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Abstract
Quantitative analysis of magnetic resonance (MR) brain 
images are facilitated by the development of auto-
mated segmentation algorithms. A single image voxel 
may contain of several types of tissues due to the finite 
spatial resolution of the imaging device. This phenom-
enon, termed partial volume effect (PVE), complicates 
the segmentation process, and, due to the complexity 
of human brain anatomy, the PVE is an important fac-
tor for accurate brain structure quantification. Partial 
volume estimation refers to a generalized segmentation 
task where the amount of each tissue type within each 
voxel is solved. This review aims to provide a systemat-
ic, tutorial-like overview and categorization of methods 
for partial volume estimation in brain MRI. The review 
concentrates on the statistically based approaches for 
partial volume estimation and also explains differences 
to other, similar image segmentation approaches.
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Core tip: Each voxel in a brain magnetic resonance 
imaging (MRI) may contain multiple types of tissue. 

Partial volume estimation refers to a generalized image 
segmentation task where the amount of each tissue 
type within each image voxel of brain MRI is solved. 
This is important for volume quantification and cortical 
thickness analysis due to the geometrical complexity of 
human brain structure. This review aims to provide a 
systematic, tutorial-like overview of methods for partial 
volume estimation in brain MRI.
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INTRODUCTION
Quantitative analysis of  magnetic resonance (MR) brain 
images to gain knowledge about human brain structure 
is increasingly important. For example, various neu-
ropsychiatric and neurodegenerative diseases, such as 
schizophrenia[1] and Alzheimer’s disease[2], alter the brain 
structure. By analyzing these alterations, a better under-
standing of  the underlying disease mechanisms could be 
gained and diseases could potentially be diagnosed more 
rapidly and accurately[3]. This is important since brain 
diseases represent a major source of  the overall disease 
burden[4] and are often associated with heavy impact to 
informal caregivers.

The typical quantitative analyses to detect and quan-
tify differences in brain structure between two or more 
subject groups include voxel based morphometry[5] and 
cortical thickness analysis[6]. These analyses are facilitated 
by the development of  automated MR image (MRI) seg-
mentation algorithms, which are standard tools in mod-
ern neuroscience. The image processing chain leading 
to MRI segmentation and, finally, to statistical analyses, 
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comprises of  a long pipeline of  different operations in-
cluding skull stripping, intensity non-uniformity correc-
tion, tissue classification, registration to the stereotactic 
space and cortical surfaces extraction. The point of  inter-
est in this review is the tissue classification. This refers 
to assigning a tissue type label to each voxel of  a brain 
image. Typically, the three main tissue types, white matter 
(WM), gray matter (GM), and cerebro-spinal fluid (CSF), 
are considered.

A single voxel may contain of  several types of  tis-
sues due to the finite spatial resolution of  the imaging 
device. This phenomenon, termed partial volume effect 
(PVE), complicates the segmentation process, and, due 
to the complexity of  human brain anatomy, the PVE 
is an important factor when accurate brain structure 
quantification is needed; see Figure 1 for a schematic 
explanation of  the PVE in the context of  brain MRI. 
González Ballester et al[7,8] reported that ignoring the PVE 
can lead to volume measurement errors in the range of  
20%-60%. Widely used MRI segmentation algorithms 
usually account for PVE, for example, by incorporating 
extra tissue classes[9-11]. Ruan et al[12] demonstrated that the 
intensity distributions of  the partial volume voxels can be 
approximated using Gaussian distributions and an early 
work attributed the non-normality of  the intensity distri-
butions of  the tissue classes to partial volume artefact[13]. 
However, some algorithms take a step further and try 
to solve an extended version of  the tissue classification 
problem, where the amount of  each tissue type within 

