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Juxtacrine Signaling Is Inherently Noisy
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ABSTRACT Juxtacrine signaling is an important class of signaling systems that plays a crucial role in various developmental
processes ranging from coordination of differentiation between neighboring cells to guiding axon growth during neurogenesis.
Such signaling systems rely on the interaction between receptors on one cell and trans-membrane ligands on themembrane of a
neighboring cell. Like other signaling systems, the ability of signal-receiving cells to accurately determine the concentration of
ligands, is affected by stochastic diffusion processes. However, it is not clear how restriction of ligand movement to the two-
dimensional (2D) cell membrane in juxtacrine signaling affects the accuracy of ligand sensing. In this study, we use a statistical
mechanics approach, to show that long integration times, from around one second to several hours, are required to reach high-
sensing accuracy (better than 10%). Surprisingly, the accuracy of sensing cannot be significantly improved, neither by
increasing the number of receptors above three to five receptors per contact area, nor by increasing the contact area between
cells. We show that these results impose stringent constraints on the dynamics of processes relying on juxtacrine signaling sys-
tems, such as axon guidance mediated by Ephrins and developmental patterns mediated by the Notch pathway.
INTRODUCTION
Noise is a fundamental property of biological systems that
affects biological functions ranging from transcriptional
processes and chemotactic behavior at the single cell level
to tissue development at the organismal level (1). Although
many biological systems have to find ways to deal with
noise to function reproducibly, other systems use noise for
generating random processes or bet hedging strategies (2).
One source of noise is the inherently stochastic behavior
attributable to random diffusion of molecules in the environ-
ment. Such a diffusion driven noise, limits the accuracy at
which the concentration of the ligand can be measured by
cell surface receptors. This problem was first addressed by
Berg and Purcell in 1977, who estimated the statistical fluc-
tuations in ligand concentration and its effect on the accu-
racy of measurement by the cell (3). They showed that
ligand diffusion introduces a counting error at the receptors,
setting a noise floor for measuring ligand concentration.
Based on the probability of a receptor to be occupied,
they computed the fluctuation in receptor occupancy.
Finally, relating the fluctuation in receptor occupancy with
the uncertainty in ligand concentration at equilibrium,
they obtained the relative uncertainty in the determination
of the ligand concentration. This computation was also
generalized for a system of many receptors.

A different approach using statistical mechanics and the
fluctuation dissipation theorem was used to generalize the
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results of Berg and Purcell to a broader range of cases
(4–6). This approach was based on using the fluctuations
in receptor occupancy as a form of thermal noise, which
allows using the fluctuation dissipation theorem rather
than considering the microscopic details of the receptor-
ligand interactions. They were able to separate noise coming
from the binding/unbinding from the noise due to the ligand
diffusion. The noise floor attributable to diffusion coincides
with the results obtained by Berg and Purcell.

These methods provided an expression for the accuracy of
the determination of ligand concentration, dc=c, given an
average ligand concentration, c. For one receptor and for
ligands diffusing in three dimensions (3D), the accuracy
attributable to random diffusion of ligands is given by the
following (3,4):

dc

c
z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pD3cta

p ; (1)

where D3 is the ligand diffusion coefficient in 3D, t is the

measurement integration time, and a is the radius of the
receptor.

It was also shown that increasing the number of receptors,
m, which are used for sensing ligands, improves the accu-
racy. This improvement in accuracy is proportional to
1=

ffiffiffiffi
m

p
at low m, but reaches saturation for high values of

m. This saturation of the accuracy occurs because at some
level no additional information is provided by adding
more receptors, given a finite cell size (or finite size of re-
ceptor cluster).

Later works extended the analysis to include more
detailed or cooperative ligand-receptor interactions (7–12),
http://dx.doi.org/10.1016/j.bpj.2014.10.006

mailto:davidsp@post.tau.ac.il
http://dx.doi.org/10.1016/j.bpj.2014.10.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2014.10.006&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2014.10.006
http://dx.doi.org/10.1016/j.bpj.2014.10.006
http://dx.doi.org/10.1016/j.bpj.2014.10.006
http://dx.doi.org/10.1016/j.bpj.2014.10.006


2418 Yaron et al.
lateral diffusion of receptors on the membrane (5), endocy-
tosis of bound receptor-ligand pairs (6), and combined
3D and one dimensional (1D) diffusion for the case of tran-
scription factors binding to DNA (13). The analysis was
applied to several biological sensing processes including
bacterial chemotaxis, intracellular signaling in Escherichia
coli (E. coli), regulation by transcription factors, dynamics
of flagellar motors, and neurotransmission in neural
synapses (4,5).

