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REVIEW

Lymphatics in lymphangioleiomyomatosis
and idiopathic pulmonary fibrosis

Connie G. Glasgow*, Souheil EI-Chemaly” and Joel Moss*

ABSTRACT: The primary function of the lymphatic system is absorbing and transporting
macromolecules and immune cells to the general circulation, thereby regulating fluid, nutrient
absorption and immune cell trafficking. Lymphangiogenesis plays an important role in tissue
inflammation and tumour cell dissemination. Lymphatic involvement is seen in lymphangio-
leiomyomatosis (LAM) and idiopathic pulmonary fibrosis (IPF).

LAM, a disease primarily affecting females, involves the lung (cystic destruction), kidney
(angiomyolipoma) and axial lymphatics (adenopathy and lymphangioleiomyoma). LAM occurs
sporadically or in association with tuberous sclerosis complex (TSC). Cystic lung destruction
results from proliferation of LAM cells, which are abnormal smooth muscle-like cells with
mutations in the TSC1 or TSC2 gene. Lymphatic abnormalities arise from infiltration of LAM cells
into the lymphatic wall, leading to damage or obstruction of lymphatic vessels. Benign appearing
LAM cells possess metastatic properties and are found in the blood and other body fluids.

IPF is a progressive lung disease resulting from fibroblast proliferation and collagen deposition.
Lymphangiogenesis is associated with pulmonary destruction and disease severity. A macro-
phage subset isolated from IPF bronchoalveolar lavage fluid (BALF) express lymphatic
endothelial cell markers in vitro, in contrast to the same macrophage subset from normal BALF.

Herein, we review lymphatic involvement in LAM and IPF.

KEYWORDS: Chylous effusions, lymphangiogenesis, lymphangioleiomyoma, metastasis, tuberous
sclerosis complex, vascular endothelial growth factors

LYMPHANGIOLEIOMYOMATOSIS per 1 million cases per year in the population at

Lymphangioleiomyomatosis (LAM) is a multi-
system disease involving lung (cystic destruc-
tion), kidney (angiomyolipomas (AMLs)) and
axial lymphatics (adenopathy and lymphangio-
leiomyoma) [1-6]. LAM occurs in a sporadic form
and in association with tuberous sclerosis com-
plex (TSC), an autosomal dominant disorder of
variable penetrance characterised by seizures,
mental retardation, autism and tumours of the
brain, kidney, heart, retina and skin, which results
from mutations in the TSCI or TSC2 genes [7].
LAM is caused by the proliferation of abnormal
smooth muscle-like LAM cells, which have TSC1
or TSC2 mutations [8]. Sporadic LAM is relatively
uncommon, primarily affecting females of child-
bearing age [1-6] at an estimated frequency of 2.6
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risk (females aged 20-69 yrs) [3]. Cystic lung
lesions may lead to progressive impairment of
pulmonary function, resulting in respiratory fail-
ure, oxygen dependency or lung transplantation
[8]. Dyspnoea and spontaneous pneumothorax are
common symptoms of patients with LAM [1-6].
Due, in part, to the similarity in symptoms of
patients with LAM to those seen in other more
widespread diseases, an average of 5 to 6 yrs
delay is seen between onset of symptoms and
definitive diagnosis [9]. 10-yr survival is generally
thought to be 79-91% [3, 10].

Lymphatic abnormalities seen in patients with
LAM include lymphadenopathy, lymphangio-
leiomyomas and chylous effusions (chylous ascites
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and chylothorax) [1, 11]. Lesions are primarily located in the
retroperitoneum and mediastinal regions [2, 12]. Lymphadeno-
pathy is the most prevalent lymphatic manifestation in LAM
[2, 3, 11], with some lymph nodes as large as 4 cm in diameter
[11]. The incidence of lymphangioleiomyoma, chyle-filled
tumour-like lesions that appear to result from obstruction in
lymphatic vessels by infiltration of LAM cells in the lymphatic
wall, in LAM patients is ~29% [13].

Lymphangioleiomyomas appear on computed tomography
(CT) scans as well-circumscribed lobulated masses filled with
chylous material [11, 12, 14, 15]. Lymphatic masses in LAM
result from the proliferation of LAM cells within lymphatic
channels, lymph nodes or the thoracic duct. The subsequent
dilatation and obstruction can result in cystic collections of
chylous material. Overdistension of these structures may cause
them to rupture leading to the development of chylothorax or
chylous ascites [11, 14-16]. LAM cells found in these lesions
may infiltrate the surrounding soft tissues [12, 14]. AviLA and
co-workers [17, 18] observed diurnal variation in the size of
lymphangioleiomyomas in patients with LAM due, in part, to
changes in lymph flow caused by food intake during the day.
Lymphangioleiomyomas may become sufficiently large to
cause partial displacement of abdominal structures [11] and
chylous material has been observed to enter the pleural cavities
apparently by rupture of the pleura or by transudation [14].
These data demonstrate that lymphatic involvement may be
responsible for symptoms in LAM.