each voxel is solved. For example, hard or crisp tissue 
classification provides information whether a particular 
voxel is WM, GM, or CSF. In the extended problem, one 
wants to know that a voxel contains 20% GM, 80% WM 
and 0% of  CSF and we say that the partial volume coef-
ficients (PVCs) are 20% for GM, 80% for WM and 0% 
for CSF. The extended problem has various names. It has 
been referred to as fuzzy segmentation, partial volume 
segmentation, partial volume estimation, and tissue frac-
tion estimation. It will be referred to as partial volume 
estimation in the remainder of  this paper. In order for 
the partial volume estimation problem to be solvable, the 
intensity of  a partial volume voxel has to be expressed 
with a model that depends on the parameters of  image 
intensity distributions of  pure tissue classes. Figure 2 ex-
emplifies partial volume estimation as compared to hard 
tissue classification and also points out a specific problem 
of  hard tissue classification particularly important to 
cortical thickness computations. Namely, insufficient im-
age resolution may lead to hard tissue classification miss 
sulcal CSF and this may subsequently lead to incorrect 
cortical thickness computation if  hard tissue classification 
is used as a preprocessing operation to the cortical thick-
ness computation. 

This review aims to provide a systematic, tutorial-like 
overview and categorization for different approaches for 
partial volume estimation in brain MRI. In addition of  the 
author’s knowledge about existing literature, the articles 
to be included in this review were searched on Pubmed: 
Search term: [(magnetic resonance [Title/Abstract] OR 
MRI [Title/Abstract]) AND brain [Title/Abstract] AND 
partial volume [Title/Abstract] AND (segmentation [Ti-
tle/Abstract] OR tissue classification [Title/Abstract] OR 
partial volume coefficient estimation [Title/Abstract])] 
NOT (PET [Title/Abstract] OR emission tomography 
[Title/Abstract]). The search yielded 80 articles, majority 
of  which were found relevant to this review.

IMAGE PRE-PROCESSING
The algorithms introduced in next sections require vari-
ous image pre-processing steps to be performed before 
the partial volume estimation can take place. The pre-
processing pipeline can include intensity non-uniformity 
correction, brain extraction (or skull stripping) and regis-
tration to a sterotactic space.

Intensity non-uniformity correction is required be-
cause MR images are known to contain low frequency 
spatial intensity variations often referred to as radio 
frequency inhomogeneity or shading artifact[14]. All seg-
mentation algorithms in brain MRI must account for this 
artifact to produce accurate segmentations. There are 
several ways to correct for the shading artifact[14]. This 
can be assumed to be an image pre-processing step or to 
be performed jointly with the PV estimation, interleav-
ing PV estimation (segmentation) and non-uniformity 
correction steps. In what follows, we will assume that the 
images have been corrected for this artifact.

Tohka J. Partial volume segmentation in brain MRI
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Figure 1  A schematic explanation of the partial volume effect in the con-
text of brain magnetic resonance imaging. Voxels composed of purely gray 
matter (GM) are colored in black color while voxels composed of cerebro-spinal 
fluid (CSF) or white matter (WM) are in white color. These are termed pure tis-
sue voxels or pure voxels. Voxels composed of multiple tissue types, termed 
mixed voxels, are colored in gray. In the figure, these can be either voxels 
containing both CSF and GM tissue types or voxels containing both WM and 
GM tissue types. The actual anatomical boundaries between tissue types are 
shown in blue and red color is used to indicate voxel boundaries.



Although we are interested in segmentation of  the 
brain tissues, brain MR images contain signal from other, 
extracerebral tissue types, such as skull or scalp. Because 
these extracerebral tissue types are often irrelevant for 
brain image quantification, it is useful to mask out the 
voxels outside the brain out before the PV estimation. 
This is termed skull stripping or brain extraction and the 
reference[15] provides a comparison of  skull stripping al-
gorithms.

The registration to stereotactic space is usually carried 
out to be able to utilize information of  the tissue type 
probability maps, which, for each voxel, give a prior prob-
ability that the voxel is of  certain issue type[16]. It should 
be noted that this is not as useful for partial volume esti-
mation as it can be for hard segmentation, because tissue 
probability maps provide no information on tissue frac-
tions[17]. Moreover, if  the registered images are resampled 
to the stereotactic space, this amplifies the partial volume 
effect and may not be a recommended action.

