from the Collaborative Cross exhibit distinct disease phenotypes 

following mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to 

lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% 

mortality. Inflammatory signaling was associated with vascular permeability and endothelial 

activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and 

cellular adhesion, likely mediated by the susceptibility allele Tek. These data indicate that genetic 

background determines susceptibility to Ebola hemorrhagic fever.
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A mouse-adapted strain of Ebola virus (MA-EBOV) does not cause hemorrhagic syndrome 

despite causing lethal disease in laboratory mice, and cannot be used effectively to study 

Ebola hemorrhagic fever (EHF) pathogenesis, as the dissimilarity to human disease limits 

the ability to identify key correlates of viral pathogenesis or accurately assess the effect of 

vaccines or therapeutics. Pathogenesis studies of EHF have thus been restricted to macaques 

(1–4), guinea pigs (5, 6), and Syrian hamsters (7). Although these models accurately 

recapitulate most of the disease features of EHF, practical and ethical concerns limit their 

use, including non-reproducible genetic backgrounds, cost, animal availability, and reagent 

availability. Epidemiologic studies of EBOV infection have identified a range of pathogenic 

phenotypes, which are not linked to specific mutations in the viral genome (8, 9). This 

suggests that the host response may determine disease severity after EBOV infection.

We tested the role of host genetics in Ebola virus disease (EVD) using the Collaborative 

Cross (CC) resource, a genetically diverse panel of recombinant inbred (CC-RI) mice 

obtained through a systematic cross of eight inbred founder mouse strains, five of which are 

classic laboratory strains (C57BL/6J, A/J, 129S1/SvImJ, NOD/ShiLtJ, NZO/H1LtJ) and 

three of which are wild-derived inbred strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) (10). 

The founders represent 90% of the common genetic variation across the three major Mus 

musculus subspecies (M. m. musculus, M. m. domesticus, and M. m. castaneus) (11). 

Different strains can be crossed with one another to generate CC-RI intercrossed (CC-RIX) 

F1 progeny. We recently observed a spectrum of pathogenic phenotypes in CC mice, and 

identified genetic loci associated with influenza severity and disease outcome (12, 13). Thus 

we tested whether a similar range of phenotypes would emerge after infecting CC-RIX 

animals with MA-EBOV.

To determine phenotypic baseline, we challenged the eight CC founders intraperitoneally 

with MA-EBOV or the Mayinga strain of wild-type EBOV (WT-EBOV). MA-EBOV 

differs from the published WT-EBOV sequence by only 13 nucleotide changes, three of 

which are silent (14). MA-EBOV is pathogenic in guinea pigs and macaques (1), and causes 

lethal EHF in Syrian hamsters (7). Despite observing 25–100% mortality following MA-

EBOV challenge at multiple doses (Figure S1), we found no evidence of hemorrhagic 

disease or susceptibility to lethal disease after infection with WT-EBOV. We assessed the 

pathogenic phenotype produced by intraperitoneal infection with 100 focus forming units 

(FFU) of MA-EBOV in 47 available CC-RIX lines (Table 1). We observed disease 

phenotypes ranging from complete resistance to lethal disease to severe EHF-associated 

pathology prior to death, as well as lines that lethal infection without symptoms of EHF, but 

sometimes with hepatic discoloration.

We performed detailed studies on two representative lines, 13140×3015 (susceptible to 

lethal EHF) and 15156×1566 (resistant to lethal disease). Mice from both lines lost 

approximately 15% of their body weight over the first five days post-infection (p.i.) (Fig. 