In LAM, high-resolution CT (HRCT) scans of the chest reveal
thin-walled cystic lesions dispersed homogeneously throughout
the lung parenchyma [1, 2]. Hyperplastic type II pneumocytes
line the surfaces of cysts and react with antibodies to
proliferating cell nuclear antigen (PCNA) [19, 20]. LAM cells
form clusters or nodules of cells that are located at the border of
the cysts and along pulmonary blood vessels, lymphatics and
bronchioles [20]. Cysts result from the proliferation and secreted
products of LAM cells, such as matrix metalloproteinases
(MMPs), leading to destruction of lung parenchyma [20].

LAM cells in the lung nodules are grouped into two cell types
by morphologic and mitotic characterisation. Small spindle-
shaped cells most often react to PCNA [21] and appear to be
more proliferative; the larger epithelioid cells are more likely to
react with HMB-45 (a monoclonal antibody that reacts with the
premelanosomal protein gp100) [20, 21], consistent with a
more differentiated state [22]. Slit-like channels, lined with
lymphatic endothelial cells, traverse LAM foci or nodules in
lung and extrapulmonary LAM-affected organs (i.e. lymph
node, uterus and ovaries) [23, 24] and appear to be lymphatic
capillaries.

The CT lung scans of ~30-40% of female patients with TSC
show lung cysts similar to those observed on CT scans of
patients with sporadic LAM [25-27]. The TSC1 or TSC2 tumour
suppressor genes are responsible for LAM [28]. TSC1, located
on chromosome 9 (9q34), which encodes hamartin [29], may
function as a cell adhesion regulator through regulation of
GTPase Rho and binding to activated ezrin-radixin-moesin
proteins [30]. TSC2, located on chromosome 16 (16p 13.3) [31],
encodes tuberin, which has Rheb (Ras homolog enriched in
brain) GTPase-activating protein activity [32]. Together, tuberin
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and hamartin form a GTPase-activating protein complex that
inhibits the effects of Rheb on mammalian target of rapamycin
(mTOR) downstream-signalling pathways [33]. A mutation in
either TSC1 or TSC2 results in inactivation of the tumour sup-
pressor complex and persistent activation of Rheb and increased
mTOR activity which, by downstream signalling effects, results
in enhanced protein translation and cell proliferation through
phosphorylation of S6, 4E-BP1 and other proteins [34].

In LAM, AMLs and lung and lymphatic lesions are composed of
abnormal smooth muscle cells [8]. In addition to abnormal
smooth muscle-like cells, AMLs are also composed of adipo-
cytes and underdeveloped vascular structures [20]. Genetic
analysis of sporadic LAM patients reveals TSC2 mutations in the
cells of lung lesions, AMLs [35, 36] and lymph nodes [35]. Thus,
the transformation of LAM cells by a TSC2 mutation appears to
be the cause of sporadic LAM [35, 37, 38] in accordance with the
two-hit theory of KNUDSON [39].

Diagnosis of LAM is made by lung biopsy or a positive HRCT
scan in association with an AML, chylous effusions or TSC [8]. In
some cases, extrapulmonary LAM diagnosis precedes recogni-
tion of pulmonary LAM [12].

Angiogenesis in TSC

Patients with TSC may present with skin lesions such as
forehead fibrous plaques, facial angiofibromas, ungual fibromas
and Shagreen patches, in addition to brain and other manifesta-
tions [40, 41]. Immunohistochemical studies involving TSC
neoplasms (kidney AMLs, cortical tumours and skin lesions)
reported the expression and up-regulation of the angiogenic
growth factor vascular endothelial growth factor (VEGF)-A [41,
42] and the vascular endothelial marker CD31 [41]. In contrast,
evidence of angiogenesis (positive staining for CD31) was
observed less in LAM lung foci [23], and serum levels of
VEGF-A in LAM patients were no different from those of
controls [43]. Collectively, data from these experiments suggest
angiogenesis as a partial mechanism for pathogenesis of TSC.