MIXEL MODEL
Definition and approximations
The most commonly used model of  PVE in brain MRI is 
the mixel model[18]. The mixel model assumes that each in-
tensity value in the image is a realization of  a weighted sum 
of  random variables (RVs), each of  which characterizes a 
pure tissue type. The original formulation[18] requires images 
to be multispectral, i.e., that image data from multiple pulse 
sequences are available (for example, T1, T2,and proton 
density weighted images). However, there are approaches to 
overcome this problem by utilizing clever approximations 
as we shall see in Section Solving the mixel model.

We now proceed to a more formal description of  the 
mixel model. For this, we need to establish some nota-
tion. The observed image is X = {xi: i = 1,…,N}, with the 
voxel intensity xi ∈ RK, and K the number of  data chan-
nels in the multispectral case. For example, if  we have 
T1-, T2-, and proton density-weighted images, then K = 3. 
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Figure 2  Example of partial volume estimation. Top row, from left: A coronal section of T1 weighted MR image; A skull stripped version of the coronal section; A 
manual labeling into gray matter (GM) (gray color), white matter (WM) (white color), and cerebro-spinal fluid (CSF) (dark gray color). Bottom row: Estimates of partial 
volume coefficients (PVCs) for CSF, GM, and WM. The color bar refers to the PVC estimates in the bottom row. The image is obtained from the IBSR2 dataset pro-
vided by the Center for Morphometric Analysis at Massachusetts General Hospital and PVCs were computed as described in the ref. [28]. Note how the manual hard 
labeling completely misses the CSF in the interhemispheric fissure as well as in the superior frontal sulcus pointed by red arrows. Instead PVC estimates of CSF in 
the bottom row capture well the sulcal CSF.
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embedding the measurement noise into material noise 
components, i.e., n is dropped from Eq. (1)

                                                                                     (3)

This model is more complex than the sampling noise 
model, but it is probably more realistic.

Solving the mixel model
Direct solution via penalized least squares: Assuming 
the sampling noise model, the PVCs can be solved direct-
ly from Eq. (2) if  enough data channels are available[18]. 
Denoting a matrix of  all PVCs by w, the least squares 
criterion to minimize for solving Eq. (2) is written as

                                                                                     (4)

with constraints that                    and 0 ≤ wij ≤ 1. Note 
that this equation can be solved individually for each 
voxel. In the case of  single image channel and two tissue 
types, the solution is particularly simple:

                                                                                     (5)

and the function r limits the solution to the interval from 
0 to 1, i.e., r (y) = 0 when y < 0, r(y) = y when 0 ≤ y ≤ 1, 
and r (y) = 1 when y > 1. This solution is also the maxi-
mum likelihood solution and it accounts to a simple scal-
ing of  the image intensities to the interval from 0 to 1. 
For this reason, the solution is also very noisy and Choi 
et al[18] suggested to regularize it with a Markov Random 
Field (MRF) prior (see also Li et al[21]). The idea is that 
PVCs of  neighboring voxels should have similar values. 
This leads to a modified criterion to minimize, with the 
same constraints as above,

                                                                                     (6)

where the term P(w) penalizes differences between wi 
= [wi1,…,wiM] and wk = [wk1,…,wkM] if  the voxels i and k 
are neighbours. Unfortunately, this objective cannot be 

N denotes the number of  brain voxels in the image and i 
is the voxel index. The voxel index has three components 
that correspond to the position of  the voxel in the left-
right, anterior-posterior, and inferior-superior axes. There 
are M tissue types in the image. Typically, M is equal to 3, 
and the tissue types are WM, GM, and CSF. The mixel 
model is statistically based. Thus, a voxel intensity xi is 
considered to be a realization of  random variable xi. 
Similarly, each tissue type j is described by a random vari-
able lj , which is assumed to be distributed according to 
the multivariate normal distribution with the mean μj and 
covariance Σj. Random variable xi is written as a weighted 
sum