1A). However, susceptible mice succumbed to lethal infection on days 5–6 p.i., while 

resistant mice survived and fully recovered body weight by day 14 (Fig. 1B). At day 5 p.i., 

susceptible mice presented pathological findings consistent with EHF, including prolonged 

blood coagulation, internal hemorrhage, coffee-colored blood, splenomegaly, and hepatic 
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discoloration and softened texture (Fig. 1C). The resistant mice, however, had no evident 

gross pathology at the time of maximum body weight loss and no alteration in the 

appearance of the liver (Fig. 1D). Neither susceptible nor resistant mice developed 

observable clinical disease after challenge with WT-EBOV. We detected extremely low 

titers of virus at day 3 in the liver and spleen of animals following WT-EBOV infection, and 

these were 100–1000-fold lower than organ titers detected in mice infected with MA-EBOV 

(Fig. S2). We did not detect virus at day 5 in any organ or any mouse, indicating that WT-

EBOV is not able to productively replicate in these mouse strains. In liver and spleen from 

both mouse lines, equivalent levels of viral RNA were observed (Figs. 2A,B). However, we 

observed 1–2 logs higher levels of infectious virus in susceptible liver and spleen compared 

to resistant liver and spleen after virus titration by focus forming assay when infectious 

virion production became detectable on day 3 (Figs. 2C,D), suggesting that resistance may 

be associated with a defect in virion assembly, secretion, or other post-transcriptional 

processes. We confirmed this finding by staining liver sections from susceptible and 

resistant mice on day 5 p.i. for VP40, the viral matrix protein. We observed substantially 

less VP40 staining in resistant liver (Fig. 2E,F) compared to susceptible liver (Figs. 2G,H, 

Fig. S3). Sequence analysis showed no nucleotide changes between virus genomes in either 

line, indicating that these effects cannot be readily attributed to selection of quasispecies 

with different viral fitness (Table S1). Despite significant differences in infectious virus 

titers between the two mouse lines, we observed similar levels of inflammation and 

apoptosis in spleen and liver, although the two lines displayed distinct histopathology (Figs. 

S4, S5, S6). Despite similar organ tropism, virus infection occurred in different hepatic cell 

types in the two mouse lines. Susceptible mice had viral antigen in essentially every 

hepatocyte (Fig. 2F, Table S2), while resistant mice viral antigen was restricted to cells that 

lack typical hepatocyte morphology, most likely endothelial cells and Kupffer cells (Fig. 

2G), consistent with low-pathogenicity Reston virus infection (15). Possibly in resistant 

mice, infected hepatic endothelial cell and macrophage responses limit virus production and 

control systemic inflammation and coagulopathy. Widespread hepatic infection in 

susceptible mice may explain how they both produce increased amounts of infectious virus 

and induce dysregulated coagulation pathways.

We quantified the extent of coagulopathy by measuring blood clotting times. On days 5–6 

p.i., susceptible mice showed significantly prolonged thrombin time (TT), prothrombin time 

(PTT), and activated partial thromboplastin time (aPTT) compared to resistant and 

C57BL/6J mice (Fig. 3A–3C). An initial spike in serum fibrinogen levels in susceptible 

mice on day 3 p.i. was followed by a precipitous drop (Fig. 3D) prior to death. This increase 

may be due to compensatory fibrinogen production in response to hepatic cell death and 

consequent clotting factor depletion, consistent with observations in other EHF models in 

which severe hemorrhage and coagulopathy typically peaks within 48 hours preceding death 

(3, 7).

We investigated transcriptional host responses linked to disease outcome in the CC-RIX 

lines. Significant differentially expressed genes relative to time-matched mock-infected 

samples (FDR-adjusted p-value <0.05; fold change > 1.5) in both spleen and liver were 10–

100 fold higher number of DEG in susceptible mice than resistant mice (Fig 4A–B; 

Supplementary Data 2 and 3). These data suggest that EHF is characterized by earlier 
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induction of a larger magnitude transcriptional response. In susceptible mice relative to 

resistant mice, genes associated with EBOV infection were differentially induced. Early in 

infection in the spleens of susceptible mice at day 1 p.i., we observed enrichment of p38 

MAPK and ERK signaling, processes that stimulate productive EBOV infection (16, 17). 