Lymphangiogenesis in LAM

LAM cells express VEGF-C [23] and VEGF-D [43]. Podoplanin,
a lymphatic marker recognised by the monoclonal antibody,
D2-40, is expressed in LAM lesions and lung nodules [44].
Serum levels of VEGF-D are greater in patients with LAM than
in healthy volunteers [43, 45, 46]. The expression of VEGF-C,
VEGE-D and their ligand receptor, VEGF receptor (VEGFR)-3, in
LAM lymphatic vessels is consistent with an active lymphan-
giogenic process within LAM foci. Correlations between lym-
phangiogenesis and severity of disease were observed in patients
with LAM. A greater degree of lymphangiogenesis (quantified by
expression of VEGF-C and VEGFR-3) [23] was associated with
severe disease in LAM as measured by the LAM histologic score
(LHS). LHS, a predictor of prognosis and time to transplant, is
based on the involvement of lung tissue by cystic lesions and the
infiltration by LAM cells as follows: LHS-1 <25%; LSH-2 25-
50%; and LHS-3 >50% [47]. Higher serum VEGEF-D levels were
found in patients with more severe lung destruction [45], as
measured by CT grade [48], and also correlated with compro-
mised pulmonary function [43, 45]. These data suggest lympha-
tic involvement increases with disease progression. It has been
reported that VEGF-C and VEGF-D induce proliferation of cells
derived from LAM nodules via the activation of its cognate
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receptor VEGFR-3, and signalling of the Akt/mTOR/S6 down-
stream pathway [49].

VEGEF-C, VEGFR-2 and VEGFR-3 are expressed in cortical brain
tumours of TSC patients with a history of epileptic seizures [50].
The role of VEGF-C in cortical tubers of TSC may be to regulate
epileptic activities through an inflammatory mechanism, rather
than via its lymphangiogenic properties in TSC [50]. A study by
AVILA et al. [13] further supports the contrast between the
angiogenic properties of TSC and lymphangiogenesis in LAM.
Comparing CT scans of patients with sporadic LAM to those of
LAM/TSC, sporadic LAM patients were observed to have a
higher frequency of lymphatic manifestations (thoracic duct
dilatation, ascites and lymphangioleiomyomas).

LAM cell clusters

LAM cell clusters (LCCs), which have been described as LAM
cell aggregates surrounded by lymphatic endothelial cells,
have been observed in dilated lymphatic vessels in proximity
to lymph nodes or in the lungs [23] and chylous fluid [24].
Morphologically, LCCs are well-organised globular clusters
50-100 pm in diameter found in chylous effusions [51, 52] and
in the lung near areas of lymphatic vessel proliferation [51].
The clusters consist of two different cell types. The interior
cells express smooth muscle antigens and are positive for
HMB-45 [51, 52] and progesterone receptor [52]. The periph-
eral cells react with anti-VEGFR-3 antibodies and appear to be
lymphatic endothelial cells [52].

Lymphangiogenesis and the dissemination of LAM cells
Although the hallmark of LAM is histologically benign lesions
found in multiple organs, there is both pathological and
genetic evidence that LAM cells possess metastatic properties.
Initially, investigators reported mutations in the allografts of
transplanted lungs that were identical to mutations found in
the recipient patients with LAM [53, 54]. Other studies
revealed the dissemination of LAM cells in the body fluids of
LAM patients [55, 56] in a process similar to that occurring with
neoplastic cells [57]. Proliferation of the neoplastic cell, cell
survival in the circulation and recruitment to a metastatic site
are important steps in the metastatic process [57]. CD44v6 (a
molecular determinant of metastasis) is expressed in a subset of
LAM lung-derived cells having loss of heterozygosity (LOH) at
the TSC2 locus [58]. CD44 splicing has been associated with
different signalling mechanisms, which may be involved in
determining organ-specific metastasis [59]. In another study,
both LAM cells (from explanted LAM lung) and AML cells were
shown to possess the CXCR4 receptor. CXCL12 was immuno-
histochemically expressed in type II pneumocytes covering the
LAM nodules and in the endothelial and adventitial cells
surrounding AML vessels. In vivo, binding of CXCL12 to CXCR4
resulted in AML cell growth and reduced apoptosis [60]. Mono-
cyte chemotactic protein (MCP)-1 induced in vitro migration of a
subset of cultured cells from LAM lung explants having TSC2
LOH, which suggests MCP-1 may facilitate LAM cell movement
and, thus, increase the potential for metastasis [61]. Collectively,
these data support the metastatic potential of LAM cells.