In this study, we consider the effect of noise in an impor-
tant class of signaling systems, termed juxtacrine signaling
systems, in which the receptors on the membrane of one cell
interact with ligands diffusing along the membrane of a
neighboring cell (Fig. 1). Examples for such systems
include the Notch signaling pathway, ephrins, semaphorins,
and T-cell receptor-antigen interactions (14–17). The main
difference between these systems and the systems consid-
ered previously is that both receptors and ligands diffuse
in two dimensions (2D).

We show that the accuracy of sensing in 2D exhibits a
very weak, logarithmic, dependence on the relevant length
scales of the system. As a result of this weak dependence,
the accuracy of ligand sensing is not significantly improved
by having more than three to five receptors on the contact
area between cells. Furthermore, increasing the contact
area itself does not improve the accuracy either. We show
that relatively long integration times, from around one sec-
ond to several hours are required to reach accuracy of better
than 10% (compared to milliseconds in typical 3D signaling
systems). We discuss the implications of these results for
biological processes relying on juxtacrine signaling sys-
tems, such as lateral inhibition and boundary formation
mediated by the Notch signaling pathway and axon guid-
ance mediated by cues from the ephrin signaling pathway.
ligand
cell

receptor
cell

FIGURE 1 Schematic representation of a juxtacrine signaling system.

We consider a geometry in which receptors on one cell (blue symbols in

right cell) interact with ligands diffusing on the membrane of a neighboring

cell (red symbols in the left cell). Ligands are assumed to diffuse freely on

the membrane of the ligand cell and interact with receptors located at the

contact area between the cells.
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METHODS

Calculation of ligand concentration fluctuations
in the 2D case

In our analysis, we consider one cell that expresses receptors (receptor cell)

that comes in contact with a cell that expresses membrane-bound ligands

(ligand cell, Fig. 1). We assume that the contact area is small compared

with the total surface area of the cell membrane.We assume that the concen-

tration of receptors is much smaller than that of the ligands, so that the recep-

tors can be considered in terms of a discrete variable whereas the ligands are

considered as continuous concentration. In the opposite case, where there are

few ligands and many receptors, the ligands can be treated as a discrete var-

iable and the receptors as a continuous concentration. The calculation of fluc-

tuations in both cases is equivalent with the exception that the variables for

receptors and ligands are exchanged. The special case where the concentra-

tions of receptors and ligands are similar is not considered here.

We define the ligand concentration on the membrane of the ligand cell by

c(x,t). We also assume that ligands are continuously recycled in and out of

the membrane uniformly (e.g., through endocytosis and exocytosis (18,19))

with rates kendo and kexo, respectively. The pursuing ligand dynamics is

dictated by the following diffusion equation:

vcðx; tÞ
vt

þ V , j ¼ �kendocðx; tÞ þ kexoccyto; (2)

where j is the ligands diffusion current on the cell membrane and to first

order can be written as j ¼ �D2Vc, with D being the 2D diffusion
2

coefficient for the ligands on the cell membrane. ccyto is the concentration

of a cytoplasmic pool of the ligands that is assumed to be constant in this

study. Given our assumption that the cell area is much larger than the

contact area, we impose boundary conditions such that the concentration

far from the contact is equal to the average concentration, namely,

cðN; tÞ ¼ c ¼ kexoccyto=kendo.