Additionally we observed increased NFkB expression and induction of proinflammatory 

processes, which may reflect early targets of infection in the secondary lymphoid organs. By 

day 3 p.i. in both liver and spleen, inflammatory pathways became increasingly enriched in 

susceptible mice, as did pathways associated with cell death, including those associated with 

cytotoxicity and apoptosis in macrophages and endothelial cells. Both resistant and 

susceptible lines induced multiple immune pathways in the spleen. By day 5, although 

differential gene expression peaked in both lines, the gene sets involved were distinct and 

probably reflect different courses of disease.

We identified differentially expressed genes unique to susceptible mice in liver and 

observed enrichment in genes related to vascular integrity at days 3 and 5, including the 

endothelial tyrosine kinases Tie1 and Tek (Tie2). Tie1 and Tek expression was depressed 

compared with levels in mock-infected animals at day 5, concurrent with the onset of 

coagulopathy. We used Ingenuity Pathway Analysis (IPA) software to generate networks 

predicting molecular activity (18), and predicted activation of processes associated with 

vascular differentiation and endothelial activation, IL-6-mediated inflammation, and 

bleeding, and inhibition of pathways associated with vascular integrity and inflammatory 

regulation in susceptible livers (Fig. S7). TIE1 and TEK signaling promote activation of 

coagulation factors, such as thrombin (F2), tissue factor (F3), and protease activated 

receptors 1, 3, and 4 (PAR1/F2R, PAR3/F2RL2, PAR4/F2RL3) (19), which have been 

mechanistically implicated in coagulopathies mediated by EBOV and other viruses (4, 20), 

and are differentially regulated in these mice (Fig. S8). Tie1 and Tek expression was 

consistently elevated in resistant mouse spleens, implying that endothelial signaling 

regulation and vascular leakage contributes to disease resistance in susceptible mice. In 

livers from resistant mice at day 5, gene expression associated with vascular density and 

angiogenesis increased, suggesting that this line effectively controls vascular leakage, 

potentially through repair or structural maintenance of blood vessels. It seems likely that 

restriction of MA-EBOV infection to endothelial and Kupffer cells in resistant mice 

prevents induction of hepatocyte-specific molecules that enhance systemic inflammation, 

thrombocytopenia, and coagulopathy.

We investigated the genomes and found that the Tie1 alleles across the eight CC founders 

are from all three Mus musculus subspecies, and are highly divergent from one another (21), 

which prevented us from identifying significant relationships between Tie1 alleles and 

phenotype. In contrast, Tek alleles in the CC-RIX are derived from only two subspecies: M. 

m. domesticus and M.m. musculus, and are very different from one another. Distinct Tek 

alleles were previously associated with inflammatory coagulopathies and vascular 

dysfunction (22–26). In our preliminary analysis, we identified statistically significant 

relationships between subspecific Tek alleles and initial onset of weight loss (ANOVA, 

F2,31=5.581, p=0.0085), average day of death (ANOVA F2,34=10.519, p=0.00028), and 

mortality (ANOVA F2,37=8.5553, p=0.0008) (Fig. S9). Here, we reproduced EHF in a 
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mouse model that will allow linkage of specific genetic polymorphisms to tropism, 

infectious virus production, cell type-specific responses, and phenotypic outcome. The CC 

model provides a unique platform to map susceptibility alleles in the context of EHF 

pathogenesis, and rapidly apply these findings to the development of candidate therapeutics 

and vaccines. Ongoing screening activities in CC-RIX mice will identify additional genetic 

loci that contribute to hemorrhagic disease, lethality, or resistance to severe disease.

The frequency of different pathological manifestations across the 47 CC-RIX lines screened 

so far are similar in variety and proportion to the spectrum of clinical disease observed in 

patients with Ebola virus disease in the 2014 West Africa outbreak, with hemorrhagic 

symptoms appearing in 30–50% of patients (27, 28). Although we cannot rule out the 

possibility that human survivors have pre-existing immunity to EBOV or a related virus, our 

data suggest that genetic factors play a significant role in determining disease outcome in 

naïve individuals without prior exposure or immunologic priming.