The spread of primary tumour cells to other organ sites is an
important factor in the progression of cancer, and is accom-
plished by direct invasion of local tissue or via the blood or
lymphatic vessels. Lymphangiogenesis has been established as
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a major component of the metastatic process [62, 63], playing a
significant metastatic role in multiple types of cancer, includ-
ing breast cancer [64, 65], oesophageal cancer [66] and non-
small cell lung carcinoma [67]. Lymphangiogenesis in LAM
involves the axial lymphatic system with abundant lymphatic
vessels in pulmonary and extrapulmonary LAM [12, 23, 24].
Lymphatic endothelial cells, identified by reactivity with anti-
VEGFR-3 antibodies, line the cystic or slit-like structures
within LAM foci or nodules in lung and lymph nodes [23].
Lymphatic endothelial cells, in LAM foci of both nodules and
lymph nodes, appear to partition LAM cells into bundles or
discreet structures [12, 23]. In contrast to normal lung, lymphatic
vessels were observed in alveolar walls. In stages of advanced
disease, LAM foci are observed projecting into lymphatic lumen
and floating in lymphatic vessels [23]. Thus, it is conceivable
that the lymphangiogenesis in LAM may facilitate the spread of
LAM cells.

LAM cells possess metastatic properties, but are not morpho-
logically malignant. The mechanism for metastasis in LAM
remains elusive. In summary, important findings concerning
lymphangiogenesis in LAM demonstrate that LAM cells react
with antibodies to lymphatic growth factors VEGF-C/D, LCCs
react with antibodies to VEGFR-3, LAM foci are traversed and
delineated with lymphatic vessels and the axial lymphatic
system is involved in LAM. LCCs are observed in chylous
effusions, lung nodules and lymphatic vessels and fragment
into LAM cells and lymphatic endothelial cells (LECs) in vitro
[23, 24]. KUMASAKA et al. [24] postulated, from these data, an
invasion-independent metastatic process for LAM cells that
would support the benign morphology of the LAM cell. In
essence, since LAM cells are immunopositive to VEGF-D and
VEGEF-C and LAM cells proliferate in association with lymphan-
giogenesis, one result is a lymphatic network that aids the
formation of LCCs. These LCCs eventually shed into the lym-
phatic circulation where they are transported to the pulmonary
circulation via the jugulosubclavian connection. A similar out-
come was observed in a murine mammary tumour model [68].
Two metastatic cell lines were established from naturally
occurring mouse mammary tumours; clone MCH66 with poor
invasive ability and clone MCH416 with high invasive ability.
Cells cultured from clone MCH66, when injected into mice,
developed tumour emboli surrounded by vascular endothelial
cells. These emboli intravasated into newly formed blood vessels
and metastasised to the lung. Tumour vascularity for this clone
correlated to metastasis, and angiogenic activity was greater than
for a control non-metastasising clone and clone MCH416. Pro-
teins related to cell-stromal interaction and extracellular matrix
assembly were differentially expressed in the MCH66 clonal cells.
Based on these data, the authors suggested that the metastatic
property of clone MCH66 was independent of cellular invasive-
ness, but dependent on angiogenesis and vascular remodelling
[68]. A great deal remains to be learnt about LCCs, including
further characterisation, their role in LAM pathogenesis and their
potential diagnostic use.

An analysis of current studies in LAM by YU and HENSKE [69]
resulted in a comprehensive model for metastatic dissemina-
tion of LAM cells. In addition to the previously discussed
lymphangiogenic driven model of KUMASAKA ef al. [24], YU and
HENSKE [69] cited data describing pro-metastatic cellular events
in LAM and Tsc2-null Eker rats that may be important factors
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in promoting the dissemination of LAM cells. Among evidence
cited, was loss of Tsc2 function through the association with
Rho activity and increased migration [70]. Protease activity,
including the expression of MMPs and the downregulation
of their inhibitors, in LAM cells provide the capability of
extracellular remodelling. Some LAM cells express oestrogen
receptors and studies with oestrogen-treated Tsc2-null Eker
rat-derived ELT3 leiomyoma cells illustrated resistance to
programmed cell death, suggesting oestrogen may also have a
survival effect on circulating LAM cells [69]. Taken together,
these data prompted the authors to conclude that metastasis in
LAM is a consequence of multiple factors involving mTOR
activation, lymphangiogenesis, extracellular matrix remodel-
ling and oestrogen-dependent cell survival.