Following standard procedure in statistical mechanics (20), we add

noise to the system by assuming a random perturbation in the chemical

potential (see Supporting Material for detailed derivation). We allow a

small perturbation, dc�ðx; tÞ, around the mean ligand concentration, c
such that c ¼ cþ dc� and calculate the power spectrum of dc� defined by

the following:

Sðu; kÞhhdc�ðu; kÞdc�ð�u;�kÞi: (3)

Here, h.i represents an ensemble average and dc�ðu; kÞ is a Fourier trans-
form of dc�ðx; tÞ over all temporal and spatial frequencies u and k:
dc�ðu; kÞ ¼
Z

dt

Z
d2xeið�k , xþutÞdc�ðx; tÞ: (4)

Performing the calculation for the 2D case, the expression for the power

spectrum is given by the following:
Sðu; kÞ ¼ 2cðD2k
2 þ kendoÞ

u2 þ ðD2k2 þ kendoÞ2
: (5)

Calculation of accuracy of measurement by a
single receptor

Next, we consider a single receptor that can measure ligand concentration

in a radius roughly equivalent to its size, a, over an integration time, t. We

take the limit where the ligands that arrive at the receptors bind and are

immediately released. This limit corresponds to the perfect monitoring

disk approximation where the receptor simply counts the number of ligands

diffusing through an area a (3,21). The effect of finite binding and unbind-

ing has been previously taken into account (for the 3D case) and only
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reduces the accuracy of measurement (3,4). The average ligand concentra-

tion measured by a receptor will be given by the following:

~cðt; xÞ ¼
Z

d2x0dt0 wrðx� x0Þkrðt � t0Þcðt0; x0Þ; (6)

where the function wrðx� x0Þ defines the receptor spatial distribution and

krðt � t0Þ defines the receptor temporal response. We choose Gaussian dis-
tribution profiles for wrðx� x0Þ and krðt � t0Þ with standard deviations of a
and t, respectively. We then calculate the fluctuations measured by the re-

ceptor using (see Supporting Material) the following:

hd~cðt; xÞd~cðt; xÞi ¼
Z

dud2k

ð2pÞ3 Sðu; kÞe
�t2u2

e�a2k2 (7)

The accuracy of measurement of ligand concentration by a single receptorffiffiffiffiffiffiffiffiffiffiffi
2

q

can now be defined as dc=ch hd~c i=c.

Performing the integration in Eq. 7 we obtain an expression for the accu-

racy (see Supporting Material) that can be approximated by the following:

dc

c
z

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
pD2ct

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
l

a

�s
; (8)

where, l, is the diffusion length scale of the ligand on the cell membrane. If

the integration time is longer than the typical endocytosis time, namelywhen
�

t[k�1
endo, then the diffusion length scale is defined by lh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=kendo

p
. In the

opposite limit, if the integration time is shorter than the typical endocytosis

time, namely when t � k�1
endo, then the diffusion length scale is defined by

l�h
ffiffiffiffiffiffiffiffi
D2t

p
. Equation 8 is valid for l; l�[a, which is typically the case

because both l and l� are expected to be of the order of few microns (based

on typical diffusion constants, exchange rates, and integration times—see

Table 1 (22–30)) and a is ~ 1 to 10 nm for typical receptors.
Calculation of accuracy of measurement by
multiple receptors

Now we consider m receptors located on the contact surface between the

cells (Fig. 1). Ligands are assumed to diffuse freely in 2D and are measured

by the receptors at the contact area. We neglect for simplicity receptor diffu-

sion, the effect of receptor internalization upon ligand binding, and cooper-

ative effects in receptor-ligand binding (5–7,9).
TABLE 1 Summary of typical biological parameters and estimated

concentration

Parameter Value

D2 0.01 to 0.1 mm2/s

kendo 0.001 to 0.01 1/s

C 1 to 100 mm�2

S 0.1 to 5 mm

tmin

�
to reach

dc

c
¼ 0:1

�
0.91 s*

tmax

�
to reach

dc

c
¼ 0:1

�
3.22 h**

t3D; typical

�
to reach

dc

c
¼ 0:1

�
0.03 s ***

All quantities were calculated using the limit of large number of receptors.