While we have not yet screened CC-RIX mice for susceptibility to other ebolavirus species, 

we anticipate that we would observe a similar distribution of pathogenic phenotypes 

following infection with viruses that are capable of replicating in mice. The current 2014 

West Africa outbreak is caused by the same species of ebolavirus as the MA-EBOV used in 

this screen. There are also similarities in the spectrum of disease observed in CC-RIX mice 

infected with MA-EBOV and in clinical cases in the current outbreak. The model described 

in this paper can be implemented promptly to identify genetic markers, conduct meticulous 

pathogenesis studies, and evaluate therapeutic strategies that have broad-spectrum antiviral 

activity against all Zaire ebolaviruses, including the virus responsible for the current West 

Africa outbreak.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This study was supported in part by awards U54 AI081680, U19 AI109761, and U19 AI100625 from the National 
Institute of Allergy and Infectious Diseases, National Institutes of Health, P51 OD010425 from the Office of the 
Director, National Institutes of Health, and by the Intramural Research Program of the National Institute of Allergy 
and Infectious Diseases, National Institutes of Health. Microarray data has been deposited with the Gene 
Expression Omnibus (www.ncbi.nlm.nih.gov/geo) (accession number GSE57214), and raw data can be obtained at 
https://www.ccebola.org/project/Supplemental/begin.view?.

References and Notes

1. Bray M, Hatfill S, Hensley L, Huggins JW. Haematological, biochemical and coagulation changes 
in mice, guinea-pigs and monkeys infected with a mouse-adapted variant of Ebola Zaire virus. 
Journal of comparative pathology. Nov.2001 125:243. [PubMed: 11798241] 

2. Yen JY, et al. Therapeutics of Ebola hemorrhagic fever: whole-genome transcriptional analysis of 
successful disease mitigation. The Journal of infectious diseases. Nov.2011 204(Suppl 3):S1043. 
[PubMed: 21987740] 

3. Ebihara H, et al. Host response dynamics following lethal infection of rhesus macaques with Zaire 
ebolavirus. The Journal of infectious diseases. Nov.2011 204(Suppl 3):S991. [PubMed: 21987781] 

Rasmussen et al. Page 5

Science. Author manuscript; available in PMC 2014 November 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

https://www.ccebola.org/project/Supplemental/begin.view?


4. Geisbert TW, et al. Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: 
overexpression of tissue factor in primate monocytes/macrophages is a key event. The Journal of 
infectious diseases. Dec 1.2003 188:1618. [PubMed: 14639531] 

5. Connolly BM, et al. Pathogenesis of experimental Ebola virus infection in guinea pigs. The Journal 
of infectious diseases. Feb.1999 179(Suppl 1):S203. [PubMed: 9988186] 

6. Ryabchikova E, et al. Ebola virus infection in guinea pigs: presumable role of granulomatous 
inflammation in pathogenesis. Archives of virology. 1996; 141:909. [PubMed: 8678836] 

7. Ebihara H, et al. A Syrian golden hamster model recapitulating ebola hemorrhagic fever. The 
Journal of infectious diseases. Jan 15.2013 207:306. [PubMed: 23045629] 

8. Leroy EM, Baize S, Mavoungou E, Apetrei C. Sequence analysis of the GP, NP, VP40 and VP24 
genes of Ebola virus isolated from deceased, surviving and asymptomatically infected individuals 
during the 1996 outbreak in Gabon: comparative studies and phylogenetic characterization. The 
Journal of general virology. Jan.2002 83:67. [PubMed: 11752702] 

9. Leroy EM, et al. Human asymptomatic Ebola infection and strong inflammatory response. Lancet. 
Jun 24.2000 355:2210. [PubMed: 10881895] 

10. C. Collaborative Cross. The genome architecture of the Collaborative Cross mouse genetic 
reference population. Genetics. Feb.2012 190:389. [PubMed: 22345608] 