Diagnosis and treatment modalities

The diagnosis of pulmonary LAM (no extrapulmonary involve-
ment) can present problems due to the similarity to other cystic
diseases (i.e. Langerhans’ cell histiocytosis, emphysema, Sjogren
syndrome, Birt-Hogg-Dubé syndrome). Serum VEGF-D levels
appear to be significantly higher in LAM compared with other
cystic diseases [46]. However, there is considerable overlap in
the serum VEGEF-D level between normal controls and LAM
[45]. When serum VEGF-D levels of patients were stratified
according to lymphatic involvement (defined by presence of
lymphangioleiomyomas and/or adenopathy) significance was
maintained for LAM patients with lymphatic involvement, but
not for those with only pulmonary LAM or pulmonary LAM
with AML (fig. 1) [45].

The presence of LCCs in chylous effusions may have
diagnostic significance [51, 52]. The observation of LAM cells
enveloped by lymphatic endothelial cells in chylous effusions
appears to be specific and pathognomonic. Adenocarcinoma
and malignant mesothelioma may form tumour cell clusters.
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FIGURE 1. Serum levels of vascular endothelial growth factor (VEGF)-D in
lymphangioleiomyomatosis. Serum VEGF-D levels in 111 patients with sporadic
lymphangioleiomyomatosis were grouped on the basis of thoracic or abdominal
lymphatic involvement (lymphangioleiomyomas and/or adenopathy: presence
n=77; absence n=34) and the presence (n=40) or absence (n=71) of renal
angiomyolipomas (AML). All groups were compared to 40 healthy volunteers.
Diamonds: serum measurement of VEGF-D from one patient or healthy volunteer.
— mean values. #: p=0.3; ***: p<0.001. Reproduced from [45] with permission
from the publisher.
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There are distinct differences between LCCs to cell clusters
found in malignant cancers that support the use of cytologic
and immunocytochemical examinations of chylous effusions as
a differential diagnostic tool for LAM.

As a consequence of the sex predilection for LAM disease,
initial attempts to find treatments to prevent disease progres-
sion were hormone based [8] with inconsistent outcomes.
These therapies included oophorectomy [71], the use of
gonadotrophin-releasing hormone analogues [72] and proges-
terone [9, 73].

Clinical trials of sirolimus treatment for patients with LAM
were initiated based on reports that the protein products of the
TSC1/TSC2 complex are negative regulators of mTOR [33]. Cell
size and number are regulated by mTOR via downstream
signalling of p70 S6 and 4E-BP1 [32, 33, 74]. Loss of TSC func-
tion activates the mTOR pathway. Results from a sirolimus
clinical trial [75] and a study cohort consisting of patients with
LAM using off-label sirolimus [76] showed an improvement or
stabilisation [75, 76] in lung function (fig. 2) and reduced serum
VEGEF-D levels [75]. Sirolimus treatment is now being advised,
in general, for LAM patients suffering from severe disease [75].
AMLs, a benign tumour, may cause serious haemorrhaging
which is commonly resolved with arterial embolisation or
kidney-sparing surgery. Reports from clinical drug trials for
patients with LAM targeting mTOR indicated a 50% decline in
the size of AMLs, but tumours increased in size on withdrawal
of medication [77]. Interestingly, in an off-label study, sirolimus
treatment completely resolved or reduced lymphangioleiomyo-
mas and effusions in patients with LAM [76]. Chemical
pleurodesis has been advised for the management of pneu-
mothorax as the best choice in preventing recurrence of
pneumothorax, although it is associated with perioperative
bleeding [78, 79].

Summary

Lymphatic involvement in LAM encompasses the proximal and
distal regions of the axial lymphatic system. Lymphatic struc-
tures traverse LAM foci and demarcate LAM cells into bundles.
Lymphatic vessels invade vascular walls and the pulmonary
interstitium, and LCCs can be seen in lymphatic vessels. Clinical
manifestations in LAM patients, such as adenopathy, lymphan-
gioleiomyomas and chylous effusions, are a result of dilatation
and/or obstruction of lymphatics caused by proliferation of
LAM cells. Lymphatic biomarkers include serum VEGEF-D
levels, which are associated with lymphatic involvement; the
presence of LCCs may prove to be an effective diagnostic tool.
Lymphangiogenesis in LAM appears to be mediated through
the expression of VEGF-C and VEGF-D via VEGFR-3. The
envelopment of LAM cells by lymphatic vessels and eventual
shedding of LCCs into the lymphatic circulation is a possible
mechanism for the metastasis of LAM lesions to other organs.