*tmin ~ 0.91 s is calculated by numerically solving the equation, ðdc=cÞ2 ¼ 1=pm

parameters: kendo ¼ 10�2 1/s, D2¼10�1 mm 2/s, c ¼ 100 1/mm 2, dc=c ¼ 0:1, s

**tmax ~ 3.22 h is calculated by solving Eq. 13 with l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=kendo

p
, and assum

1/mm 2, dc=c ¼ 0:1, s ¼ 0.1 mm, and m ¼ 20. We note that in this limit solving

***t3D; typical ~ 0.03 s is calculated using t3Dz1=2pD3caðdc=cÞ2 (4) by assum
To take into account the presence of m multiple receptors with radius a,

we assume similarly to the case of one receptor that

d~cðt; xÞ ¼
Xm

m¼ 1

Z
d2x0dt0 wrðxm � x0Þkrðt � t0Þdc�ðt0; x0Þ;

(9)

where xm is the position of the m-receptor. Eq. 7 then becomes the

following:
hd~cðt; xÞd~cðt; xÞi ¼
X
m;n

Z
du

d2k

ð2pÞ3 e�t2u2

e�a2k2
�
1

m

�

� eik , xm
�
1

m

�
e�ik , xn

2cðD2k
2 þ kendoÞ

u2 þ ðD2k2 þ kendoÞ2
:

(10)

Equation 10 can be estimated by taking the limit uz0 (see Supporting

Material):
hd~cðt; xÞd~cðt; xÞiz
X
msn

�
1

m2

�
c

tD2p
K0

�jxm � xnj
l

�

þ c

pD2tm
ln

�
l

a

�
;

(11)

where K0 is the modified Bessel function (31).

We now assume that the m receptors are distributed uniformly along the
circumference of a contact area with radius s (Here, we take the same

assumption as (4) regarding the geometry involved). This assumption

allows us to simplify Eq. 11. In this case we obtain the following:

dc

c

�2

z
1

pD2ctm

�
ln

�
l

a

�
þ
Xm�1

i¼ 1
K0

�
2s

l
sin

�
pi

m

���
(12)

In the limiting case where l[s we can use the asymptotic expansion

for the modified Bessel function K0 (31) to obtain the accuracy of ligand
measurement by multiple receptors:

dc

c
z

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
pD2ct

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
l

ma

�
m

þ
�
m� 1

m

�
ln

�
1:1228

l

s

�
vuuut

: (13)
integration times to reach accuracy of 10% in measuring ligand

Reference

(22,23)

(24–27)

(22,28–30)

Small range corresponds to filopodia, large range corresponds

to epithelial contacts.

Calculated based on Eq. 12

Calculated based on Eq. 13

Calculated based on (4)

D2tc½lnðl�=aÞ þ
Pm�1

i¼1 K0ðð2s=l�Þsinðpi=mÞÞ�, and assuming the following

¼ 5 mm, and m ¼ 20.

ing the following parameters: kendo ¼ 10�3 1/s, D2 ¼ 10�2 mm 2/s, c ¼ 1

the exact formula (Eq. 12) gives the same result.

ing the following parameters: D3 ¼ 10 mm 2/s, c ¼ 100 nM, a ¼ 1 mm.

Biophysical Journal 107(10) 2417–2424
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Similar to the case of one receptor, l is replaced by l� when t � k�1
endo (see

Supporting Material).

In the Supporting Material we also provide the derivation of the results

(Eqs. 8 and 13) using an alternative method based on the fluctuation dissipa-

tion theorem (4). As expected, the binding-unbinding kinetics introduce an

additional term to the accuracy similar to the one described in the 3Dcase (4).
Calculation of accuracy in the limit of a perfect
absorber

In the calculation abovewehave taken the assumptionof a perfectmonitoring

disk where ligands are immediately released upon binding to the receptors. It

is useful to consider the opposite limit of a perfect absorber where the ligands

are immediately removed from the contact area, for example by cleavage and

internalization of the receptor-ligand pair.We have calculated the accuracy of

sensing for this case based on a simple argument initially discussed in (3). In

this calculation we directly integrate Eq. 2 with an additional boundary con-

dition cða; t>0Þ ¼ 0, to obtain the total current impinging on a disk with

radius a. Assuming a Poisson distribution, the accuracy of sensing would

simply be proportional to 1=
ffiffiffiffi
N

p
, where N is the total number of ligands

arriving at the receptor during the integration time. The accuracy obtained

for this case is given by the following (see Supporting Material):

dc

c
z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pD2ct

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
l

a

�s
(14)