11. Roberts A, Pardo-Manuel de Villena F, Wang W, McMillan L, Threadgill DW. The polymorphism 
architecture of mouse genetic resources elucidated using genome-wide resequencing data: 
implications for QTL discovery and systems genetics. Mammalian genome : official journal of the 
International Mammalian Genome Society. Jul.2007 18:473. [PubMed: 17674098] 

12. Bottomly D, et al. Expression quantitative trait Loci for extreme host response to influenza a in 
pre-collaborative cross mice. G3. Feb.2012 2:213. [PubMed: 22384400] 

13. Ferris MT, et al. Modeling host genetic regulation of influenza pathogenesis in the collaborative 
cross. PLoS pathogens. Feb.2013 9:e1003196. [PubMed: 23468633] 

14. Ebihara H, et al. Molecular determinants of Ebola virus virulence in mice. PLoS pathogens. Jul.
2006 2:e73. [PubMed: 16848640] 

15. Groseth A, et al. The Ebola virus glycoprotein contributes to but is not sufficient for virulence in 
vivo. PLoS pathogens. 2012; 8:e1002847. [PubMed: 22876185] 

16. Johnson JC, et al. Pyridinyl imidazole inhibitors of p38 MAP kinase impair viral entry and reduce 
cytokine induction by Zaire ebolavirus in human dendritic cells. Antiviral research. Jul.2014 
107:102. [PubMed: 24815087] 

17. Strong JE, et al. Stimulation of Ebola virus production from persistent infection through activation 
of the Ras/MAPK pathway. Proceedings of the National Academy of Sciences of the United States 
of America. Nov 18.2008 105:17982. [PubMed: 18981410] 

18. S. Text.

19. Sato TN, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel 
formation. Nature. Jul 6.1995 376:70. [PubMed: 7596437] 

20. Antoniak S, Mackman N. Coagulation, protease-activated receptors, and viral myocarditis. Journal 
of cardiovascular translational research. Mar.2014 7:203. [PubMed: 24203054] 

21. Yang H, et al. Subspecific origin and haplotype diversity in the laboratory mouse. Nature genetics. 
Jul.2011 43:648. [PubMed: 21623374] 

22. Brouillard P, Olsen BR, Vikkula M. High-resolution physical and transcript map of the locus for 
venous malformations with glomus cells (VMGLOM) on chromosome 1p21–p22. Genomics. Jul 
1.2000 67:96. [PubMed: 10945476] 

23. Flanagan JM, et al. Genetic predictors for stroke in children with sickle cell anemia. Blood. Jun 
16.2011 117:6681. [PubMed: 21515823] 

24. Nolan VG, et al. Sickle cell leg ulcers: associations with haemolysis and SNPs in Klotho, TEK and 
genes of the TGF-beta/BMP pathway. British journal of haematology. Jun.2006 133:570. 
[PubMed: 16681647] 

25. Vikkula M, et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor 
tyrosine kinase TIE2. Cell. Dec 27.1996 87:1181. [PubMed: 8980225] 

Rasmussen et al. Page 6

Science. Author manuscript; available in PMC 2014 November 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



26. Zheng Q, et al. Association study between of Tie2/angiopoietin-2 and VEGF/KDR pathway gene 
polymorphisms and vascular malformations. Gene. Jul 10.2013 523:195. [PubMed: 23566851] 

27. Baize S, et al. Emergence of Zaire Ebola virus disease in Guinea. The New England journal of 
medicine. Oct 9.2014 371:1418. [PubMed: 24738640] 

28. Dixon MG, Schafer IJ, C. D. C. Eis officer. Ebola viral disease outbreak – west Africa, 2014. 
MMWR Morbidity and mortality weekly report. Jun 27.2014 63:548. [PubMed: 24964881] 

Rasmussen et al. Page 7

Science. Author manuscript; available in PMC 2014 November 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. Distinct Morbidity and Mortality Following MA-EBOV Infection in CC-RIX Mouse 
Lines
A. Percent of starting body weight over course of infection in susceptible (red squares) and 

resistant mice (blue circles). Data shown are mean ± SEM from five mice per CC-RIX line. 