IDIOPATHIC PULMONARY FIBROSIS

Idiopathic pulmonary fibrosis (IPF) is a progressive, often fatal
lung disease of unknown aetiology. In the USA, the most
recent data show a prevalence ranging from 14 to 42.7 per
100,000 population and an incidence ranging from 6.8 to 16.3
cases per 100,000 [80]. In Europe, IPF is estimated to affect
80,000-85,000 people [81]. The length of time before diagnosis
can sometimes be measured in decades [82]. Over the last few
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FIGURE 2. Mean annual changes in forced vital capacity (FVC), forced
expiratory volume in 1s (FEV1) and diffusing capacity of the lung for carbon
monoxide (DL,co) before (white) and after sirolimus (grey) therapy in patients with
lymphangioleiomyomatosis. Data show sirolimius therapy resulted in an increase
in FVC, FEV1 and DL,co. Mixed-effect models were used for statistical analysis.
#: n=18 patients. Reproduced from [76].

years clinical trials have shown some benefit for different
agents in the treatment of patients with IPF. The European
IFIGENIA trial, investigating the combination of azathioprine
and prednisone without or with N-acetylcysteine (NAC),
showed that the addition of NAC had a beneficial effect on
the decline in vital capacity [83]. However, an interim analysis
of the currently enrolling PANTHER trial comparing
azathioprine, prednisone and NAC to NAC alone or placebo
showed an increase in mortality, serious adverse events and
drug discontinuation without benefit in the triple therapy arm
of the trial. The National Heart, Lung, and Blood Institute
stopped recruitment in this treatment arm, the other two arms
comparing NAC to placebo continue patient recruitment [84].
Recently, in randomised clinical trials pirfenidone showed the
ability to slow decline in forced vital capacity in IPF [85, 86].
Tyrosine kinase inhibition also showed promise in the control
of lung function decline and rate of IPF exacerbation [87].
However, the only currently effective therapy is lung trans-
plantation [88].

The pathogenesis of IPF is not completely understood. Cur-
rently, IPF is believed to be a disease of epithelial injury and
aberrant repair mechanisms, leading to a mesenchymal transi-
tion, which in turn results in fibroblast accumulation and
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collagen deposition [89]. Recent evidence highlights the impor-
tance of genetic background in disease pathogenesis, in cases of
familial and sporadic IPF [90-92].

A role for vascular remodelling in IPF has long been suspected.
The distribution of blood vessels in the IPF lung mirrors the
temporal and spatial heterogeneity of disease. The role of
neovascularisation and angiogenic growth factors remains
controversial. For instance, VEGF-A, an angiogenic growth
factor, was highly expressed in endothelial cells and alveolar
type II cells, but not by fibroblasts in areas of fibrosis [93]. The
distribution and content of the blood vasculature is hetero-
geneous. One group found increased neovascularisation with
marked increase in blood vessels in areas of severe lung
destruction [94], while others found an increase in areas of
low-grade fibrosis [93].

Thus, IPF may be similar to other chronic inflammatory pro-
cesses that are associated with angiogenesis. Early inhibition of
vascular remodelling in an animal model of lung injury resulted
in less fibrosis [95], while depletion of inflammatory cell-
derived VEGF-A led to decreased vasculature and worsening
fibrosis [96]. While these results are contradictory, they high-
light the importance of timing the inhibition of angiogenesis.

Rationale for the study of lymphatics in IPF

In inflammation and malignancy, angiogenesis and lymphan-
giogenesis are closely associated [97, 98]; further angiogenesis
is a key feature of IPF. In animal models and in human disease,
disruption of the lymphatic circulation results in the develop-
ment of fibrosis, such as in the case of radical lymph node
dissection or in Milroy’s disease, which is caused by mutations
in the VEGFR-3 receptor [99].

In the normal lung, it appears that lymphatic vessels exist in
proximity to the major blood vessels and airways [100-102].
With some exceptions, most authors agree that there are no
lymphatic vessels in the alveolar spaces. In pig lung, MARCHETTI
et al. [101] did not find any lymphatic vessels between alveoli.
PEAO et al. [102] and HAINIS et al. [100] did not find evidence of
alveolar lymphatics in mouse and rat lungs, respectively. LEAK
[103] described the presence of juxta-alveolar lymphatics
separated from the alveolar space by the alveolar wall and a
thin layer of connective tissue.

In the normal human lung, multiple studies have confirmed a
pattern of lymphatic distribution. Lymphatic vessels are found
in close proximity to the bronchovascular tree and were absent
or rare in the alveolar spaces [98]. In their study of lymphan-
giogenesis in IPF, EBINA et al. [104] showed that in the normal
lung, no lymphatic vessels were present in the alveolar septa.
KAMBOUCHNER et al. [105] examined normal lung adjacent to
excised tumours and found lymphatic vessels to be associated
with as much as 19% of alveolar spaces.