                                                                                     (1)

where n represents measurement noise, typically as-
sumed to be Gaussian (with a covariance matrix Σ*) and 
partial volume coefficients (PVCs) wij ∈ [0, 1] for all i,j 
and                 for all i. The PVCs model the fraction of  
each tissue type in the voxel, for example, if wiGM has a val-
ue of  0.8 then the voxel contains 80% of  the GM tissue 
type. This is similar to the fuzzy classification/segmenta-
tion problem, but in the mixel model the coefficients wij 
specifically model the fraction of  tissue type j present in 
the voxel i. We will return to connections of  the mixel 
model and the Fuzzy C-means algorithm in Section 5.

In practice, the mixel model has to be simplified be-
cause it is impossible to distinguish between measurement 
noise and variability within tissue types. Various simplifica-
tions have been studied by Santago et al[19,20]. They identi-
fied two possible types of  simplification, namely, the sam-
pling noise model and material dependent noise model as 
depicted in Figure 3. The sampling noise model assumes 
that all the randomness in the model is due to measure-
ment noise. This leads to a model, where the tissue types 
are described by mean intensities of  tissue types:

                                                                                     (2)

The material dependent noise model is obtained by 
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Figure 3  Sampling and material dependent noise models. Sampling noise model assumes that each tissue type is represented by a single average value and 
Gaussian-distributed noise is then added. Material dependent noise model assumes that the tissue types are represented by random variables. CSF: Cerebro-spinal 
fluid; GM: Gray matter; WM: White matter.
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anymore minimized separately for each voxel, but all the 
voxels must be taken into account. Choi et al[18] used It-
erative Conditional Modes algorithm[22] to minimize the 
penalized least squares criterion in Eq.(6).

Two step algorithms: The simple two-class, one-
channel solution above motivates a set of  techniques al-
lowing the standard PVC estimation for three tissue types 
even if  just data from just a single image (usually T1-
weighted) is available. The idea is that since the combina-
tion of  more than two tissue types in a voxel is very rare, 
we can estimate which two tissue types are present in a 
voxel before the PVC estimation; Alike idea was already 
mentioned for multichannel data in[18,23]. The steps of  the 
two step algorithm can be given as follows, and they are 
schematically represented in Figure 4: (1) Partial volume 
classification: Estimate which is most likely tissue type 
configuration containing at most two tissue types in each 
voxel; and (2) PVC estimation: Solve the partial volume 
estimation problem limited to tissue types found in Step 
1 for all the voxels.

There are at least three different approaches to solve 

the task in the step 1. In the simplest approach, used for 
example in the reference[24], the tissue classes are ordered 
based on their mean values so that μ1 < μ2 < ..... < μM. 
Then, if  the intensity value xi lies in the interval [μk, μk+1], 
it is assumed that the voxel i is a mixture of  tissue types 
k and k + 1. This simple model does not account for the 
noise in the images and is not applicable for multichannel 
data because it assumes that the mean intensity values of  
tissue types can be ordered. The second approach is to 
detect most likely pure tissue types within the voxel based 
on the Bayes classifier[18,23]. This is done computing the 
two most probable tissue types within a voxel. However, 
this approach, as the first one, ignores the possibility that 
voxels may be composed of  a single tissue type. The third 
and preferred approach, which is we term as probabilis-
tic partial volume classification, fixes the just mentioned 
problem. The probabilistic partial volume classification 
approach is to compute the probability of  each possible 
tissue type mixture appearing in the voxel[19,20,25-27]. For 
example, if  the tissue types of  interest are WM, GM, 
and CSF, the following 6 probabilities are computed: (1) 
Voxel is solely CSF; (2) Voxel is solely GM; (3) Voxel is 
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Figure 4  Direct vs two step procedure for partial volume coefficient estimation. CSF: Cerebro-spinal fluid; GM: Gray matter; WM: White matter; PVC: Partial 
volume coefficient.