B. Kaplan-Meier survival curve for susceptible (red) and resistant (blue) mice. Five mice 

were used for each CC-RIX line. C,D,E,F. Gross appearance of liver at necropsy in 

uninfected susceptible (C) and resistant (E) mice, and on day 5 post-infection in susceptible 

(D) and resistant (F) mice.
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Figure 2. MA-EBOV Replication in CC-RIX Mouse Lines
A,B. Quantitative real-time PCR showing expression of MA-EBOV genomes relative to 

mouse 18S rRNA in spleen (A) and liver (B). Data shown are mean ± SEM for three mice 

per time point per RIX line. C,D. Titration of infectious MA-EBOV in organ homogenates 

from spleen (C) and liver (D) quantified as focus forming units per milliliter. No infectious 

virus was detected prior to day 3 p.i. Data shown are mean ± SEM from two experiments 

using 2–3 mice per time point per CC-RIX line. E,F,G,H. Immunohistochemical staining 

for VP40 in resistant liver (E,F) and susceptible liver (G,H). Arrow indicates representative 

hepatocyte morphology. (t-test, *p<0.05)
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Figure 3. Quantification of Coagulopathy and Hemorrhage in CC-RIX Mouse Lines
A,B,C. Coagulation times in seconds for thrombin (A), prothrombin (B), and activated 

partial thromboplastin (C) over course of MA-EBOV infection. D. Serum fibrinogen levels 

in CC-RIX mice over course of MA-EBOV infection. All data shown are the mean ± SEM 

for 2 experiments including 2–5 animals per time point. (ANOVA with Tukey’s HSD post-

hoc. *p<0.05, **p<0.05, ***p<0.0000001).
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Figure 4. Distinct Host Responses Associated with Disease Phenotype
A,B. Number of differentially expressed genes (DEG) either up-regulated (positive y-axis) 

or down-regulated (negative y-axis) relative to time-matched mock-infected samples in 

spleen (A) and liver (B).

Rasmussen et al. Page 11

Science. Author manuscript; available in PMC 2014 November 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Rasmussen et al. Page 12

Table 1

Distribution of Phenotypes Across CC-RIX Lines

Outcome of Infection Frequency of 
phenotype (%)

Phenotypic characteristics CC-RIX line ID Mortality (%)

Resistant 19 (9/47) 0% mortality 15156×1566 0

3252×8042 0

5119×8018 0

3252×8002 0

8034×8048 0

8048×8026 0

8026×5080 0

1566×8043 0

16012×15119 0

Partially resistant 11 (5/47) <50% mortality 18042×3032 20

15156×3252 20

477×16912 40

13140×16680 20

16072×15119 20

Lethal 17 (8/47) >50% mortality 3032×16188 80

8004×8043 60

8002×3032 60

16188×8005 100

8008×8016 100

16441×8024 100

16912×5489 100

3415×16012 100

Lethal with hepatitis 19 (9/47) >50% mortality, hepatic discoloration 8042×16513 60

16513×15156 100

16188×3252 75

13067×16912 100

5489×16557 80

16912×16211 60

16211×13140 80

8024×8049 100

8049×8010 100

Lethal with EHF 34 (16/47) >50% mortality, severe coagulopathy (discolored blood, 
prolonged blood clotting)

3609×5119 60

8018×3154 80

13140×3015 100

8016×8034 100

16441×8005 100
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Outcome of Infection Frequency of 
phenotype (%)

Phenotypic characteristics CC-RIX line ID Mortality (%)

8010×16441 100

3032×16441 60

8005×8002 100

3154×3609 100

3609×5489 100

16557×13067 100

16513×16188 100

15155×8054 100

3393×8052 100

8043×8008 80

8048×15155 80

*
Boldface type indicates CC-RIX crosses used in this study
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