In a previous study by our group [106], we examined the
distribution of lymphatic vessels in normal and IPF lung from
subjects with varying degrees of disease severity. We found
that in normal lung, lymphatic vessels reactive with anti-D2-40
antibodies were present alongside large blood vessels (reactive
with anti-CD-34 antibodies), but were absent from alveolar
spaces. In marked contrast, in the IPF lung, lymphatic vessels
were present in the alveolar spaces (fig. 3a), as well as in
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FIGURE 3. Alveolar lymphangiogenesis is a feature of idiopathic pulmonary
fibrosis (IPF). a) Tissue sections reacted with anti-D2-40 (brown) and anti-CD34
(red) antibodies. Lymphatic vessels (D2-40+; black arrows) and blood vessels (CD-
34+; red arrows) are visible adjacent to the alveolar spaces (Alv) in early stages of
disease. b, c¢) Presence of hyaluronic acid in IPF lung. Immunofluorescence
staining with hyaluronan-binding protein of paraffin-embedded sections of IPF lung
tissue shows hyaluronic acid (red) in a representative single confocal microscopy
optical section. Fibroblastic areas (*) displaying positive staining for hyaluronic acid
are presented as merged images of hyaluronic acid and 4’,6-diamidino-2-
phenylindole (DAPI; blue) with (b) or without (c) an auto-fluorescence signal
(green) and differential influence contrast. Cell nuclei were stained with DAPI. Scale
bars=50 pm.

fibrotic areas. One exception was the fibroblastic foci, which
did not contain lymphatic vessels. YAMASHITA et al. [98]
obtained similar results in their study of lymphangiogenesis
during diffuse alveolar damage (DAD); fibroblastic foci lacked
lymphatic vessels and alveolar lymphangiogenesis was a key
feature of lung fibrosis in diffuse alveolar damage.

By morphometric analysis, we found that with worsening IPF
disease severity there is a significant increase in total area,
mean area and perimeter of lymphatic vessels, but number of
vessels did not change. This is the opposite of blood capillaries
where numbers increase but size does not change [106].
Similarly, in the study of fibrosis during DAD, capillaries
appeared earlier than lymphatic vessels during the prolifera-
tive phase. Capillary density decreased with end-stage fibrosis,
while lymphatic density did not [98].
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EBINA et al. [104] performed a detailed analysis of the lymphatic
vasculature in IPF lung and observed that fibroblastic foci were
devoid of lymphatic vessels. However, alveolar lymphangio-
genesis did not seem to be a key part of the fibrotic process.
Furthermore, in the normal non-fibrotic areas of the IPF lung,
new lymphatic vasculature was found in the alveolar lesion
[104]. In IPF lung, lymphatic vessels were fragmented with a
marked decline in subpleural lymphatic vessels [104].

Role of hyaluronan in lymphangiogenesis in IPF

Factors present in the alveolar space play a key role in lymph-
angiogenesis in IPF. Bronchoalveolar lavage fluid (BALF)
isolated from subjects with IPF caused greater migration of
LEC than BALF from healthy volunteers. An analysis of
potential factors in the BALF from subjects with IPF that could
contribute to lymphangiogenesis showed that the VEGF family
of proteins seemed not to be critical. Consistent with previous
reports [94, 107, 108], VEGF-A content was lower in BALF from
subjects with IPF than healthy controls. VEGF-C levels, the
most potent lymphangiogenic growth factor, were also lower
in the IPF BALF. VEGF-D levels were similar to healthy
controls. In addition, levels of factors known to either induce
lymphangiogenesis, such as fibroblast growth factor [109], or
stabilise vascular tubes, such as tissue inhibitor of metallo-
proteinases (TIMP)-2 [110], were similar between IPF and
healthy control BALF. Factors present at greater concentrations
in IPF BALF were hepatocyte growth factor (HGF) [106, 111],
TIMP-1 and CCL2 [112, 113]. HGF is known to induce lymph-
angiogenesis in inflammation [114]. Incubation of IPF BALF
with function-blocking antibodies to HGF, TIMP-1 or CCL2
did not affect LEC migration [106].