Hence, for the case of a perfect absorber, the accuracy improves by a factor

of
ffiffiffi
2

p
, compared with the case of a perfect monitoring disk (Eq. 8).
RESULTS

Accuracy of ligand measurement for the one
receptor case

Using statistical mechanics formalism, we have first calcu-
lated the measurement accuracy of the 2D ligand concentra-
tion by a single receptor on the membrane of the receptor
cell (Fig. 1). We show in the methods that the expression
we get for the accuracy of measurement in this case is given
by the following:

dc

c
z

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
pD2ct

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
l

a

�s
(15)

For short integration times ðt � k�1
endoÞ, the diffusion lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip � ffiffiffiffiffiffiffiffip
scale in Eq. 15, l ¼ D2=kendo is replaced by l ¼ D2t.
This result differs from the 3D accuracy (Eq. 1) in several
important ways. First, the accuracy improves (i.e., dc=c de-
creases) in a logarithmic manner as the receptor radius
grows. Such logarithmic dependence appears in other quan-
tities related to diffusion in 2D (32). Furthermore, the accu-
racy now depends on the diffusion length scale in the
system, l (or l� ), which is the typical length scale from
which ligands can diffuse into the contact area before they
endocytose (or during the measurement integration time).
This logarithmic dependence means that the accuracy now
depends very weakly on the relevant length scales of the sys-
tem (apart from the standard dependence on the length scale
associated with the integration time

ffiffiffiffiffiffiffiffi
D2t

p
).
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Accuracy improves very little with increasing
number of receptors

One possible strategy to improve the accuracy is to add
more receptors at the contact area between cells. The num-
ber of receptors that come in contact with the ligands in a
neighboring cell depends on the concentration of receptors
on the cell membrane and on the contact area between cells.
We therefore calculated how the accuracy changes both with
the total number of receptors, m, in the contact area and with
the radius of the contact area, s.

The accuracy of ligand concentration measurement for
the case of m receptors, located on the contact surface be-
tween the cells (Fig. 1) are given by Eq. 12 (exact solution
valid for any l[a ) and Eq. 13 (approximated solution for
l>s ). Fig. 2 A and B show the dependence of the accuracy,
dc=c, on the number of receptors, different contact diame-
ters between cells, and different integration times. For rela-
tively short integration time ( t ¼ 30 s, Fig. 2 A) we use
Eq. 12 with l� instead of l, and for relatively long integra-
tion times ( t ¼ 600 s, Fig. 2 B) we use Eq. 13. For the case
of one receptor (m ¼ 1) we consistently recover the expres-
sion given by Eq. 15. As expected, increasing the number of
receptors,m, improves the accuracy (see Fig. 2 A and B) but,
surprisingly, this improvement saturates when the number of
receptors is greater than three to five receptors. The accu-
racy at saturation is simply the accuracy one would get if
the whole contact area was considered to be one large recep-
tor. Namely, for large m, Eq. 13 takes a similar form to the
one receptor result (Eq. 15) but with the receptor radius, a,
replaced by the radius of the contact area, s. Simple analysis
of Eq. 13 shows that the saturation value, msat, depends on
the ratio between two logarithms, msaty1þ ðlnðl=aÞ=
lnðl=sÞÞ, and hence depends very weakly on all the relevant
length scales in Eq. 13 (i.e., diffusion length scale, size of
the receptor, and size of the contact area). The effect of add-
ing more receptors is therefore much weaker in this 2D
geometry compared with the 3D geometry, where this satu-
ration is reached when msaty2s=a that can range from
several hundreds to several thousands receptors (4). Longer
integration times naturally improve the accuracy, but the
weak dependence on the number of receptors, remains
(Fig. 2 B). Hence, unlike the 3D case, the accuracy cannot
be significantly improved by adding more receptors.
Accuracy improves very little with increasing
contact area

It is interesting to ask whether the accuracy is affected by
the contact area between cells. For a fixed concentration
of receptors, increasing the contact area increases both m
and s. Fig. 2 C and D show the dependence of the accuracy
on contact radius for different receptor concentrations and
different integration times. For typical values of ligand con-
centrations, the accuracy saturates when the contact radius
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C FIGURE 2 Dependence of measurement accu-

racy on number of receptors, contact area, and inte-

gration time. (A–B) Dependence of measurement

accuracy of ligand concentration, dc=c, on the

number of receptors at the contact area, m, for rela-

tively short integration time (A, t ¼ 30 s) and for

relatively long integration time (B, t ¼ 600 s).