Tohka J. Partial volume segmentation in brain MRI



solely WM; (4) voxel is a mixture of  background and 
CSF; (5) voxel is a mixture of  CSF and GM; and (6) 
voxel is a mixture of  GM and WM. (Some tissue type 
combinations are not considered due to their rarity in the 
brain.) The technical problem in the probabilistic partial 
volume classification approach is the construction of  
the probability models for mixed tissue classes; the class 
conditional densities for pure tissue classes are modelled 
by the normal density. The probability densities for the 
mixed tissue types can be constructed based on a margin-
alization technique developed originally in references[19,20] 
and further applied in references[25-28]. The idea is to inte-
grate out the variable wi1describing the percentage of  tis-
sue type 1 in a voxel by numerical integration. Note that 
with current computers the numerical integration does 
not present computational problem and can be solved 
very fast[28]. Advantages of  this more complicated proba-
bilistic approach over the two simple approaches include 
possibility to include spatial regularization in the form of  
MRFs to the step 1[25,26] and the applicability to multispec-
tral images[26]. Additionally, it is often expected that the 
number of  the pure tissue voxels should be greater than 
the number of  mixed tissue voxels. The probabilistic par-
tial volume classification includes automatic and elegant 
control for this issue that has been solved elsewhere by 
using Bayesian methods at the expense of  introducing 
extra user-defined parameters[24,29].

Once the tissue types that are probable to appear in a 
voxel are determined, then the PVCs can be estimated us-
ing Eq. (5) if  the sampling noise model is assumed. Note 
that if  voxel i is determined to be a voxel of  pure tissue 
type k, then wik = 1 and wij = 0 for other tissue types j ≠ k. 
One can also adopt the material dependent noise model 
leading to a maximum likelihood criterion. If i is a mixed 
voxel of  tissue types j and k, the maximum-likelihood so-
lution is

                                                                                     (7)

where g is the Gaussian probability density; μ(w) = wμj 

+ (1-w)μk; Σ(w) = w2Σ j + (1-w)2Σ k or Σ(w) = wΣj + (1-w)Σk. 
Furthermore, wik

* = 1 - wij
* and all the other PVCs are zero. 

The correct model for Σ(w) has caused some controversy 
(see the references[30,31] for details). The difference in the 
two models is that the first one (Σ(w) = w2Σ j + (1 - w)2Σ 

k) results in a more regularized solution of  Eq. (7) while 
the second one (Σ(w) = wΣj + (1 - w)Σk ) is conceptually 
more pleasing. The maximum-likelihood PVC-estimate in 
Eq. (7) is solved by a simple grid search. Extensions to the 
maximum likelihood principle of  Eq. (7) include Bayesian 
methods[24].

As mentioned above, the two-step algorithms can 
use the MRF prior to regularize the partial volume clas-
sification and this has been demonstrated to lead to more 
accurate partial volume estimates when the images are 
noisy[25]. The use of  the MRF requires the user to set a 
proper weighting parameter for the prior which may be 
considered as a disadvantage[8]. However, often quoted 

disadvantage of  the added computational cost (e.g., the 
reference[8]) of  the MRF, can be overcome by new rapid 
algorithms capable of  performing MRF based segmenta-
tion of  the typical 3-D MR images within few seconds[28]. 
While the two-step algorithms often use spatial MRF pri-
or during the partial volume classification step, they typi-
cally do not utilize spatial information during the second, 
PVC estimation, step. Manjón et al[27] introduced an MRF 
for modelling of  the spatial information during the PVC 
estimation step and compared it to the usage of  prefilter-
ing the images with a non-local means filter. The results 
suggested that using spatial information improved the 
PVC estimates and non-local means filtering performed 
better than the MRF-based approach.

Discretization approaches: An alternative to try to 
find real-valued PVC estimates is to discretize the PVC 
estimation problem[32-34]. This means that instead of  let-
ting each PVC wij lie freely in the interval from zero to 
one, the discretization-based methods restrict the PVCs 
to have only a discrete set of  values. For example, wij can 
be 0, 0.1, 0.2,…,1.0. The discretization-based methods 
then try to solve maximally probable PVCs from this 
discretized set resorting MRF approaches to model spa-
tial interaction between adjacent voxels[32-34]. While the 
restriction to a discrete set of  PVC values is perfectly 
reasonable given the noisiness of  the images, the discreti-
zation approaches are usually very time consuming, espe-
cially when compared to fast two step approaches[25,28].