BALF from subjects with IPF is enriched in hyaluronan [115], a
critical mediator of lung injury and repair through CD44
receptors or through Toll-like receptors [116, 117]. Further-
more, hyaluronan induced angiogenesis in an animal model of
fibrosis [118]. In addition, in animal tumour models, hyaluronan
has been shown to induce intratumoral lymphangiogenesis,
not angiogenesis [119, 120]. IPF lung sections reacted with a
hyaluronan-binding protein (fig. 3b and c). In addition, treat-
ment of IPF BALF with hyaluronidase, which generates short-
fragment hyaluronan, increased LEC migration and prolifera-
tion. The addition of short-fragment hyaluronan to healthy
volunteer BALF resulted in increased LEC migration. Taken
together, these data show that short-fragment hyaluronan plays
a critical role in the lymphangiogenic process in IPF. Hya-
luronan has multiple receptors on the surface of endothelial
cells, including LYVE-1. These receptors are functionally
redundant [121]. The mechanisms by which hyaluronan induces
lymphangiogenesis remains an area of active research.

Role for progenitor endothelial cells

The existence of a lymphatic endothelial progenitor cell has
been speculated in work by SALVEN et al. [122] who showed that
CD34"/CD133"/VEGFR-3" cells derived from human fetal liver
express LYVE-1 and podoplanin when cultured, suggesting that
they have the ability to differentiate into LEC. Moreover, studies
in a cornea inflammation model showed that bone marrow-
derived cells incorporated into newly formed corneal lymphatic
vessels [123]. MARUYAMA et al. [124] showed that thioglycolate-
activated CD11b" macrophages were able to transdifferentiate
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FIGURE 4. cD11b* alveolar macrophages in idiopathic pulmonary fibrosis (IPF) develop tube-like structures in vitro. CD11b" alveolar macrophages were cultured in

Matrigel« for up to 31 days and inspected under white light or after fluorescent-labelling of cytoplasm (CellTracker™ Orange CMTMR; Invitrogen, Carlsbad, CA, USA) and

nuclei (Hoechst stain; Invitrogen). Large tube-like structures (150 um in diameter) were observed when cells from subjects with IPF were cultured in Matrigels (BD

Biosciences, San Jose, CA, USA) for 30 days. A series of confocal images were reconstructed in three-dimensional renderings and representative snapshots of tubular

structures are presented as overlaid fluorescence a, b) with or c) without differential influence contrast.

into LEC in cornea inflammation models. The first evidence in
humans of circulating progenitor lymphatic endothelial cells
came from the work of KERJASCHKI et al. [125] who showed the
presence of LEC from the recipient in sex-mismatched kidney
transplants.

In contrast, another group found that CD11b" macrophages
were critical for lymphangiogenesis during inflammation and
cancer. These macrophages are responsible for the production
of VEGF (e.. VEGF-A/C/D). These macrophages did not
differentiate into LEC [126-128].

More recently, a study established that bone marrow-derived
CD11b"/ podoplanin+ cells or similar cells from peripheral
blood can differentiate into LEC, both in vitro and in vivo [129].
Bone marrow-derived podoplanin-positive CD11b" cells dif-
ferentiated into LEC, with expression of Prox-1 and LYVE-1
and downregulation of CD45. The newly formed alveolar
lymphatics of IPF did not connect to the main lymphatic
system [104, 106], raising the question about the origin of the
lymphatic endothelial cells, since in cancer and inflammation,
newly formed vessels arise from existing ones [130]. Alveolar
macrophages are the most abundant cell in the alveolar space,
and the CD11 subfamily of macrophages was found to be more
abundant in IPF compared with other interstitial lung diseases
[131]. Thus CD45"/CD14"/CD11b* macrophages isolated from
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BALF of subjects with IPF and not from healthy volunteers
differentiated into LEC after growth in Matrigels for 30 days
(fig. 4). After 30 days, these cells expressed LEC markers
LYVE-1 and podoplanin while CD11b" macrophages isolated
from healthy volunteers expressed LYVE-1 but failed to form
tube-like structures when cultured in vitro for 30 days.

The role and function of the lymphatic circulation in the
fibrotic process remains unclear [132]. LEC secrete CCL21, a
ligand for CCR7, which was elevated in IPF BALF [106]. In
IPF, dendritic cells are recruited into the IPF lung after
stimulation with CCL21 [133]. In addition, CCL21 induced
the proliferation of IPF fibroblasts [134]. Finally, it is well
known that transforming growth factor-p is a potent inhibitor
of prox-1 expression, resulting in inhibition of lymphangio-
genesis [135]. Further research is needed to understand the
crosstalk between the lymphatic vasculature and fibroblasts,
which will ultimately result in a better understanding of the
role of the lymphatic circulation in fibrosis in general and in
IPF in particular.
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