The accuracy in all cases saturates at around three

to five receptors. The accuracy is calculated using

the exact solution, Eq. 12, for A, and the approxi-

mate solution, Eq. 13, for B (because the condition

for approximation, s<l, can only be applied in B).

The following parameters are used: D2 ¼
0.03 mm2/s, c ¼ 100 molecules/mm2, Kendo ¼
3*10�3 1/s, a ¼ 1 nm, and the radius of the contact

area, s, as indicated in the figure legend. Because

in A t<kendo, we use l� ¼ ffiffiffiffiffiffiffiffi
D2t

p
instead of

l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=kendo

p
for this case. (C–D) Dependence

of measurement accuracy of ligand concentration,

dc=c, on the radius of the contact area, s, for rela-

tively short integration time (C, t ¼ 30 s) and for

relatively long integration time (D, t ¼ 600 s).

The plot shows that the accuracy does not signifi-

cantly improve when s > 0.5 to 1.5 mm. As in

A–B, the accuracy is calculated using the exact so-

lution, Eq. 12, for A, and the approximate solution,

Eq. 13, for B. The number of receptors for each

value of s was calculated using m ¼ ps2sR, where

sR is the receptor density. In the exact calculation m was rounded to the nearest integer number. D2 ¼ 0.03 mm2/s, c ¼ 100 molecules/mm2, Kendo ¼ 3*10�3

1/s, a ¼ 1 nm, sR as indicated in the figure legend. Comparison of the exact and approximate solutions is provided in Fig. S1.
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is above a few microns, corresponding to the radius in which
the number of receptors in the contact area reaches the satu-
ration value, msat. Longer integration times (Fig. 2 D)
improve the accuracy (compared with shorter integration
time, Fig. 2 C) but show saturation at similar contact areas.
As in the previous section, we use Eq. 12 with l� instead of l
for short integration times ( t ¼ 30 s, Fig. 2C), and Eq. 13
for relatively long integration times ( t ¼ 600 s, Fig. 2 B).
We note that, the approximated solution in Eq. 13 works
nicely for longer integration times but breaks down (as ex-
pected) in the limit of large contact radii and short integra-
tion time (Fig. S1). This result suggests that there is almost
no advantage in terms of accuracy of measurement in having
large contact area between cells.

Another way to understand this weak dependence of
the accuracy on the number of receptors and the contact
area is by realizing that diffusion in 2D is known to
exhibit long-range density fluctuations (logarithmic depen-
dence) (33). These long-range correlations limit the
ability of the receptor cell to accurately determine the
average ligand concentration even when the whole contact
area can be treated as one effective receptor with large con-
tact area.
Integration times of up to several hours are
required to reach high accuracy

How long would it typically take for a receptor cell to accu-
rately determine ligand concentration in a neighboring cell?
Using Eqs. 12 and 13 (applied in different parameter re-
gimes) we can estimate the typical time it would take to
reach an accuracy of 10% ðdc=c ¼ 0:1Þ. For typical values
of parameters, we find that cells may need to integrate be-
tween around 1 second to 3 hours (see Table 1). These are
considerably longer times than the time it would take an
eukaryotic cell to accurately measure the concentration of
a ligand diffusing in 3D, which is typically in the milli-
second range (see Table 1 and (5)). It is interesting to
note, that developmental processes, in which juxtacrine
signaling systems are being used, may occur over periods
of time that are shorter than the typical integration times
calculated above. It is therefore not clear how signaling
can be accurately determined in these systems.
Averaging over several neighboring cells
modestly improve accuracy