Parameter estimation
The necessary model parameters μj,j = 1,…,M and Σ* or Σ j,j 
= 1,…,M must be estimated before or during the solution 
of  the mixel model. Correct estimation of  these param-
eters is essential for partial volume estimation[35]. Tohka et 
al[26] identified three potential approaches to the parameter 
estimation problem: (1) histogram analysis; (2) simultane-
ous parameter, and partial volume estimation by expecta-
tion maximization (EM)-like algorithms; and (3) the esti-
mation based on a hard segmentation of  the image.

The conceptually simplest alternative is to fit a para-
metric model (a mixture model of  pure and mixed tissue 
intensity densities) to an image histogram. The objective 
function can be based on the maximum likelihood or 
least squares criterion. The disadvantage of  parametric 
model fitting is that the formulated minimization prob-
lem is complex and non-convex rendering the standard 
optimization algorithms useless. Various global optimi-
zation algorithms, including genetic algorithms and tree 
annealing, have been used for the task[19,36]. The EM-like 
algorithms start from an initial rough parameter estimates 
and refine the estimates jointly with the partial volume 
estimation[32,34] or classification[37] through alternating 
expectation and maximization steps. This can guarantee 
accurate parameter estimates, but the estimates depend 
strongly on the initial guess and the convergence of  the 
process can be slow. The third alternative is to generate 
an initial rough segmentation of  the image, and thereaf-
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ter use outlier detection techniques based on the math-
ematical morphology, robust point estimates, or image 
gradient values to prune the set of  voxels belonging to a 
certain tissue class[25,26,35,38,39]. Comparisons of  these three 
techniques have been reported in the references[26,35]. The 
main result of  these comparisons has been that the pa-
rameter estimation based on the hard segmentation of  
the image is fast and usually, but not always, works as well 
or better than the other two approaches. 

RELATED METHODS
Fuzzy C-means
The standard Fuzzy C-means (FCM) algorithm optimizes 
a cost function

where uij are the fuzzy membership values μk are the class 
centroids, and q is the fuzzification parameter. This objec-
tive function and its modifications have been widely and 
successfully used for brain MRI tissue classification[40-43]. 
As shown in the reference[29], if  q = 3, M = 2, and K = 
1, optimizing the objective JFCM for fixed centroids leads 
to the identical PVCs as PVCs derived based on Eq. (5). 
However, with more than two tissue types or multispec-
tral data, fuzzy segmentations by FCM and mixel model 
are different.

Bayesian tissue classifiers
Often the tissue classification is casted as the Bayesian 
decision problem[9,16,17,44,45]. In that, one tries to estimate 
the posterior probability map that the tissue type is c giv-
en the image intensities. Often approaches use prior in-
formation from tissue probability maps[9,16] or MRFs[44,45] 
or both[17]. It should be noted that the tissue type prob-
abilities are different from the partial volume coefficients. 
The exact difference of  the segmentation results depends 
on the probability model selected, but usually these 
Bayesian tissue classifiers produce more crisp tissue type 
maps than the partial volume estimation algorithms. This 
issue and its ramifications are considered in a more detail 
by Manjón et al[27].