Cells in higher organisms typically come in contact with
several neighboring cells, raising the question of how the ac-
curacy of sensing changes when a receptor cell is in contact
with multiple ligand cells. Assuming that the receptor cell
integrates over the signal from all its neighbors and that fluc-
tuations are uncorrelated between cells, it is easy to show
that the accuracy improves modestly by a factor of 1=

ffiffiffiffi
N

p
,

where N is the number of neighbors (see Supporting Mate-
rial). For cells in an epithelial cell layer, which have six
neighbors in average this would correspond to improving
the accuracy by a factor of ~ 2.5.
Biophysical Journal 107(10) 2417–2424
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Processing of receptor-ligand pair improves
accuracy by a factor of up to

ffiffiffi
2

p

Some juxtacrine signaling systems undergo processing upon
receptor-ligand binding; for example, the Notch receptor is
cleaved once bound to its ligand and its extracellular domain
trans-endocytose into the ligand expressing cell (34). Such
processing prevents the unbinding of the ligand and the pos-
sibility of measuring the same ligand more than once (6). In
the limit of very fast processing, namely, that processing
rate is much faster than the unbinding rate, one can consider
the receptor as a perfect absorber that counts and removes
all the ligands impinging on it (3,21) (we assume each pro-
cessed receptor is immediately replaced by a new one). The
accuracy of measurement by a perfect absorber in the 3D
case was previously shown to be better than the accuracy
of a perfect monitoring sphere by a numerical factor (21).
We perform a similar calculation for the accuracy of a per-
fect absorber for the 2D case, taking into account endocy-
tosis and exocytosis. We show that the accuracy improves
by a factor of

ffiffiffi
2

p
compared with the result in Eq. 8 (see

Methods and Supporting Material). Note that, receptor-
ligand processing may also reduce the accuracy if it takes
time for the processed receptor to be replaced by a new one.
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FIGURE 3 Implications of accuracy constraints on ephrin mediated axon

guidance and Notch mediated patterning. (A) An illustration of axon guid-

ance mediated by ephrin signaling. During axon development, axons

(yellow) that express Eph receptors in their growth cones, grow into the

target tissue that express a gradient of ephrin ligands (red). Eph signaling

is used for the determination of target positions for the axons. The limit

on accuracy of measurement in juxtacrine signaling imposes a constraint

on the growth rate of axons. For example, assuming that 1 min integration

time is required for reaching an accuracy enough to distinguish between

ephrin concentration in neighboring cells (say 10% difference between cells

that are 10 mm apart), imposes a limit on the growth rate of axons to 10 mm/

min. (B) A simplified illustration of Notch mediated wing vein development

in Drosophila. During wing vein formation, a gradient of Delta expression

in the future vein region (red) is used for defining the boundary between

vein (dark gray) and intervein (light gray) regions. Here, the limit on accu-

racy of measurement in juxtacrine signaling may impose a constraint on the

developmental time required for achieving sharp boundaries (see text).
DISCUSSION

From the point of view of the receptor cell, there are two
general strategies to improve accuracy of detection. One
strategy is to integrate the signal over longer times.
Although this strategy certainly improves accuracy it comes
with a price: a longer integration time means a slower
response time of the system. We show that for typical values
of parameters, integration times ranging from around one
second to 3 h are required to reach accuracy better than
10%. Many biological systems may be required to operate
on faster time scales.

The second strategy is to improve detection by adding
more receptors. This strategy seems to work well in 3D
signaling systems, where the accuracy can be improved
significantly by increasing the number of receptors. In this
case, the improvement in accuracy reaches saturation
when msaty2s=a. For chemotactic receptors in E. coli,
this threshold value may reach many hundreds of
receptors (3,4). In contrast, the behavior of the accuracy in
the 2D juxtacrine signaling system is dramatically different.
Although adding additional receptors initially improves
accuracy, it reaches saturation when msaty1þ ðlnðl=aÞ=
lnðl=sÞÞy3� 5, for typical values of parameters (Fig. 2 A
and B). Similarly, increasing the contact area between cells
(Fig. 2 C and D) or averaging over signal from multiple
neighbors does not significantly improve the accuracy.
This result has striking implications on the ability of cells
to sense signaling from their neighbors in an accurate
manner.
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Reduced accuracy imposes a constraint on speed
of axon growth

What are the implications of these results on specific biolog-
ical processes that rely on juxtacrine signaling? One such
process is axon guidance, in which neurons send out axons
to their correct targets during neural development (35). This
process is mediated by juxtacrine signaling systems such as
the ephrin signaling pathway (but also other signaling sys-
tems may be involved). Ephrins from the target cells interact
with Eph receptors on the growth cone of the axon. The
axons in this process often respond to gradients of ephrins
expressed in the target tissue and stop growing when they
reach specific ligand concentration (36) (see Fig. 3 A).
Our results suggest that there may be a constraint on the



Juxtacrine Signaling Is Inherently Noisy 2423
growth rate of the axons because the growing neurons may
require long integration times to accurately determine the
ephrin concentration in the target tissue. Assuming growing
axons need to distinguish between ephrin concentrations
that are ~ 10% different (37), presented on cells 10 mm in
diameter, we estimate that the maximal growth rate of the
axons for typical parameters (assuming 1 min integration
time) should not exceed 10 mm/min. Interestingly, some
axons have been shown to reach growth rates as fast as
5 mm/min (38,39), suggesting that growth rate may indeed
be limited by the ability to accurately measure ephrin con-
centration during axon guidance.
Implications of result to Notch mediated
patterning

Another example for processes that may be affected by our
results are Notch mediated patterning processes. The Notch
signaling pathway is involved in different developmental
processes in which neighboring cells adopt different fates.
For example, during wing development in Drosophila
melanogaster, the Notch pathway is used in defining sharp
vein boundaries (40,41). In this system, a gradient of Delta
expression is converted into a sharp Notch signaling
response that translates to a sharp boundary defined by an
almost perfect 1D line of cells (Fig. 3 B). It has been shown
that such a mechanism may be very sensitive to noise in
Notch signaling (42). Although this process certainly in-
volves more complex regulatory processes, it is useful to
ask, in the context of a simple Notch readout model, what
would be the typical integration time required to achieve
such accurate patterning. Given that the concentration of
Delta may vary by an estimated 10% to 20% over one
cell diameter (estimated from (40)), we can estimate that
achieving such spatial accuracy would require up to
10 min. Although the process of wing vein formation takes
several hours, it is not clear at what stage during wing devel-
opment are cell fates determined. It has been shown that
target genes downstream of Notch signaling may exhibit
transient response lasting only a few minutes (43), which
may suggest that this process may also be limited by the
time it takes to accurately determine Delta concentration
along the gradient.

Notch is also involved in patterning processes in which
small initial differences between cells are amplified to
generate alternating salt-and-pepper differentiation patterns
in a process termed lateral inhibition (44,45). It is possible
that our finding that such signaling systems are inherently
noisy may be useful in this context. Such noise may help
generate large initial differences between cells that can
help generating patterned states more quickly (42).

The conclusions discussed above rely on several simpli-
fying assumptions including assuming that the receptors
do not diffuse, that the concentrations of receptors and
ligands are unmatched, and that the biochemical details of
the signaling pathway such as clustering of receptors are
neglected. The contribution of some of these effects has
been addressed elsewhere for the 3D case and is beyond
the scope of this study (5–7,9). Given that the source of
noise for juxtacrine signaling is the long-range density fluc-
tuations in 2D diffusion, we expect that the exact details of
the biochemistry would not dramatically improve the accu-
racy of sensing. Similarly, we do not expect that the accu-
racy would be significantly improved for the special case
where receptor and ligand concentrations are similar. Never-
theless, it would be interesting to explore the effect of
receptor-ligand binding-unbinding on the accuracy in juxta-
crine signaling as has been done in 3D systems (7–12).

Regarding the role of receptor diffusion, one way to
look at this problem is to say that receptor diffusion effec-
tively increases the diameter of the area probed by the re-
ceptor (a in Eq. 15). Because this diameter goes into the
logarithmic term, we do not expect receptor diffusion to
affect the uncertainty much. Nevertheless, it would be
interesting to explore these effects in detail in the future.
Finally, it will be interesting to consider the implications
of our results on other developmental processes such as
planar cell polarity and the immune system relying on
different signaling pathways than the ones discussed in
this study.
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