APPLICATIONS OF PARTIAL VOLUME 
ESTIMATION
Voxel based morphometry
Voxel-based morphometry (VBM) involves a voxel-wise 
comparison of  the local concentration of  gray matter be-
tween two groups of  subjects. The procedure consists of  
segmenting the gray matter from the MR images and spa-
tially normalizing these gray matter images from all the 
subjects in the study into the same stereotactic space[5]. 
These gray matter images can either represent GM tissue 
probabilities, for example, as in the reference[46] or GM 
tissue fractions resulting partial volume estimation, for 

example, as in the reference[47]. While it seems clear that 
the PVCs are better representations of  gray matter den-
sity than gray matter probabilities, it is not clear whether 
this particular modelling choice has a major effect on 
the accuracy of  the results. To author’s knowledge, gray 
matter probability and gray matter PV-coefficient based 
VBM methods have not been directly compared. Tardif  
et al[48] examined two pipelines resulting in GM probabil-
ity based VBM and PVC based VBM but the main focus 
of  the work was on a comparison of  1.5T and 3T imag-
ing protocols. The VBM8 software package (http://dbm.
neuro.uni-jena.de/vbm/) offers possibility to VBM using 
PVCs[49].

Cortical thickness
Cortical thickness is a quantitative measure describing 
the combined thickness of  the layers of  the cerebral cor-
tex that can be measured using MRI either using mesh 
based[6,50,51] or voxel based techniques[52]. The thickness 
of  the cortex, and its local variations, are of  great inter-
est in both normal development as well as a wide variety 
of  neurodegenerative and psychiatric disorders[6]. Cortex 
is a highly folded structure with an approximate aver-
age thickness of  2.5 mm[53] and hence it is not difficult 
to appreciate that the partial volume effect has been an 
important consideration when measuring cortical thick-
ness. Both surface mesh based[54] and voxel based[55-57] 
cortical thickness measures can be shown to be improved 
if  the partial volume effect is taken into account. Espe-
cially, as demonstrated in Figure 2 and discussed further 
in the references[26,54], hard tissue classifications may miss 
some of  the sulcal CSF because of  an insufficient image 
resolution. This causes incorrect reconstruction of  the 
GM/CSF boundary, which, in turn, leads to errors in the 
cortical thickness computation.

Other applications
Other applications of  segmentation with the PVE model-
ing identified during the literature review were segmenta-
tion of  the brain images of  the neonates[58-61], hemisphere 
segmentation and related shape analysis[62,63], EEG source 
localization[64], and lesion load computations based on 
MRI[65-68]. Especially, in the case of  the Multiple Sclerosis 
(MS) lesion volumetry, the correction for the partial vol-
ume effects has a large positive effect on the reproduc-
ibility and accuracy of  the analysis[69]. In particular, it was 
found to be important in avoiding of  misclassification of  
some non-lesion voxels (between CSF and brain tissue) 
into lesion voxels[69].

CONCLUSION
An interesting recent development in MRI segmentation 
and partial volume estimation is the use of  quantita-
tive tissue type maps for the purpose[70-72]. For example, 
Ahlgren et al[70] utilized the signal of  a spoiled gradient-
recalled echo (SPGR) sequence acquired with multiple 
flip angles to map T1, and subsequently to fit of  a multi-

861 November 28, 2014|Volume 6|Issue 11|WJR|www.wjgnet.com

JFCM = ∑ ∑ μ   xi - μ   2,
N M

i =1j =1 ij
q

k

Tohka J. Partial volume segmentation in brain MRI



compartment model yielding parametric maps of  partial 
volume estimates of  the different compartments. West 
et al[71] used quantitative MRI values of  the longitudinal 
relaxation rate, the transverse relaxation rate and the 
proton density to define tissues (WM,GM,CSF) and 
constructed a lookup table for partial volume estimation. 
These quantitative approaches show good potential to 
improve the partial volume estimation accuracy. Another 
recent development is the use of  high-field MRI to map 
smaller and smaller brain structures[73], such cortical lay-
ers or hippocampal subfields[74]. These efforts will benefit 
from automated segmentation. Despite of  improved 
image resolution provided by higher field strengths the 
problems related to partial volume effect will remain as 
the structures of  interest will become smaller at the same 
time. For example, while the improved image resolution 
will diminish (but not completely erase) the challenges 
related to partial volume effect in the cortical thickness 
computation, it will also possibly allow studies concern-
ing individual cortical layers requiring a higher image res-
olution, where partial volume effect is again an important 
consideration. 
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